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Abstract In this chapter, we present a case study of performing visual analytics

to the protein disorder prediction problem. Protein disorder is one of the most im-

portant characteristics in understanding many biological functions and interactions.

Due to the high cost to perform lab experiments, machine learning algorithms such

as neural networks and support vector machines have been used for its identifica-

tion. Rather than applying these generic methods, we show in this chapter that more

insights can be found using visual analytics. Visualizations using linear discrimi-

nant analysis reveal that the disorder within each protein is usually well separated

linearly. However, if various proteins are integrated together, there does not exist a

clear linear separation rule in general. Based on this observation, we perform an-

other visualization on the linear discriminant vector for each protein and confirm

that the proteins are clearly clustered into several groups. Inspired by such find-

ings, we apply k-means clustering on the proteins and construct a different classifier

on each group, which leads us to a significant improvement of disorder prediction

performance. Moreover, within the identified protein subgroups, the separation ac-

curacy topped 99%, a clear indicator for further biological investigations on these

subgroups.
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1 Introduction

Today’s internet era has bombarded analysts in many research fields with an excess

amount of information. Extremely complicated structures in data have unearthed

new challenges to the statistics and machine learning field. In the past 50 years,

many excellent methods have been architected to handle flat data – data with simple

problem structures. Good examples are the traditional classification and regression

problems: given some training input and output, attempt to build a predictive model

for the data that can accurately predict future inputs [15]. However, real-life data are

often not flat, requiring that a certain structure unique to each problem be utilized

in order to obtain good results. Since the structure may differ so much among the

datasets, it is extremely hard to design automated methods to capture each and every

one of the particular problem structures.

Because of this difficulty, visual analytics has drawn a lot of interest. Humans

are much better than computers in gaining structural insights. However, a signifi-

cant portion of their analytic ability comes visually, whereas even the fastest com-

puters have yet to achieve a human’s capability to quickly summarize fairly com-

plicated pictures and plots. Certainly it would be extremely beneficial to combine

the strengths of both humans and computers in order to make better sense of our

data reservoir, but the question is exactly how this can be practically done. Solving

practical problems of interest tends to be much more difficult than boasting about

the accomplishments of theoretical principles.

The diverse nature of data indicates that there exists no simple answer. In general,

pattern recognition techniques can be utilized to reduce the data into a form people

can read and look at. Nonetheless, people can handle a limited number of objects

[4]: it is well-known that usually a human can simultaneously handle at most a

handful of objects [25, 3], an embarrassingly small number given that the data may

contain millions of instances that contain thousands of features (dimensions). It is

hard to believe that there exists any panacean algorithm that can reduce every kind

of data to a much smaller number of objects of interest.

Therefore, in visual analytics, a lot of creativity and interaction with data are

needed to analyze a problem. This does not necessarily mean producing beautiful

renderings and eye-catching animations, but putting more problem-specific efforts

to reveal the underlying structure in the data. We argue that in the current stage

of visual analytics research, having a lot of use cases of applying visual analytics

to a variety of problems is important, since these solid advices can potentially help

people to draw more general guidelines in the future. Therefore, this chapter focuses

on just one particular problem and shows how we apply visual analytic principles,

combined with simple classic pattern recognition methods, to obtain some structural

insights and enhance our knowledge and predictive ability about the problem. It is

our hope that our analysis described in this chapter can give some inspiration to

more and better visual analytics use cases in the future.

The rest of this chapter is organized as follows. Section 2 introduces the prob-

lem of protein disorder prediction and describes the dataset and features. Section 3

briefly discusses the variant of discriminant analysis algorithm that we use to visual-
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ize the data. Section 4 presents the details of our visual analysis. Section 5 shows the

experimental results of our visualization-driven approach. Finally, Section 6 draws

conclusions and suggests possible future work.

2 Protein Disorder Prediction

Proteins are fundamental biochemical compounds in which a linear chain of amino

acids (or residues) are formed via polypeptide bonds and folded into complex three-

dimensional structures. In most cases, the complex structures of proteins are stable,

but some proteins may contain some unstable sub-sequences within its amino acid

chains, which we call intrinsically disordered regions.

These intrinsically disordered regions play important biological roles by facili-

tating flexible couplings and bindings with other proteins. Thus, the identification of

disorder regions has been a crucial task within biology domains [11]. This problem

has also continuously been one of the main focuses in the biannual world-wide ex-

periment called critical assessment of methods of protein structure prediction, i.e.,

CASP [1].

This task is typically done by experimental methods such as X-ray scattering and

nuclear magnetic resonance spectroscopy, which cost nontrivial amounts of time

and money. Alternatively, a lot of effort has been spent in developing computational

methods that statistically predict the disorder region of a given protein using a set of

training proteins whose disorder labels are known. From a computational perspec-

tive, protein disorder prediction can be viewed as a binary classification problem,

which determines whether each amino acid in a given protein is disordered or not.

Until recently, numerous methods have been proposed [12], and some of them adopt

popular classification techniques such as neural network [7, 16] and support vector

machines (SVM) [26, 28].

The protein disorder prediction data in this study is a standard database [6]. It

contains the amino acid sequences of 723 proteins, which has, in total, 215,612

residues as well as their labels that describe whether or not a residue is disordered.

Approximately 6.4% of them are classified as disordered.

To apply classification techniques to the dataset, the data items that need to be

classified are typically encoded as high-dimensional vectors. We have used one of

the standard encoding schemes to represent each residue in a particular protein,

which takes into account the neighborhood residues within a particular window size

[21, 22]. To be specific, for a window size of (2w+ 1), a residue is encoded using

itself as well as the previous w and the next w residues. For these (2w+1) residues,

their PSI-BLAST profiles [2], the secondary structure, the solvent accessibility, and

the hydrophobicity features are concatenated as a high-dimensional vector to repre-

sent the residue at the center. The details of these features are as follows.

PSI-BLAST profile In the first part of the features, each of the (2w+1) residues

in the window is represented as a 20-dimensional PSI-BLAST vector. This 20-

dimensional vector is then normalized so that it sums up to one. However, the first
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and the last w residues at N- or C-termini do not have all the valid (2w+1) residues

in their windows. In order to allow a window to extend over N- and C-termini, an ad-

ditional 21st dimension is appended. For those positions that extend out of the pro-

tein, no amino acid exists in which case the 20-dimensional vector is set to all zero,

but the 21st dimensional value is set to one. Otherwise, the 21st dimensional value

stays zero. Additionally, we put another dimension representing the entropy value

of a PSI-BLAST vector. In the end, the PSI-BLAST profile takes up 22× (2w+1)
dimensions.

Secondary structure profile The secondary structure of a protein refers to cer-

tain types of the three-dimensional local structure. Although it originally has 8 dif-

ferent types, we use a simpler categorization of three states of helix, sheet, and coil.

To obtain the secondary structure profile, we utilize one of the popular secondary

structure prediction methods called PSIPRED [19, 5]. Assigning one dimension for

the resulting probability or likelihood of each state, the secondary structure of each

residue is encoded as a three-dimensional vector, which has 3×(2w+1) dimensions

in total.

Solvent accessibility profile The solvent accessibility is another important char-

acteristic associated with residues in a protein. For this profile, we use a recent

method based on the k-nearest neighbor classifier by Joo et al. [20] and encode it as

a scalar value for each residue. Additionally, we add another dimension to represent

the average solvent accessibility within the window. Thus, (2w+1)+1 dimensions

are used in total.

Hydrophobicity profile The hydrophobicity also plays an important role in dis-

order prediction, and in practice, hydrophilic residues are frequently shown in dis-

order regions. We encode the hydrophobicity of each residue as a scalar value by

using the Kyte-Doolitle hydrophobicity values [23], and similar to the solvent ac-

cessibility profile, we include an additional dimension of its average value within

the window. Furthermore, considering its significant influence on prediction, we put

another additional dimension of the average hydrophobicity throughout the entire

residue sequence within a certain protein. Finally, (2w+1)+1+1 dimensions are

used for this profile.

In our experiments, we set w to 7 since it resulted in providing a higher classifi-

cation performance in a reasonable computation time. Finally, the total number of

dimensions in the data is 408.

3 Discriminant Analysis for Visualization

Discriminant analysis transforms high-dimensional data into a low-dimensional

space so that different classes of data are well separated from each other. One of

the most popular methods is linear discriminant analysis (LDA)[14], and it has been

successfully applied to the visualization of clustered high-dimensional data by re-

ducing the data dimension to two or three [8, 9].
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Let us briefly describe LDA by introducing the notion of scatter matrices used

to define the cluster quality and the criteria of LDA. Suppose a given data matrix

A =
[

a1, a2, · · · , an

]

∈ R
m×n whose columns are data items and let Ni denote the

set of data item indices belonging to class i. Assuming that the number of classes

is r, the within-class scatter matrix Sw and the between-class scatter matrix Sb are

defined, respectively, as

Sw =
r

∑
i=1

∑
j∈Ni

(

a j − c(i)
)(

a j − c(i)
)T

and

Sb =
r

∑
i=1

|Ni|
(

c(i)− c
)(

c(i)− c
)T

,

where c(i) is the centroid of class i, and c is the global centroid. The traces of these

matrices are expressed as

trace(Sw) =
r

∑
i=1

∑
j∈Ni

∥

∥

∥
a j − c(i)

∥

∥

∥

2

and

trace(Sb) =
r

∑
i=1

∥

∥

∥
|Ni|

(

c(i)− c
)∥

∥

∥

2

,

respectively. A large trace(Sw) and a small trace(Sw) corresponds to a stronger dis-

crimination between classes.

In the reduced dimensional space generated by a linear transformation GT ∈
R

l×m (m > l), a data item a j is represented as GT a j, and accordingly, the scatter

matrices Sw and Sb become GT SwG and GT SbG, respectively. LDA solves G such

that it maximizes trace
(

GT SbG
)

while minimizing trace
(

GT SwG
)

by solving a sin-

gle approximated criterion,

max
G

trace
(

(

GT SwG
)−1 (

GT SbG
)

)

,

whose solution is obtained by generalized eigendecomposition [14] or generalized

singular value decomposition [17].

In this vanilla version of LDA, the rank of G is at most k−1 due to the rank of Sb,

and in the current binary classification problem only one-dimensional output can be

generated, which is too restricted for visualization. To avoid this issue, we modify

the centroid terms used in Sw and Sb to nearest neighbor points [13, 27] such that

SNN
w =

n

∑
j=1

K

∑
k=1

(a j −NNw (a j, k))(a j −NNw (a j, k))T
and

SNN
b =

n

∑
j=1

K

∑
k=1

(a j −NNb (a j, k))(a j −NNb (a j, k))T
,
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where NNw (a j, k) is the k-th nearest neighbor point of a j among the data in the same

class of a j, and NNb (a j, k) is the one among the data that belongs to a class different

than that of a j. With such modifications, the rank of the matrix G is no longer

restricted to the number of classes k, and one can visualize the data by using the

two or three most significant dimensions of the solution obtained from generalized

eigendecomposition/singular value decomposition.

4 Visualization of Protein Disorder Data

Although the protein disorder prediction problem can be described as a flat binary

classification problem of individual amino acids, there is one more layer in its struc-

ture – the protein level. If this structure is used, each amino acid would not be

treated separately, but rather grouped together by their respective proteins and some

protein-level clue would be used. This is no longer trivial and needs both a motiva-

tion why it is needed, and a strtegy to perform it. We will detail our visual approach

in this section that gives both a motivation and a strategy.

4.1 Knowledge Discovery from Visualization

The first idea is to visualize a simpler subproblem: the amino acids within each pro-

tein. By using the neighborhood-based discriminant analysis described in Section

3, we have generated the 2D scatter plot of residues along with their disorder labels

using different colors. Figure 1 shows several visualizations of different proteins. As

can be seen in Figure 1 (a)-(c), the two classes are clearly separated from each other

in almost all the proteins. Especially, the non-disorder amino acids almost form a

Gaussian distribution in every protein, hinting that discriminant analysis methods

are suitable for this problem (LDA is the optimal classifier when both classes are

from Gaussians with equal covariance. If the covariance is not equal, quadratic dis-

criminant analysis (QDA) generates the optimal classifier [10]).

Knowing that within each protein, linear separability is achievable, a natural next

question is whether this extends when multiple proteins are analyzed together. Inter-

estingly though, only a few proteins need to be put together to lose the separability:

when performing discriminant analysis on residues from several proteins, the two

classes almost always have significant overlap (Figure 1(d)). The structural knowl-

edge we have gained through this visualization is that the non-disorder amino acids

approximate a Gaussian distribution within each protein, but these Gaussians differ

for different proteins.

These structural observations motivate us to carefully design the disorder predic-

tor depending on the proteins. To this end, instead of visualizing individual residues,

we now visualize the proteins as individual data items. For this case, however, we

need a high-dimensional vector representation for each protein. Our second impor-
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tant idea in the paper is to use the first basis (or discriminant) vector computed from

discriminant analysis to represent each protein.

The justification of using it is as follows. As shown in Figure 1, in most of the

proteins, the discrimination between the two clusters are achieved in the first di-

mension, i.e., along the horizontal axis, and in this sense, using the first basis vector

is sufficient to characterize how the two clusters are separated in each protein. In

addition, since discriminant vectors differ among proteins, visualizing them could

reveal if some proteins have similar discriminant vectors, or if there is no special

patterns there.
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(a) Protein #200

−0.02 0 0.02 0.04 0.06 0.08

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

d

n

n

n

n

n

n

n

n
n

n

nn

n

n

n

n

n
n

n

n

n

n

n

n
nn

n

n
n

n

n

n
n

n

n

n

n

n

n

n

n

n

n

n

n
n

n
n

n

n

n

n

n

n

n
n

n

n n

n

n n
n

n

n

n

n

n

n

n

n n

n

nn

n
n

n

n
n

n

n

n

nn

n

n n

nn

n

n

n

n n

n

n

n

n

n
n

n
n

n

n

n

n

n

n

n

n

n
n

n
n

n

n n

n

n

nn

n
n

n

n

n

n

n

n
n
n

n

n
n

n nn

n

n
n

n

n

n
n

n

n

n

n

n

n nn
n

n
n

n

n
n

n n

n

n

n

n

nn

n

n
n

n

n

n

n
n

n

n

n

n

n

n

n

n

n

n
n

n

n

n

n

n

n

n
n

n

n

n

n

n

n

n

nn
n n

n

n

n

n

n

n

nn

n

n

n

n n

n n

n

nn

n

n

n
n

n

n

n

n

n

n

n
n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n n

n

n

n

n
n

n

n

nn

n

n
n

n
n n

n

n

n

n
n

n

nn

n n

n

n

nn

n

nn

n

n

n

n

n

n

n

n

n
n

n

n

n

n
n

n
n

n

n
n
n n

n

n

n

n

n

n
n

n

n

n

n

n
n

n
n

n

n

n

n

n

n

n

n n

n
n

n

n

n

n

n

n

n

n

n
n

n

n

n

n
n

n

n

n

n

n

n
n

n

n

n

n n

n
n

n n
n

n

n

n

nn

n

n

n

n

n
n

n

n

n

n

n

n

n
n n

n

n

n

n

n

n

n

n

n

n
n

n

n

n

n

n

nn
n

n

n

n

n
n

n

n

n

n

n

n

n

n

n

n n

nn

n

n

n n

n

n

n

nn

n

n

n

nnn
nn

n
n

n

n

n

n
n

d

d

d

d

d

d

d

d

d

d

dd

d

d

d

dd

d

d

d

d

d

n

n

n

n

n
n

n
n

n

n
n

n
n

n

n

n

n

n

n

n

n
n

n

n n

n

n

n

n

n

n
n

n

nn

n

nn

n

n

n

n

n

n

n

n

n

nn n

n

n

n

n

n

n

n

n

n

n

n

n

n

nn
n

n

n

n

n

n

n

n

n

n

n n

n
n

nn

n

n

n

nnn
n

n

n

n
n

n

n

n

n

n

n
n

n

n n

n

n
n
n

n

n

n

n

n

n

n

n
n

n

n

n

n

nn

n

n
n

n

n

n

nn

n

n

n

n

n

n

n
n

n

nn

n

n

n

n

n

n

n

n

n

n

n

n

n
n

n
nnn

n

n
n

n

nn

n

n
n

n
n

n

n

n

n

n

n

n

n

n

n
n

n

n

n

n

n

n

n

n

n

n nn d

(b) Protein #672
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(c) Protein #705
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(d) Aggregation of 12 proteins

Fig. 1: Visualization examples of randomly chosen proteins from the 723 proteins database [6].

(a)-(c) are for individual proteins, and (d) for 12 proteins including the proteins used in (a)-(c).

The blue and red color correspond to the non-disorder and the disorder clusters, respectively. The

sample mean and covariance for each cluster are also shown as a letter in a rectangle and a black

ellipse, respectively.
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4.2 Visualizing the Discriminants

The 408-dimensional discriminant vector from each protein is used for the visual

analysis in the next step. Here we first perform a simple principal component anal-

ysis (PCA) [18] to reduce the vector dimensions to three. Figure 2(a) shows the

3D scatter plot of these protein-level discriminant vectors. Unlike LDA, PCA does

not directly take into account the cluster structures. Nevertheless, the visualization

clearly shows a cluster structure in which there are four clusters among 723 pro-

teins. The observed data invites us to use a clustering algorithm. Therefore, we

have applied k-means clustering on the basis vectors by setting k to 4. It resulted

in four clusters with 48, 61, 64, and 550 proteins, respectively, and this clustering

result from the original 408-dimensional space matches our visual findings in the

3D space as shown in Figure 2(b). Although it is not clear in Figure 2(b), as we

rotate the 3D scatter plot, the majority cluster with the orange color containing 550

proteins is shown to have a relatively high variance. The visualization of only the

majority cluster, as shown in Figure 2(c), reveals that it is due to a heavy tail at

the left side, and therefore, we further divided the majority cluster into two clus-

ters by using k-means with k = 2. Consequently, the 48 proteins in the tail has been

identified, which correspond to the brown cluster in Figure 2(d). Finally, the cluster

distribution is summarized in Table 1.

To further confirm the protein clusters we found, we propose a stratified classi-

fication approach. In this approach, we train one classifier on each protein cluster.

Ideally, when given a test protein we will first determine which cluster it belongs

to and then use the respective classifier to predict its disorder regions. A Bayesian

approach can also be taken such that the final decision is made by

Pr(Pa is disordered) = ∑
i

Pr(P ∈ Gi)Pr(Pa is disordered|Gi)

where Pa ∈ P is an amino acid in protein P, and Gi defines the protein groups

found from the cluster analysis. This equation marks a difference from previous

approaches: here we factorize the desired probability that an amino acid a is disor-

dered into two distinctive parts. The first is the probability that the protein P belongs

to a specific protein subgroup. Then, given this subgroup and the amino acid, the fi-

nal decision is made.

In this chapter we will train the classifier to give Pr(disorder|a,Gi) and leave the

protein grouping as a future research topic. Solving the protein grouping problem

would require the support of biologists, who already have a variety of tools and

databases to select homologous proteins and similar proteins.
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(d) The majority cluster after k-means clustering

with k = 2

Fig. 2: 3D scatter plots of the first bases of discriminant analysis applied to each of the 723 proteins.

PCA has been used to generated the scatter plots, and the different colors indicate the cluster labels

obtained from k-means clustering.

Main group Group 2 Group 3 Group 4 Group 5

Orange Dark blue Light blue Green Brown

502 48 61 64 48

Table 1: Cluster distribution of 723 proteins shown in Figures 2(b) and (d).
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5 Classification Evaluation and Discussion

To evaluate disorder prediction performance, we adopt a standard procedure, K-fold

cross-validation, where K is set to 10. The five different random cross-validation

splits are used to assess the standard deviation of the methods. The split is done on

the proteins so that each time the test prediction is performed on the protein data

points that are not part of the training set. It is also independent of the stratification,

which means we do not control the number of training proteins for each protein

cluster. For stratified classification, we initially put the training proteins into their

correspondent clusters and train one classifier per each cluster. Then for the test

proteins, we identify their clusters and apply the corresponding classifier to predict

whether the residues within the proteins are disordered or not. This setting is not

realistic because for a new protein we do not know its true cluster, however, the pur-

pose of this study is to verify that constructing the stratified classifier makes sense

and improves the prediction accuracy significantly. This issue can be dealt with by

learning another classifier that classifies the test protein into its proper cluster in the

future research.

We compare the results from both literature and standard algorithms such as lin-

ear ridge regression and linear SVM applied to our feature representation described

in Section 2. Linear SVM is computed with the LIBLINEAR package [24] with an

L2-loss and L2-regularization. The ridge parameter of ridge regression is fixed as

500 and the linear SVM C parameter is fixed as 5. Area under ROC curve (AUC) is

used as a performance measure since the dataset is highly imbalanced. The results

are shown in Table 2. It can be seen that the performance greatly increases for strat-

ified classifiers. With linear SVM, the performance shows the highest results, 91%,

which are significantly better than the best known result on the dataset.

Moreover, depending on the identified protein clusters, the performance can be

extremely good as shown in Table 3. On each of the protein groups 2, 3, and 4,

the performances are more than 99%, which is almost perfect. Even on group 5,

the performance is better, e.g., 95.66%, than the main group. In other words, if

one determines that the protein is different from the main group, a very confident

prediction of the protein disorder can be made. This finding makes the identification

of protein groups a very interesting problem and should also shed some light on the

biological side.

We want to re-emphasize again that this finding is a direct result of the visual

analytics approach we take. Previous studies on this dataset have mostly empha-

sized performance improvements without careful investigation of the data them-

selves. Contrary to the previous studies, our study, which employed visualization

techniques, has been able to pinpoint the structure in the protein disorder problem:

1) In each protein, ordered and disordered residues are well separated, but the sep-

aration rule is different for each protein. 2) Separation rules of each protein can be

naturally clustered among various proteins. These two transitions are important for

obtaining deep insight into the problem, further opening up an interesting direction

in the biology and bioinformatics domains.
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Method AUC

Linear ridge regression 88.07 ± 0.14

Linear SVM 88.59 ± 0.12

Linear ridge regression on stratified data 89.74 ± 0.07

Linear SVM on stratified data 90.88 ± 0.08

DisProt [7] 87.8

SVMPrat [26] 87.7

Table 2: Comparison of classification performance between different methods

Protein group Number of proteins AUC

Main group 502 87.62 ± 0.16

Group 2 48 99.41 ± 0.07

Group 3 61 99.68 ± 0.07

Group 4 64 99.06 ± 0.06

Group 5 48 95.66 ± 0.47

Table 3: Classification performance on the protein clusters

6 Conclusion

In this chapter, we have studied the application of visual analysis principles in the

protein disorder prediction problem. With simple techniques such as linear discrim-

inant analysis and k-means clustering, we were able to unveil the special structure

within the data that the disorder in each protein can be linearly separated while the

separation rule is different between the proteins. Based on this visual observation,

we grouped the proteins into five different groups and learned classifiers on each

group. This turns out to perform better than many existing methods which have

grouped all the proteins together. Especially, in three subgroups, we were able to

obtain more than 99% accuracy, urging biological studies in these groups.

Of course, the reason we are obtaining some degree of success is because the

structure in the data is still relatively simple. Instead of the linear structure, in bigger

and more complicated datasets the inherent structure may be nonlinear manifolds,

which are much harder to identify. Extension to such areas would be interesting for

the future work.
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