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ABSTRACT 

Social ties defined by phone calls made between people can be 

grouped to various affinity networks, such as family members, 

utility network, friends, coworkers, etc. An understanding of call 

behavior within each social affinity network and the ability to 

infer the type of a social tie from call patterns is invaluable for 

various industrial purposes. For example, the telecom industry can 

use such information for consumer retention, targeted advertising, 

and customized services. In this paper, we analyze the patterns of 

4.3 million phone call data records produced by 360,000 

subscribers from two California cities. Our findings can be 

summarized as follows. We reveal significant differences among 

different affinity networks in terms of different call attributes. For 

example, members within the family network generate the highest 

average number of calls. Despite the differences between the two 

cities, for a given affinity network they show similar phone call 

behaviors. We identify specific features that model statistically 

meaningful changes in call patterns and can be used for prediction 

and classification of affinity networks, and we also find 

correlations between the features associated with call behavior. 

For example, when subscribers call each other after a long time, 

their calls tend to take longer. This knowledge leads to 

discussions of proper machine learning classification approaches 

as well as promising applications in telecom and security.  

Categories and Subject Descriptors 

G.3 [Probability and Statistics]: Statistical Computing; J.4 

[Social and Behavioral Sciences]: Sociology. 

General Terms 

Measurement, Experimentation. 

Keywords 

Call Data, Social Networks, Call Behavior, Social Tie Inference 

1. INTRODUCTION 
Today’s pervasive use of mobile phones produces huge volumes 

of call data records that can potentially provide significant amount 

of valuable information about various patterns of human 

interaction, social relations, mobility, etc. In particular, being able 

to understand, distinguish and discover social affinities and their 

nature from people’s call data records are invaluable in many 

practical areas, such as planning advanced marketing strategies, 

dynamic pricing, customized services,  and recommendation 

services. Telecom providers can use this information for customer 

retention and targeted advertising. For example, wireless service 

providers can identify the family members that are not under the 

same family plan as potential customers, or identify subscribers 

within a network of non-subscriber friends to predict and prevent 

churn. The impact of social ties on costumer attraction and 

retention is already known to telecom providers. For example, 

previous studies have shown that the number of customers who 

churn out of a service provider’s network depends on the number 

of their friends that have already churned [1].  The strength of a 

social tie is also typically proportional to degree of trust [26], and 

trust plays a crucial role in security. Consequently, this line of 

research may also have applications to security.  

Despite the importance of such information about social relations 

and call behavior, there is a major gap in previous studies when it 

comes to the analysis of social network based on phone calls. 

Previous work has mainly focused on the structure of the obtained 

social graphs and the communities inside them, such as 

topological properties [1] [12][8][13]. Some previous studies have 

also tried to predict the existence of links and social connections 

[8][3][14]. Such analyses, while essential to our understanding of 

social networks and call graphs in general, do not provide any 

detailed insights on how to characterize, categorizes, or classify 

the type of a social tie from calling patterns. 

In this paper, we analyze a set of features that abstract calling 

patterns between subscribers, and investigate their ability to 

discriminate between different affinity networks. We collect and 

process Call Detail Records (CDRs) of a major wireless service 

provider from two different cities in California: a “rural city” 

(Modesto) with a relatively small population situated in an 

agricultural region and an “urban city” (San Francisco) with a 

larger and more diverse population, located close to Silicon 

Valley and two other cities (Oakland and San Jose). We assign 

each subscriber into various types of social ties (see also [21] 
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[23]) such as family, toll free, utility services or other based on 

our access to information sources about their registration 

accounts. We define each social group as an “affinity network.” In 

other words, according to our terminology an affinity network is a 

group of subscribers in which all the subscribers have a common 

social tie.  

We then identify and calculate various features that model call 

behavior and patterns such as the frequency, length, timing, and 

symmetry of calls. The results show that the affinity networks 

show meaningful and statistically significant differences in terms 

of their identified features. For example, family members call 

each other more often, their calls are shorter, and they have a 

more mutual (outgoing versus incoming) tie compared to other 

affinity networks. We will see that these distinctive patterns are 

consistent across the two geographical areas of Modesto and San 

Francisco despite the differences in population characteristics 

between the two cities. For example, in Modesto 39.3% of 

households contain children under the age of 18, while this is the 

case for 18.4% of households in San Francisco.  

We highlight some of the underlying correlations between these 

features. For example, when subscribers call each other after a 

long time, they tend to make longer calls. All these finding have 

implications on predictability and classifiability of social ties, as 

well as which machine learning techniques to be fruitfully used, 

as we also discuss in this paper. 

After a brief review of previous work in Section 2, we will 

describe the dataset that was used in this study in Section 3. 

Section 4 explains our methodology, and Section 5 summarizes 

the empirical results. Highlights of the results and their 

implications are discussed in Section 6. 

2. SOCIAL NETWORK AND CALL DATA 

ANALYSIS 

Social networks have been analyzed from many perspectives. A 

number of recent studies have specifically used mobile call graph 

data to investigate and characterize the social interactions of 

subscribers [1][12], the evolution of social groups and the 

adoption of new products and services [6].  

The main focus of previous work on social networks (whether 

from phone calls or other sources of data) has been on the 

structure of the obtained social graphs, including topological 

properties, degree distributions, core clusters, strongly connected 

components, extraction of communities, and community structure 

identification [1][12][8][13]. In particular, graph partitioning, 

such as spectral clustering is a popular approach for studying 

community structure in graphs [16][18][19][21]. 

Several previous studies have tried to predict the existence of 

social connections in different contexts, for example, by 

considering mutual connections on Facebook and social 

networking sites, or by considering proximity patterns on 

university campuses and other specific environments [8][3][14]. 

This issue has also been explored in the form of predicting 

missing and future links in co-authorship networks [5], phone call 

graphs [5][4], and simulated social graphs. 

The issues of node (or vertex) partitioning [2] and, more recently, 

link (or edge) partitioning [21][23] have also been studied in 

network science.  When node partitioning is performed, one 

assigns each node to a partition or class. For edge partitioning, 

each edge is assigned to a partition or class.  The benefit of edge 

partitioning compared to node partitioning is that it can model 

situations in which nodes do not neatly separate into disjoint, non-

overlapping classes.    

As we mentioned, such studies have been essential to our 

understanding of social networks. However they do not give us 

information about call patterns with respect to the type of social 

relations, and do not enable us to infer the affinity networks. This 

is the focus of this paper. Specifically, we focus on the 

characteristics of the edges of a social network induced by CDRs 

instead of focusing on node characteristics as done in most 

previous work. 

3. DATA SET 

The data set we have used in our analysis contains CDRs of 

mobile subscribers in the cities of Modesto and San Francisco, in 

the state of California, as shown in Figure 1. The geographic 

locations of the base stations in downtown Modesto and San 

Francisco were taken as reference points. From each reference 

point, all the regions within a radius of 20 miles were covered and 

the data from their base stations were collected. 

The CDRs were collected by the telecommunication service 

provider Sprint. Our data collection methodology resulted in 

millions of phone calls between subscribers in these two cities 

from 30 consecutive days in the month of October, 2011. 

3.1 Call Detail Records 
CDRs are collected from various base stations and stored in a 

distributed file system warehouse. Each cell phone call of a 

subscriber is saved as a record that contains the following 

information: 

 Unique subscriber IDs and phone number of the caller;  

 Unique subscriber IDs and phone number of the call 

receiver;  

 Date and time of the call’s initiation;  

 Date and time of the call’s end;  

 Direction of the call (outgoing versus incoming);  

 Switch ID;  

 Cell tower ID; 

 Sector ID. 

From the CDRs, we constructed, as further discussed in Section 4, 

a social network that represents each mobile user as a vertex and 

the calls between them as an edge.  

3.2 Population Characteristics 
Modesto and San Francisco are rural and urban cities respectively. 

They have different population size and demographics. Below, we 

summarize some of their characteristics.1 

3.2.1 Modesto 
Modesto has a population of about 200,000 and the population 

density is 5,423.4 people per square mile (2,094.0/km²). Ninety 

eight percent of the population lives in a household. There are 

about 69,000 households, out of which 39.3% (~27,000) have 

children under the age of 18 living in the house; 48.1% (~33,000) 

are married couples living together; the rest is a householder 

(male or female) living alone. The average family size is 3.38. 

The population is spread out with 26.8% under the age of 18 

(~54,000), 10.4% of the population aged 18 to 24 (~20,000); 

26.4% of the population aged 25 to 44 (~53,000); 24.7% aged 45 

to 64 (~49,000) and 11.7% of the population is 65 years of age or 

older (~23,000). The median age is 34.2 years. For every 100 
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females there are 95.0 males. For every 100 females age 18 and 

over, there are 91.5 males.  

3.2.2 San Francisco 
San Francisco has a population around 805,000 and the population 

density is 17,160 per square mile (6,632/km²). Ninty seven 

percent of the population lives in a household. There are about 

345,000 households, out of which 18.4% (around 63,000) have 

children under the age of 18 living in them; 31.6% (around 

109,000) are married couples living together; the rest is a 

householder (male or female) without another present. The 

average family size is 3.11. The population is spread out with 

13.4% under the age of 18 (~107,000), 9.6% of the population 

aged 18 to 24 (~77,000), 37.5% of the population aged 25 to 44 

(~301,000), 25.9% of the population aged 45 to 64 (~301,000), 

and 13.6% are 65 years of age or older (~109,000). The median 

age is 38.5 years. For every 100 females there are 102.9 males. 

For every 100 females age 18 and over, there are 102.8 males.  

 
Figure 1. Areas of interest: San Francisco and Modesto 

4. METHODOLOGY 

In this section, we explain our methodology of processing and 

analyzing the CDRs as well as identifying features.  

4.1 Anonymization  
Aside from the security measures and control of access to 

subscriber information, the CDRs were anonymized as the 

originating and destination phone numbers and identification 

numbers were encrypted using hashing. Hence, no personal 

identification was accessible. The subscriber numbers tied to a 

family plan account were also anonymized using hashes. Also, all 

our results are presented as aggregates and calculated for the 

overall demographic population, and no individual subscriber is 

pinpointed for the study.  

4.2 Identification of Affinity Networks 
As we mentioned, a social affinity network may be a network of 

friends, family members, coworkers, etc. Obviously, the 

information about the relation types between subscribers is not 

provided in the CDRs. Therefore, we had to use outside 

information to identify the social ties without compromising the 

privacy of individual and personal accounts. We therefore 

grouped the social ties into the following affinity types: 

Family: for every primary subscriber, other subscribers belonging 

to the primary subscriber’s family plan were identified. If any two 

subscribers were part of a common family accounts in a family 

plan, they were identified as family members. 

Toll: the numbers starting with 1-800 were categorized as Toll 

free numbers.  

Utility:2 we considered a pair of subscribers to be part of a utility 

network if one of the subscribers is a business establishment in 

Modesto or San Francisco. We created a limited but representative 

list of business establishments by scraping the Web. 

Others: all the other numbers which may include friends, 

professional colleagues, or any other personal relationship that a 

subscriber could hold. 

Above, we discuss “toll free numbers” (i.e. nodes), but in Table 1 

we present “toll free edges.”  This reflects the fact that the node 

partitioning into {Family, Toll, Utility, Others}, as introduced 

above, induces a corresponding edge partitioning.  In other words, 

for each of the affinity edge types, we have a rule that says how it 

is defined in terms of the affinity node types. For example, if one 

node is a toll node, then all adjacent (both incoming and outgoing 

edges) are toll edges.  By considering all the edges of one affinity 

type, in our case {Family, Toll, Utility, Other}, we obtain an 

affinity network.  

We could potentially identify additional affinity networks (e.g. 

grouping coworkers by accessing email domain and corporate 

accounts information). However, the use of more information 

from Sprint or other external sources could compromise the 

privacy and confidentiality of the subscribers. Therefore, we 

limited the identified networks to the above ones. Nevertheless, 

we will see below that the above grouping is enough for 

pinpointing and analyzing the call patterns and identifying 

meaningful features, which is the purpose of this study. 

4.3 Sampling 
We extracted CDRs for a set of subscribers from San Francisco 

and Modesto and ranked subscribers by their total number of 

calls. We then removed the outliers (top 10% and bottom 10%) 

and uniformly sampled 10,000 subscribers and their one-hop 

connections from this set. We then filtered all the CDRs from the 

two locations for this set of subscribers. The number of subscriber 

pairs in each edge partition (affinity network type) from each city 

is shown in Table 1. The table excludes self-edges, which may be 

used to reflect calls to voice-mail.  

Table 1. Statistics for call data record (CDR) data sets 

 Modesto San Francisco 

Number of call data records in 

the sample  

1,966,022 

(~1.97 million 

calls) 

 

2,333,826 

(~2.33 million 

calls) 

 

Number of subscribers 

including primary and one-

hop nodes 

203,864 249,591 

Number of social ties (edges) 304,053 350,236 

Number of family member 

edges  

534 4,220 

Number of utility edges 25,232 4,111 

Number of toll free edges 19,528 27,618 

Number of ‘other’ edges 258,759 324,287 

 

4.4 Visualization and Feature Identification 
We used a visualization tool for getting an intuitive understanding 

of the characteristics of different affinity networks. The 

visualization software NetEx [24] shows the vertices and the 

edges of the social graph using multiple GUI elements and 
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configurations. For example, as seen in Figure 2, the thickness of 

the edges can be varied based on the average number of calls.  

Such visualizations enabled us to identify and consider various 

features that may distinguish between affinity networks. In 

particular, we observed two categories of features: 

1. Graph topological features: For example, in Figure 2(a), 

nodes 23, 24, 28, and 32 belong to the same family plan 

and have several mutual contacts. Figure 2(a) also 

shows a random set of three utility numbers and their 

one-hop neighbors. The topology resembles an ego 

centric network where the calls occur between the utility 

service subscriber and all the subscriber’s one-hop 

neighbors, but no calls occur between their one-hop 

neighbors. In addition, the utility numbers picked do not 

have any mutual contacts. 

2. Call pattern features: These features relate to the 

number, frequency, length, and timing of the calls. For 

example, when the thickness of the line is selected to 

represent the number of calls, we observe thicker edges 

between many family members in Figure 2. 

Here is how Figure 2(a) was created.  All of the nodes belonging 

to a family plan were selected, and the number of mutual contacts 

between them was calculated by looking at their individual one-

hop neighbors. For this visualization, a set of family nodes with 

high numbers of mutual contacts and total calls between them 

were chosen. However, we observed similar graph structures and 

features across other family sub-networks as well.  

The above discussion illustrates the identification of potential 

candidates for the features that model the differences between call 

graphs of different affinity networks. We now turn to the 

discussion of the definition and discussion of the features that we 

picked for the purpose of this paper.  

4.5 Definition of the Features 
Before introducing the features that were used, we define how call 

records and graphs were defined and constructed, respectively.  

Definition. A call record represents a call and can be defined as a 

tuple            , where u and v are subscribers, t is the call 

start time, and d is the call duration.  Note that this is a subset of a 

CDR as introduced in Section 3.1. The order of u and v in   is 

important:  u is the subscriber initiating the call while v receives 

the call. A set of call records is denoted .   

Among calls between u and v, the outgoing calls from u are 

defined as 

Θu(u,v) = {          {           }}, 

while the outgoing calls from v are defined as: 

Θv(u,v) ={          {           }}. 

A call record relation with all calls between u and v can now be 

defined as Θ(u,v) = Θu(u,v)   Θv(u,v). Below, in our features, we 

are generally using Θ(u,v) since call direction generally does not 

matter except in one case (the engagement feature) where we use 

both Θv(u,v) and  Θu(u,v).  

Let  G = (V, E) be an undirected graph where V represents the set 

of all subscribers in our sample , and E represents the set of all 

undirected edges {u, v}, with |Θ(u,v)| > 1. We define a social 

network N that consists of G along with a set of features   

defined for each edge; N = (G,). A key point in this paper is that 

we are, similar to previous work on link partitions [21] and link 

communities [23], focusing on features defined on edges E rather 

than features defined on nodes N.  

 

Figure 2. Average total call feature: (a) Family and (b) Utility 

affinity sub-networks plus one-hop neighbors 

 

4.5.1 Features 

Our features are defined for a given pair of subscribers, {u, v} E, 

and our goal is to characterize the nature of the social tie between 

u and v through the distribution of these features.   

The total number of calls     
between subscribers u and v is 

defined as  
  

 |Θ(u,v)|. 

The average call duration      between u and v is defined  as:  

    (u,v)= ∑(u,v,t,d)Ө(u,v) d/| Θ(u,v)|. 

Given a pair of subscribers u and v, we consider the calls between 

them, arranged in ascending order by their start times. Now, 

consider for     any two consecutive call records (ui,vi,ti,di) and 

(ui+1,vi+1,ti+1,di+1) from      , and define    |Θ(u,v)|. The 

average inter-call interval      is then defined as: 

    
      (∑          

   

   
)      ⁄   

 

The following feature is based on partitioning Θ(u,v) into 

weekend calls         and weekday calls         such that  

  (u,v) U   (u,v)        and   (u,v) ∩   (u,v)     



For the purpose of this paper, we treat Saturday and Sunday as 

weekend days, and other days as weekdays.  The asymmetry 

between weekend and weekday calls, or weekday to weekend 

asymmetry    , is defined with respect to the total number of 

calls:  

.
|),(|

||),(||),(||
),(

vu

vuvu
vu wewd

ww



   

If            there is maximal asymmetry, where calls take 

place on weekends or weekdays only. If           , this 

means minimal asymmetry, with calls evenly distributed.  

 

The engagement ratio  
  

feature gives a measure of the social 

interaction between u and v.  
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The purpose of this feature is to characterize the interaction 

patterns between subscribers u and v. If the ratio of engagement is 

          , there is a symmetric interaction between the pair 

of subscribers. If           , there are either only outgoing 

calls to v (from u) or incoming calls from v (to  u ). 

After we calculated features for all edges, we compared the 

features between different types of affinity networks and for 

different geographic regions (Modesto and San Francisco). We 

also explored the underlying correlations between the features. 

Statistically significant results are presented in Section 5. 

4.6 Software Tools and Techniques  
As the CDRs for subscribers typically amount to massive data 

sets, it can be computationally intensive to construct features from 

them.  We used Hadoop, see http://hadoop.apache.org/, which 

implements the MapReduce parallel computing model [25] in 

order to process CDRs. Specifically, CDRs were stored in a 

Hadoop distributed file system and processed by feature 

construction algorithms written using the MapReduce framework.  

Figure 3 illustrates how we used the MapReduce mappers and 

reducers for our purpose.  For every CDR, a mapper function 

emits a (key,value) pair, in our case a pair for each pair of 

subscribers, and the reducer function performs the aggregation 

operation needed for the desired features.  In other words, the key 

emitted by the mapper application is the subscriber pair (i.e., the 

source subscriber phone number and the destination subscriber 

phone number), the direction of the call (incoming or outgoing), 

and so forth. For every key (subscriber pair), the corresponding 

values from the CDR are emitted as a value. 

Once the information had been calculated using Hadoop, SQL 

scripts were written to mine the information accordingly in the 

database. The Java-based NetEx software [24] was interfaced with 

the database to present data for visualizations. 

 

 

Figure 3. Call data record (CDR) processing using MapReduce 

and Hadoop 

 

5. RESULTS 

We analyzed the call behavior with respect to the above features 

from several perspectives: 1) the behavioral differences among 

different affinity networks which is reflected in meaningful 

variations of their associated features; 2) dependencies between 

various characteristics of human call behavior; and 3) differences 

between geographic regions.  

5.1 Differences between Affinity Networks  
We here present the results of analyzing and comparing the above 

features with respect to different affinity networks in the two 

cities. We observed different call patterns reflected in various 

features as explained in the following subsections. 

5.1.1 Total Number of Calls 

Most of the subscribers in a family network have very high 

number of calls     between each other. The average value of 

total number of calls made is the highest between family members 

(     38.98 calls in a month) in Modesto, whereas the average 

value of the total calls made to utility and toll free numbers have 

relatively low values of      2.48 and     = 2.29 respectively. 

Analysis of variance shows a significant difference between the 

family members and the others [Fisher’s Score, F = 2946, p (p-

value for statistical significance) < 0.001].  

The average value of total number of calls made to family 

members in San Francisco is high, too, (     31.44) when 

compared to toll free and utility service numbers which are     

 2.26 and      2.18. The difference of the means between family 

members and others is again statistically significant (F = 20931, p 

< 0.001). No meaningful difference was found in the number of 

family member calls between the two cities. Figure 4 shows the 

mean value of total number of calls made within different affinity 

networks in the Modesto and San Francisco regions. 

 

http://hadoop.apache.org/


 
Figure 4. Average number of calls 

5.1.2 Engagement Ratio 

The engagement ratio  
  

  defines how reciprocal the call pattern 

between two subscribers is. The higher the engagement ratio, the 

more balance we observe in the number of outgoing and incoming 

calls. The average engagement ratios calculated for various 

affinity networks are shown in Figure 5. The family network has a 

high engagement ratio of  
  

  = 0.57 whereas the toll free and 

utility services have very low values of      = 0.05 and      = 

0.14, respectively, in Modesto. The engagement ratio in San 

Francisco also shows a similar value for the family network, 

namely  
  

 = 0.56, and low values of  
  

  = 0.03 and  
  

  = 0.07 

respectively for the toll free and utility service networks. An 

analysis of variance confirms a statistically meaningful difference 

between family members and other affinity networks (F = 27.3 

and p < 0.001 for Modesto, and F = 480 and p < 0.001 for San 

Francisco).  

The above results suggest that family subscribers have a 

reciprocal social interaction with each other. In contrast, mostly 

outgoing calls are made to utility and toll free numbers; utility and 

toll free numbers do not reciprocate equally. 

 

 
Figure 5. Average engagement ratio 

5.1.3 Weekend versus Weekday 

Figure 6 shows the percentage of the calls that were made on the 

weekends and Figure 7 shows the asymmetry between weekday 

and weekend calls for each affinity network. The main difference, 

perhaps, is observed in the asymmetry of weekday to weekend 

calls between family members compared to the rest (others, toll, 

and utility). Toll free and utility numbers are called much more 

during the weekdays. Family members are more likely to call each 

other on the weekends (F = 56.7 and p < 0.001 for Modesto, and 

F =350, p < 0.001 for San Francisco). 

 

 

Figure 6. Average weekend percentage of the calls 

 

Figure 7. Average weekday to weekend asymmetry 

5.1.4 Call Duration 

Figure 8 reports empirical results for average call duration. The 

calls occurring between pairs of subscribers in a family network 

have small average call duration  
   

  40.02 and  
   

  39.97 

seconds, respectively, both in Modesto and San Francisco.  The 

utility services and toll free networks have higher average call 

durations      = 87.78 and       239.82 seconds in Modesto, 

and  
   

 = 104.91 and  
   

 = 261.17 seconds in San Francisco, 

respectively. Running an Anova analysis, we also observed a 

statistically meaningful difference between the call duration of the 

three groups of 1) family members, 2) toll-free/utility network, 

and 3) others (F = 8.2 and p = 0.004 for Modesto, and F = 1302 

and p < 0.001 for San Francisco). This suggests that the calls 

between family members are quicker and contain short 

conversations, whereas calls to business establishments and toll-

free numbers last for a substantially longer time. The mean values 

are depicted in Figure 8. 

 



 
Figure 8. Average call duration 

5.1.5 Inter-call Interval 
The calls occurring between subscribers in a family network have 

a smaller average inter-call interval  
   

 of  
   

  3272 minutes 

(~2 days) in Modesto and       3586 minutes (~ 2.5 days) in San 

Francisco when compared to other affinity networks. The utility 

service networks have the highest inter-call interval of       

 8361 minutes (~6 days) and  
   

  8589 (~7 days) in Modesto 

and San Francisco respectively, i.e. they occur very sporadically. 

This suggests that the subscribers belonging to a family network 

call each other more frequently compared to how often they call 

their utility or toll free numbers. The significance of the results 

were confirmed by an Anova analysis (F = 25.5, p < 0.001 for 

Modesto, and F = 458 and p < 0.001 for San Francisco). The 

mean values for the inter-call duration for each affinity network 

are plotted in Figure 9. 

 

 
Figure 9. Average inter-call interval 

In the next subsection, we will analyze the dependencies between 

the above features and in Section 6 we will talk about the 

meanings and implications of the results. 

5.2 Correlations between Features 

When it comes to feature selection, feature extraction, and the 

selection of the appropriate machine learning and data mining 

techniques for classification, it is important to be aware of the 

correlations among the features. The features that we analyzed in 

the previous subsection are obviously not independent. We looked 

at the correlation matrix and investigated the statistically 

meaningful correlations. The following pairs of features were 

found to have significant correlations: 

 The total number of calls     and the average inter-call 

interval      (ρ=-0.48): This correlation is relatively 

obvious and is due to the definition of these features. 

For the pairs with more calls during a given time 

interval, there needs to be more frequent calls (i.e., 

shorter time intervals). 

 The total number of calls  
  

  and the weekday to 

weekend asymmetry  
  

  (ρ=-0.31): The subscriber 

pairs that make more calls to each other also make more 

calls on the weekends (meaning a smaller asymmetry 

   ). This could be because family members make 

more calls on the weekends. We talk more about the 

cause versus effect issue in Section 6, as this discussion 

applies to most correlations found.  

 The average call duration       and average inter-call 

arrival time      (ρ=0.21): people who call each other 

less frequently make longer calls. This effect is 

illustrated in Figure 10 and Figure 11.  

 The total number of calls     and the engagement ratio 

    (ρ=0.34): The subscriber pairs that make more calls 

have a more reciprocal call pattern. 

 The weekday to weekend asymmetry     and the 

engagement ratio    (ρ=-0.36): The subscriber pairs 

with more calls on the weekends have more reciprocal 

call patterns. 

The significance of the above correlations also holds for each city 

separately and is consistent across the two geographical regions. 

For example, Figures 10 and 11 show the average inter-call 

interval      versus the average call duration      in Modesto and 

San Francisco respectively. We see that in both cities, the calls 

take longer as the time interval between them increases. 

 

 
Figure 10. Average call duration (y-axis) as a function of inter-

call interval (x-axis) in Modesto 

 

 
Figure 11. Average call duration (y-axis) as a function of inter-

call interval (x-axis) in San Francisco 



6. DISCUSSION AND CONCLUSION 

In this study, we aimed to address the current gap in our 

knowledge of human phone call behavior, one  manifestation of 

ties in social networks.  In particular, we have investigated how 

behaviors vary across different social affinity networks, which 

could include family members, coworkers, friends, service 

providers, customers, etc. 

We collected and processed Call Detail Records (CDRs) provided 

by Sprint from the two California cities of Modesto and San 

Francisco. We built a social graph with the edges (social ties) 

between two subscribers specified by phone calls between them. 

We then assigned each subscriber into four groups of social ties: 

family, toll free, utility services or other based on our access to 

information sources about their registration accounts. We defined 

each social group as an “affinity network,” in which all the 

subscribers grouped in an affinity networks have a certain 

common social tie. 

We then identified, calculated, analyzed, and compared various 

features that model call behavior and patterns such as the 

frequency, length, timing, and symmetry of the calls. Some key  

results and their implications can be summarized as follows: 

 Call patterns of family members in both cities indicate 

strong social ties between them, which is reflected in the 

total number of calls and the frequency of the calls. 

These two features show statistically significant changes 

between family members and all other affinity 

networks. Furthermore, subscribers belonging to a 

family network in Modesto and San Francisco make on 

average 77.31% and 75.4%, respectively, of their total 

calls to each other and not outside the family network; 

on average only 9.46% and 10.65%, respectively, of 

their total calls are made to the utility and toll free 

numbers affinity networks when combined. Family 

members also call each other very frequently with a 

small time interval between successive calls, but calls to 

utility numbers are sporadic as the time taken between 

successive calls is long. 

 Family members show a more reciprocal and mutual 

call behavior. This is reflected in the strong engagement 

ratios of 57% and 56% in Modesto and San Francisco 

respectively. In contrast, most of the calls made to 

utility numbers are not reciprocated equally (this is 

measured by weak engagement ratios of 13% and 10% 

respectively). 

 While previous research [16][19] identified differences 

between communities in terms of personal network 

topologies and some behavioral characteristics, we 

found that the nature of social ties and their associated 

call patterns in Modesto and San Francisco have strong 

similarities. They also show very similar variations in 

terms of their related features across different affinity 

networks.  

 We found strong correlations between the features that 

model call patterns. Some of these correlations are 

rather intuitive. For example, the number of calls is 

correctly expected to have a negative correlation with 

the inter-call arrival time. However, some show 

interesting call behavior. For example, the subscribers 

who call each other more frequently make shorter calls. 

Currently, it is not clear whether such correlations are 

the cause or the effect of some of the differences across 

affinity networks. For example, the above correlation 

could be the cause or the effect of shorter calls among 

family members. This is a topic for future research. 

 Statistically significant features and their correlations 

have implications for research on prediction and 

classification of social ties. They mean that given these 

features and the social graph, we should be able to 

classify each edge of the graph into a specific social 

affinity network and infer the type of relationship. 

However, the dependencies among the features indicate 

that the classification approach would benefit from 

being able to capture such dependencies. This appears 

to benefit, for example, machine learning using random 

forests and Bayesian networks over simpler approaches 

such as single decision trees and naïve Bayesian 

classifiers.  

As a limitation of this study, we should note that the affinity 

network types that we identified and used as our ground truth 

were inferred and not directly verified. For example, we assumed 

that family plans must be shared among family members. While 

this is common sense, we did not verify this assumption. This 

means that non-family members who share a family plan 

introduce some noise into the dataset. There are similar limitations 

associated with the Utility, Toll, and Others edge types. 

From an application point of view, there are several opportunities 

to build on and expand this work.  Knowledge about social tie 

strength and type is invaluable for different research and industrial 

purposes, especially for telecom providers. For example, customer 

acquisition can be enhanced by focusing on family members of 

existing customers that are not under their network; Churn 

prevention can be enhanced by focusing on friends of churned 

customers; Search engines and mediating businesses that 

recommend services to subscribers or customers to services can 

refine their recommendations and categorize them based on 

relationship type information, etc. Furthermore, knowledge and 

modeling of distinct call behavior of different social affinities, 

even without the affinity prediction capabilities, can be useful in 

predicting how call patterns and consequently, the load on the 

network may change in future as a result of predicted acquisitions 

and churns.  There are also applications of tie strength and type in 

the area of security.  For example, strength of social ties is a 

useful indicator of trust in many real-world relationships [26], and 

trust plays a crucial role in security applications.  

As future work, we intend to a) expand the type of social affinities 

that we considered and add coworkers, friends, etc. by using more 

information sources without invading subscriber privacy; b) 

investigate the impact of the features that are associated with the 

social graph topology and also location and proximity patterns of 

the subscribers [3]; c) include additional cities and geographical 

areas from different parts of the country and the world to have 

more diverse datasets; and d) apply the proper classification 

techniques to classify the edges into affinity networks.  
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