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Fig. 1. Uncertainty flow showing variations of uncertainty along different analysis processes with four major steps: opinion mining,
brushing in items space, correlation analysis, and combined analysis. Uncertainty arises during opinion mining, and increases,
decreases, spits, or merges in subsequent steps. (a) and (b) show that uncertainty increases and decreases, respectively. (c)and (d)
show two different results obtained by merging the results of correlation analysis. (c) reveals that female customers complain more
while male customers complain less, whereas (d) only reveals that female customers complain more. Compared with (c), (d) is more
reliable as it excludes a highly uncertain result of correlation analysis for the combined analysis.

Abstract—Uncertainty can arise in any stage of a visual analytics process, especially in data-intensive applications with a sequence
of data transformations. Additionally, throughout the process of multidimensional, multivariate data analysis, uncertainty due to data
transformation and integration may split, merge, increase, or decrease. This dynamic characteristic along with other features of
uncertainty pose a great challenge to effective uncertainty-aware visualization. This paper presents a new framework for modeling
uncertainty and characterizing the evolution of the uncertainty information through analytical processes. Based on the framework, we
have designed a visual metaphor called uncertainty flow to visually and intuitively summarize how uncertainty information propagates
over the whole analysis pipeline. Our system allows analysts to interact with and analyze the uncertainty information at different levels
of detail. Three experiments were conducted to demonstrate the effectiveness and intuitiveness of our design.

Index Terms—Uncertainty visualization, uncertainty quantification, uncertainty propagation, error ellipsoids, uncertainty fusion.

1

Uncertainty can arise in any stage of an analytical process, for appli-
cations as diverse as financial analysis, business intelligence, network
monitoring, and geo-spatial data analysis [27, 35, 42]. For instance,
the input data for analysis is often uncertain because of ineffective
data sampling, inaccurate measurements, or corrupted data [28]. Data
processing or transformation, which is usually required in data anal-
ysis to account for the growing scale and complexity of the data, is
another source of uncertainty because of the lack of knowledge of the
parameters used (i.e., the uncertainty of parameters) [21]. Even the
analytical reasoning process has been reported to result in a certain
degree of uncertainty information [46].

When uncertainty arises, properly informing analysts is very impor-
tant. Otherwise, the reliability of the conclusions drawn based on the
data will be questionable, which can lead to erroneous decisions and
undesired consequences [21,27]. The amount of uncertainty should
also be faithfully revealed to analysts because the manner in which the
uncertainty is expressed can significantly affect decision making [11].
Underestimated uncertainty can mislead analysts, making them over-
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confident of the results. Overestimated uncertainty, on the other hand,
may cause analysts to abandon valuable findings that are actually trust-
worthy. Thus, effectively and faithfully showing uncertainty is de-
manded in data analysis processes whenever uncertainty is present.

In visual analytics where data is usually analyzed in an explorative
and iterative manner [23], uncertainty becomes extremely compli-
cated, thus hindering the fulfillment of the effectiveness and faithful-
ness requirement. Given that data is transformed, uncertainty does not
remain the same, but is rather dynamic and can change through the
entire analysis process [9], in which the uncertainty may increase, de-
crease, split, or merge. For example, uncertainty in a data set may
change along with the subsequent data transformation and processing
steps, where the amount of uncertainty may increase or decrease. For
high-dimensional data analysis, analyzing the data a few dimensions
at a time and then switching to other dimensions is commonly prac-
ticed. Uncertainty in this scenario splits with the dimensions. Analysts
may combine some of the findings discovered using different data di-
mensions to make decisions, where the uncertainty associated with the
findings are merged. The complex and dynamic characteristics of the
uncertainty hereby pose a great challenge in tracking and managing
uncertainty effectively to make better decisions.

Researchers in visual analytics have developed various methods
[12,27, 28] to visually represent uncertainty information. Neverthe-
less, existing methods present uncertainty to analysts for only a par-
ticular stage of the data analysis process. Users may not be able to
obtain a clear overview of how the uncertainty originates and spreads
through the process, especially for complicated analysis with a num-



ber of transformations. The ability to visualize the flow of uncertainty
through the entire analysis is still absent from the field. In addition,
current methods often focus on visualizing one-dimensional uncer-
tainty information. In a practical multivariate data analysis problem,
however, uncertainty is largely multidimensional as data variables are
not always independent of one another. For instance, sampling multi-
dimensional data can produce multidimensional uncertainty, which is
difficult to visualize using existing methods. Therefore, with the grow-
ing popularity of multivariate data analysis, an increasing need for de-
veloping new techniques for visualizing the flow of multidimensional
uncertainty information through the visual analytics process exists.
This work focuses on the characterization and visualization of the
flow of uncertainty information through visual analytics processes.
Specifically, we propose a new framework to model uncertainty using
error ellipsoids and to characterize the dynamic changes of the uncer-
tainty information including uncertainty integration, transformation,
and propagation through the processes. The error ellipsoids can be
regarded as a multidimensional generalization of standard deviations,
which allows for better understanding and more intuitive characteri-
zation of uncertainty information. This work enables multi-level un-
certainty visualization accomplished through a set of uncertainty anal-
ysis techniques. A new flow-style visual metaphor is designed at the
overview level to intuitively visualize the flow of uncertainty in com-
plex analytical processes. Guided by the overview, users are allowed
to interact with the uncertainty flow to analyze multidimensional un-
certainty information in detail using a matrix visualization of the pro-
jections of the ellipsoids. Users can even drill down to individual data
items to see more detailed uncertainty information.
The contributions of this work are as follows:
e A framework for describing uncertainty transformation and
propagation based on error ellipsoids is created.
e A visual metaphor to visually summarize the flow of uncertainty
over an entire visual analytics process is introduced.
e A visualization system to show the uncertainty information de-
picted by error ellipsoids at different levels of detail is built.

2 RELATED WORK

The growing scale and complexity of data pose a great challenge
for analysts in discovering interesting patterns directly from its raw
form [9]. Thus, the transformation or simplification of data is usu-
ally needed before such patterns can be shown [23]. Card et al. [7]
presented a well-accepted model suggesting that information visual-
ization is essentially a series of transformations. Other models [3, 23]
have also been proposed to include automated data analysis algo-
rithms. These transformations may create uncertainty information
[21,28] that may spread throughout the entire visualization process [9].

Effectively showing uncertainty in data visualization can improve
trustworthiness and avoid misleading analysis [11,27]. Pang et al. [28]
presented a comprehensive survey of traditional uncertainty visualiza-
tion techniques. A typology for visualizing uncertainty in intelligence
analysis was proposed by Thomson et al. [38]. Zuk and Carpendale
[46] extended this typology by including the uncertainty of reasoning.
Researchers have proposed a variety of new uncertainty visualization
methods such as ambiguation [27] and summary plots [29]. The eval-
uation of different techniques has received considerable attention re-
cently [4,11,32,45]. Sanyai et al [32] compared four methods, such
as traditional errorbars, and found that the efficiency of these methods
was highly dependent on the tasks performed. Deitrick and Edsall [11]
conducted an empirical evaluation of the influence of uncertainty vi-
sualization on decision making. Their results reveal that the degree
of the influence is affected by the manner in which the uncertainty is
expressed. Zuk and Carpendale [45] presented an interesting analysis
of uncertainty visualization based on three well-established theories.
Bisantz et al. [4] compared the effects of displaying uncertainty using
numeric and graphical representations of uncertainty.

Recent studies mostly focus on visual representations of uncer-
tainty. Wu et al. [42] designed a circular wheel representation to show
the uncertainty of extracted customer opinions. Slingsby et al. [35]
used simple interactive graphics such as bar charts to visualize uncer-

tainty in geodemographics data. In contrast, our work aims to char-
acterize and visualize the flow of uncertainty through the analytics
pipeline. To our knowledge, this area has not been previously stud-
ied. Feng et al. [12] used density plots to visualize multidimensional
uncertainty that is uncorrelated. Correa et al. [9] used covariance ma-
trixes to represent uncertainty. However, the process for visualizing
these covariance matrixes intuitively and effectively remains unclear.
This work introduces a new framework to characterize multidimen-
sional uncertainty information using error ellipsoids.

A simple definition of uncertainty does not exist. Skeels et al. [34]
presented a comprehensive classification of uncertainty for informa-
tion visualization. Hunter and Goodchild define uncertainty as the de-
gree of the lack of knowledge about the amount of error [19]. Uncer-
tainty can also be characterized by accuracy, reliability, precision, and
consistency in literature [28]. In metrology, uncertainty is a parame-
ter that depicts the dispersion of the measured values [22,37]. Mete-
orologists generally classify uncertainty sources as either random or
systematic uncertainty based on the method used for evaluation. Both
types of uncertainty are represented by an estimated standard devi-
ation, termed standard uncertainty. This uncertainty definition has
been well accepted in many different disciplines. This work uses error
ellipsoids, a generalization of standard deviation in multidimensional
space to model uncertainty information.

Uncertainty quantification is the quantitative characterization of
the effect of uncertainty information on system outcome. Roy and
Oberkampf [30] described an uncertainty framework for uncertainty
modeling and quantification in scientific computing. Perturbation
methods [9], moment analysis [25], and operator-based methods [44]
are three widely used non-sampling techniques. However, these tech-
niques can only be applied to systems with small uncertainties [43].
Monte Carlo Sampling (MCS) is a sampling-based technique for un-
certainty quantification [13,31]. Compared with other non-sampling
methods, MCS is more general and can be used to estimate the un-
certainty of complex systems where other methods fail. Traditional
MCS has been improved to achieve faster convergence using a variety
of techniques such as Latin supercube sampling [17] and quasi Monte-
Carlo [26] at the cost of additional restrictions posed by these meth-
ods [43]. This work employs traditional MCS technique to quantify
the uncertainty information in a visual analytics pipeline.

3 UNCERTAINTY IN VISUAL ANALYTICS

This section describes a framework for characterizing the flow of un-
certainty information in a visual analytics process.

3.1 Uncertainty Framework

In a non-trivial analytical process the development of uncertainty is
complex. For instance, new uncertainty from data transformations
could be integrated into the process, and the amount of uncertainty
could increase or decrease through the process. Additionally, the un-
certainty could be split into different pieces as the data is divided into
different parts or could be merged when the separated parts are com-
bined for an overall analysis. Moreover, multivariate data analysis
can yield complicated multidimensional uncertainty information. To
facilitate uncertainty analysis and visualization, we have developed a
new framework to depict the dynamic change of the uncertainty. This
framework was inspired by Correa et al.’s uncertainty framework [9],
which shows how uncertainty is modeled, propagated, and aggregated
in the analysis process. The previous framework has three elements:

e Uncertainty Modeling models uncertainty using a set of co-
variance matrices. However, the abstract, theoretical, covariance
matrices lack an intuitive visual representation that conveys the
meaning of uncertainty. Additionally, these matrices do not sup-
port the description of the complicated dynamic variation of the
uncertainty information in analytical processes.

o Uncertainty Propagation suggests that the uncertainty is prop-
agated as data is transformed. A Taylor series method is used
to evaluate the amount of uncertainty propagated by the trans-
formation. The method, however, can only be used for a data
transformation with a small amount of uncertainty. Furthermore,
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Fig. 2. Uncertainty framework for characterizing the variation of uncertainty information in a visual analytics process. The bottom shows a
general information visualization process. The top part illustrates the uncertainty framework parallel to the bottom process, thus depicting how the
uncertainty of the process is modeled, integrated, transformed, propagated, and visualized along with the visualization.

although the process suggests that the visual analytics process is
often a complex network of transformations, the associated un-
certainty network has not been characterized by the framework.

e Uncertainty Aggregation shows that data transformation itself

can introduce a certain amount of uncertainty information, such
as loss of information, to the analytical process. This uncertainty
is aggregated via its addition to the uncertainty propagated by the
same transformation. The linear aggregation method described
in [9], however, fails to aggregate multidimensional uncertainty
information because covariance matrices cannot be linearly com-
bined, especially when their sizes differ.

We extend this framework to better characterize variations of multi-
dimensional uncertainty in analysis processes. Figure 2 shows that our
new framework (top) parallels a general visualization pipeline (bot-
tom). The new framework includes five main elements.

3.1.1

Uncertainty modeling mathematically defines uncertainty information
(Section 4.1). This method serves as the basis for all other elements of
the framework because such elements primarily address the modeled
uncertainty. Uncertainty should be effectively and intuitively modeled
to facilitate the characterization and visualization of the variation of
the uncertainty. For the sake of simplicity, our framework uses the
widely adopted Gaussian model, where uncertainty is modeled by a
covariance matrix. The covariance matrix can be further characterized
and represented using an error ellipsoid, which allows for intuitive,
multi-level visualization of the uncertainty. More importantly, the er-
ror ellipsoid can better capture the dynamic variation of uncertainty.

Uncertainty Modeling

3.1.2 Uncertainty Integration

Uncertainty integration characterizes how the modeled uncertainty can
be merged together. This process occurs whenever different pieces of
uncertainty information are combined to account for all uncertainty
information. For instance, an analyst may apply different transforma-
tions to the same data and then combine the results for further analy-
sis. The uncertainty introduced or propagated by different transforma-
tions must be merged to determine the uncertainty of the current sys-
tem. Unlike the uncertainty aggregation of the previous framework,
uncertainty integration allows for the true fusing of multidimensional
uncertainty information of different data dimensions or different data
portions. Details can be found in Section 4.4.

3.1.3 Uncertainty Transformation

Uncertainty transformation is responsible for the quantification of the
transformed uncertainty information, given the input uncertainty from
uncertainty integration. This method is similar to the uncertainty prop-
agation of the previous framework. However, uncertainty transforma-
tion employs MCS to quantify the extent of uncertainty to account
for a large amount of uncertainty. Depending on the transformation
used, the quantified uncertainty information may either increase or de-
crease. The transformed uncertainty may be visualized via uncertainty
visualization or may be propagated via uncertainty propagation to sub-
sequent data transformations (See Figure 2). Section 4.2 describes the
uncertainty transformation in greater detail.

3.1.4 Uncertainty Propagation

Uncertainty propagation in this work is different from that of the pre-
vious framework. This method determines how the transformed un-
certainty is passed on to the subsequent data transformations, where
the transformed uncertainty may either be separated into pieces or
may remain unchanged. For example, when different transformations
are applied to different data portions, the transformed uncertainty will
be split accordingly. The propagated uncertainty (output uncertainty)
may be further merged by the uncertainty integration in the subsequent
data transformation with other propagated uncertainty information or
with newly introduced uncertainty from data transformations. Section
4.4 presents how the propagated uncertainty information is derived.

3.1.5 Visual Uncertainty Mapping

Visual uncertainty mapping visualizes the flow of uncertainty through
the analytics processes, where uncertainty may split, merge, shrink, or
expand. We design a new flow-style visual metaphor, uncertainty flow,
to visually represent the overall evolution of uncertainty information.
Section 5 presents the detailed visual design.

3.2 System Overview

Figure 3 shows the overview of our approach. It runs parallel to a
visual analytics system and maintains a history graph to record the
history of all data transformations. When an uncertainty visualization
is requested by users, the approach quantifies the uncertainty (mod-
eled as a multidimensional error ellipsoid) of every data item using an
MCS technique. All three types of uncertainty (including integrated,
transformed, and propagated uncertainty) are measured. The method
subsequently computes an overall error ellipsoid of every type of un-
certainty for the data set by fusing the related error ellipsoids of all
data items. The overall uncertainty magnitude is finally derived from
the overall error ellipsoid. Based on this information, we can draw a
visualization of the flow of uncertainty in the entire visual analytics.
With the framework, users are allowed to interact with the uncertainty
flow to see the uncertainty at different levels of detail.

4 UNCERTAINTY ANALYSIS

This section presents a set of techniques supporting uncertainty mod-
eling, transformation, propagation, and integration.

4.1 Uncertainty Modeling

For multivariate analysis tasks, uncertainty information introduced by
a typical data transformation is often multidimensional. Using stan-
dard deviation to model the uncertainty for each dimension is ineffec-
tive as the data dimensions are often correlated. In statistics, the uncer-
tainty of multidimensional information is usually represented by a co-
variance matrix, which is a generalization of standard deviation [36].

Assume we have a k-dimensional data item of interest X. We con-
sider the quantity as a normally-distributed random vector

X=X, X, X ] ~ A (1,C) 1

where 4 (-,-) denotes an n-dimensional normal distribution, y € R¥
is the mean vector, and C € R¥*¥ is the covariance matrix of X which
is regarded as the uncertainty of u.
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Fig. 3. System overview: the system automatically collects history information and estimates the error ellipsoids of every data item, which are
subsequently combined to obtain an overall uncertainty level for drawing the uncertainty flow visualization.

Various methods, such as Corrgrams [14], have been proposed to
directly visualize the covariance matrix C. However, these direct vi-
sual representations cannot be easily understood because they do not
intuitively show the dispersion of the values of X. Similarly difficult
is the direct derivation of an overall uncertainty degree of X from C,
which is requested to provide an overview. Thus, we use an ellipsoid
to depict the covariance matrix C to address these issues [5], such that
the uncertainty of X can be intuitively represented by the extent of the
ellipsoid. Centered at u, the ellipsoid is defined by the equation

-—pclx-—p <1 ©))
The eigenvectors and eigenvalues of C define the principal directions
and inverse squares of the semi-axes of ellipsoid E, respectively. A
standard error ellipsoid is obtained, which can describe the uncer-
tainty of X in a geometric manner. However, providing an overall pic-
ture is difficult. Instead, the ellipsoid volume can represent the overall
uncertainty level of X. Volume U (E) can be computed by the equation

K
U(E)= 7q¢f 3)

rs+1);

where E is an ellipsoid defined by (4), £;Vi denotes the eigenvalues of
the covariance matrix C € R***, and I'(-) is the Gamma function.

Our work is based on the error ellipsoid for quantifying the variation
of uncertainty information in visual analytics. The intuitive geometri-
cal features, as well as the capacity of the error ellipsoid to be fused
and split, allow us to design an effective and interactive level-of-detail
visualization of uncertainty in visual analytics.

4.2 Uncertainty Quantification

Uncertainty quantification refers to the quantitative estimation of the
uncertainty of each data item X, which is the error ellipsoid of X. We
employ a technique based on traditional MCS to evaluate the uncer-
tainty that results from data transformation. First, the technique pro-
duces a set of independent samples of system inputs, then repeatedly
runs the system for each sample, and finally collects all the system out-
puts. Based on this collection, the statistical uncertainty information
(i.e., covariance matrices) of the system output can be estimated. With
the covariance matrices, we can obtain the associated error ellipsoids.

Although the standard error ellipsoid is more powerful for charac-
terizing uncertainty variation, it is also more complex and, without
appropriate modification, can sometimes mislead analysts. A standard
error ellipsoid of n dimensions derived from Equation (2) implies a to-
tally different confidence level from that of m dimensions when m # n.
For example, a 2D standard error ellipsoid indicates a mere 40% con-
fidence level, whereas a 1D standard deviation represents a confidence
level of 60%. Thus, we propose that a user be allowed to specify a
desired confidence level and then create the error ellipsoids accord-
ingly. More specifically, we scale the standard error ellipsoids based
on the specified confidence to ensure the consistent meaning of the
error ellipsoids of different dimensions.

Through a sampling process, we have a sample mean X =
%Zf': 1 Xi, which follows a normal distribution. We define Z = n(X —
w)TC1(X — i) to remove the dependence of the distribution X on the
population parameters y and C. In statistics, Z is a y* random variable

with n degrees of freedom [1]. A value of Z corresponds to the contour
of an ellipsoid with respect to a given confidence level CL € [0,1]. The
equation of an ellipsoid has the form [5]
(=)' € - ) =, o
where z¢y is an observation of Z with respect to the confidence level
CL, [i is a sample mean vector, and C is a sample covariance matrix
obtained by a sampling process of X. The ellipsoid center is the vector
L. Moreover, other geometric parameters of the ellipsoid, such as
the orientation and magnitude of its semi-axes, can be determined by
the eigenvectors and eigenvalues of the matrix C. For example, we
have a 3D ellipsoid defined by (4). Suppose that &1, &, and &3 are the

eigenvalues of a sample covariance C and a, b, and c are the magnitude
of its three axes. Then, they have the relationship as follows:

ue /ZCL€17 b /ZCL§27 and e /ZCL§3' )
n n n

Given a confidence level CL specified by a user, we compute the
quantile of the f,%(n) density function to determine the axis scaling
factor z¢y. The computation involves solving an integral equation.
2dx.

CL 1 i1 _
cL— / L 20 ©6)
Jo 224T(%)

No analytical form exists. Thus, a numerical approximation is neces-
sary. We illustrate a two-dimensional example in Figure 4. Given the
estimated mean i = [0,0]” and covariance matrix C = [v{,v,] where
vi = [1,0.2]7 and v» = [0.2,1]7, the corresponding error ellipse E cen-
tered at [ has two semi-axes of length \/éix =0.9 and \/57 =1.1,

where Ex and &y are the eigenvalues of C. We then seek an error
ellipse with a 95% confidence level. As described in Eq. (6), we
compute the quantile z¢;, of the 2 density function with 2 degrees of
freedom, such that the area under the curve is 0.95 (as shown in Figure
4(a)). Finally, by scaling the two axis length of E with ,/zcy as in Eq.
(5), we can obtain the scaled error ellipse shown in Figure 4(b).

4.3 Uncertainty Combination

With the uncertainty quantification method, we can determine the er-
ror ellipsoid for every data item as the data is transformed. However,
a means for deriving an error ellipsoid characterizing the overall un-
certainty of the entire data set still needs to be determined. The over-
all uncertainty is needed to visualize the overall trend of uncertainty.
However, determining the overall uncertainty is difficult considering
the complexity of the uncertainty information. The linear combination
used in [9] fails to combine multidimensional uncertainty information,
which has dimensions that are not always independent of one another.

Estimating the overall uncertainty can be regarded as a process of
finding an improved estimate based on previous multiple estimates of
the same quantity u of interest, which is a well-studied problem in the
field of information fusion [10]. Therefore, combining uncertainty to
obtain its overall value by applying an optimal weighting scheme to
achieve a minimum total error is reasonable. In particular, suppose
that we conduct r independent sampling. We can then form r error
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Fig. 4. (a) shows the quantile of the cumulative probability 0.95 in the x? distribution with degree 2; (b) shows the scaled error ellipse corresponding
to 0.95 confidence level; (c) describes the combined result (bold red) from the given three error ellipses (black, blue, and green).

ellipsoids using the procedure described in Section 4.2. By defining an
improved estimate as the weighted sum of previous r estimates Xy =
Z,_l W;X;. We can obtain the covariance of the weighted estimate Xy

-
T
Cwij =Y (W,.CW)ij,
=1
where W; € RFF i are the weight matrices in the scheme. As pre-
viously described, the ellipsoid volume can be used as an uncertainty
measure. We cast our goal as an optimization problem.

,
v{/:li\?a det(Cy ) = det([ ; W,.CW)ii),
(7
st. 5l'j = ZVVU'J"
t=1
with the solution of

r
Wa= (Y CHC, " ®)

=1
Finally, we can show the combined estimate X = Cy ¥./_, C; ' X; and

its corresponding covariance matrix Cy = (Y,/_; C; h-1,

Figure 4(c) shows an example of combining three 2D estimated er-
ror ellipses in blue, green, and black. By solving problem (7), we can
determine the optimal weights in Eq. (8) and finally we obtain the
resulting error ellipse with minimum uncertainty (shown in red).

4.4 Methods for Uncertainty Integration and Propagation

In visual analytics, data may be divided into a number of portions that
are then transformed separately. The propagated uncertainty informa-
tion of the data is similarly split into pieces. Two scenarios can occur
depending on the data variables (dimensions).
e The data items include the original variables. In this case, the
error ellipsoid of each data point remains the same.
e The data items include only a selected number of variables. The
error ellipsoid of each data item in a data portion changes. The
new ellipsoid can be obtained by simply projecting the original
one on the space of the selected dimensions.
Notably, the overall ellipsoid for each data portion should be ap-
proximated by the uncertainty combination method (Section 4.3).

Uncertainty may also be merged whenever uncertainty integration
occurs, such as when the propagated uncertainty merges with the
newly added uncertainty of the data transformation. Another example
is when the divided data portions are combined for further analysis.
Two scenarios can occur based on whether the data items contain the
same or different sets of variables.

e The data items include the same set of variables. The error ellip-
soids of each data item are combined by the uncertainty combi-
nation method (Section 4.3).

e The data items include different sets of variables. We use the
sampling-based uncertainty quantification method (Section 4.2)
to re-approximate the error ellipsoids of each data item.

Notably, the overall ellipsoid for the merged data should also be re-
computed using the uncertainty combination method (Section 4.3).

(g P
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Fig. 5. (a) and (b) visually represent the analysis steps where uncer-
tainty decreases and increases, respectively.

5 MuLTI-LEVEL UNCERTAINTY VISUALIZATION

This section describes an interactive, multi-level visualization of the
multidimensional uncertainty flow through a visual analytics pro-
cess. The process follows the well-known visual information seeking
mantra [33] and allows for level-of-detail exploration. At the overview
level, we design a flow-style visual metaphor, uncertainty flow, to visu-
ally depict the overall uncertainty evolution in the analytical process.
A user can interact with the uncertainty flow and choose to examine the
uncertainty of a certain transformation. A matrix visualization shows
the overall error ellipsoid of the transformation. The user is also al-
lowed to drill down and see the single ellipsoid of a data point, which
can be further reduced to a scalar value indicating the overall uncer-
tainty level of the data point. This allows the use of existing visual-
ization techniques to show the uncertainty on a visualization. Figure 6
illustrates the overall picture of the multi-level visualization.

5.1 Visualization of Uncertainty Flow

Visual analytics is often an explorative and iterative process with
multiple cycles of analytical reasoning [40]. Uncertainty may arise,
change, and spread over the complex visual analytics process. We
must be able to show the uncertainty in the context of the visual an-
alytics process to better understand, track, and visualize the flow of
uncertainty. Thus, we should capture and model the analytics process.
This section first briefly describes a tool called history graph to record
and track the history of data transformations, followed by the detailed
description of visual uncertainty flow.

5.1.1

We utilize a tree-like graph to record the full history of the data trans-
formations. Compared with the history tree, a widely-used provenance
tool based on a tree data structure [6, 16,24], our history graph allows
a node to have multiple parents to account for uncertainty integration.
We use roots to represent the input data sets under analysis. Other
nodes represent the transformation operations, such as clustering per-
formed in the analysis. An edge indicates the order of two transfor-
mations of the analysis process. The root-to-leaf paths of the graph
represent all alternative analysis paths that have so far been explored.
The system naturally supports branching historical timelines of trans-
formations. A new branch is added to a node when a user steps back
to the previous stage. In contrast to other tools, the history graph used
in this system also records the temporal variation of uncertainty. As
we described in our uncertainty framework, uncertainty changes as
data is transformed. Storing these changes in the corresponding graph

History Graph of Data Transformations
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Fig. 6. (a) Selecting a node shows a matrix visualization of the overall error ellipsoid; (b) Selecting a cell of the matrix shows a scatterplot of the
related variables to visualize the uncertainty degree of each data point; (c) Selecting a data point shows a matrix visualization of the error ellipsoid;
(d) Selecting a group of data points shows a matrix visualization of their overall error ellipsoid; and (e) Combined nodes.

nodes is reasonable. Whenever any data transformation occurs, a par-
allel thread automatically records the transformation in the graph. The
error ellipsoids of data points corresponding to input and output un-
certainty are also computed and stored in the node.

5.1.2 Visual Metaphor for Uncertainty Flow

We design a new visual metaphor, uncertainty flow, to visualize the
overall uncertainty evolution through the visual analytics process. Un-
certainty flow is the core component of the visualization system, pro-
viding an intuitive visual summary of the provenance of uncertainty
information in the process, which helps analysts develop a growing
understanding of how and from where the uncertainty was introduced,
integrated, transformed, and propagated. Furthermore, the recorded
provenance of uncertainty may allow analysts to determine how and
where to optimize the analysis process to reduce the uncertainty of the
insight and conclusions. Uncertainty flow can also be used as a usual
history mechanism for insight provenance and supports backtracking
and alternative analysis paths.

Preliminary Layout The uncertainty flow is a graph drawn upon
the history graph. We first generate a preliminary node-link layout of
the graph and then decorate the layout using the uncertainty informa-
tion. The layout is oriented from left to right (other orientations, such
as top-down, are also allowed). The root representing the first data
transformation is placed at the current view origin. All the other nodes
representing data transformations are added to the view, starting from
the roots, based on their hierarchical relations. The horizontal distance
between a parent and its children, as well as that between two sibling
nodes, are fixed but can be interactively assigned by users. The left-
to-right ordering (edges) of the nodes represents the sequential order
of the associated data transformations. The vertical ordering of the
sibling branches is dynamically adjusted, such that the central branch
is always the current exploration path, and all other branches are alter-
natively placed above or below this branch. The distance of a branch
to the central branch encode the time when the branch was created.
The closer a branch lies to the center, the more recently it was created.
This process can ensure that the most recently explored paths always
remain in the center focus region.

Visual Uncertainty Encoding We next draw the uncertainty on the
preliminary layout. The uncertainty framework essentially defines two
types of uncertainty information associated with a typical data trans-
formation: input and output uncertainty. Effective visualization of
uncertainty flow requires visual encoding in a faithful, concise, and
intuitive manner on the preliminary layout.

Figure 5 shows our visual mapping of the uncertainty of a data
transformation on the related node. We use a visual metaphor of a
loudspeaker to intuitively encode the amplification of uncertainty in-
formation (Figure SFigure 5(a)). The uncertainty reduction, on the
other hand, can also be intuitively encoded by an inverse loudspeaker
(see Figure 5(b)). We used this visual encoding for the following
reasons. First, the shape of a loudspeaker can intuitively convey the
concept of “amplification” or “reduction” of the overall uncertainty.
Second, the visual metaphor can facilitate a side-by-side visual com-
parison of input and output uncertainty information. Finally, using
this visual metaphor allows us to easily combine a sequence of nodes,

creating a more compact layout (see Figure 6(¢)).

The edge between two nodes represents the sequential order of the
uncertainty distribution. We use the width of the edge to visually en-
code the overall uncertainty propagated from one node to another. The
two nodes can be seamlessly connected by the edge, given that the
width of the edge is identical to the length of the output base of one
node as well as that of the input base of the other node.

5.1.3 User Interactions

Apart from general interactions (such as panning and zooming), un-
certainty flow supports a variety of other interactions, such as the fol-
lowing:

o Hover When a user places the mouse over a node, a pop-up view
displays the screenshot of the related visualization near the node.

e Select Double-click selection restores the visual analytics pro-
cess to a certain step represented by the node. A new branch
will be added to the node when the user continues to process the
data. Single-click selection shows the matrix visualization of the
uncertainty (see Figure 6(b)). Depending on the position clicked
within the node, the matrix visualization of the input or output
uncertainty is shown.

e Orientate The default orientation of the uncertainty flow is left-
to-right. A user can change the orientation to top-down, bottom-
up, or right-to-left. An animation will be created to show the
smooth transition when the orientation changes.

e Focus+Context A selected node is viewed as the focus node. We
consider the neighbors around the selected node in the graph as
focus nodes. All ancestors of the selected node are also regarded
as foci. We use the fisheye function [15] to compute the degree
of interest (DOI) of the nodes. Based on the DOI of the nodes,
we can combine the nodes with low DOI values (see Figure 6(¢)),
thus allowing for focus+context visualization.

5.2 Matrix Visualization of Error Ellipsoids

With the uncertainty flow, a user can quickly determine the overall
degrees of the input, transformed, and output uncertainty information
of a node. However, users may also want to see more details of the
overall error ellipsoids from which the overall uncertainty degrees are
derived. The error ellipsoids are often high-dimensional geometric
objects and there is no method for drawing them directly. Thus, we
design a matrix visualization showing the 2D projections of the ellip-
soid (i.e., 2D ellipse) in the space of each pair of data variables to help
the user visualize an ellipsoid. The user can then interactively select
one or multiple cells on the matrix. Scatterplots or a parallel coordi-
nate plot of the variables (represented by the selected cells) will then
be presented to the user to reveal the uncertainty information of each
data item (see Figure 6(b)).

5.3 Uncertainty Encoding on Visualizations

Our system can visualize not only the overall uncertainty information
of the whole data set (by the uncertainty flow and matrix visualization),
but also the uncertainty information of individual data items. Every
data item has an error ellipsoid. Thus, we can similarly compute their
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with different dimensions actually imply different confidence levels, which may confuse analysts. The input uncertainty with 14 dimensions and the
output uncertainty with 6 dimensions in (d) imply 0.0001% and 1.4385% confidence levels, respectively. In contrast, they consistently represent the

same confidence level (95%) in (d).

overall uncertainty degree, which can be visually encoded using exist-
ing uncertainty visualization methods. For example, we can use the
opacity values of the glyphs (representing the data items) for a scatter-
plot to visually encode the overall uncertainty levels (see Figure 6(b)).
When the user clicks a glyph on the scatterplot, the system can also
create a pop-up view showing the matrix visualization of the related
error ellipsoid (see Figure 6(c)). More importantly, the user can select
a group of data items and combine their error ellipsoids to obtain an
overall error ellipsoid for the group of data items, which can likewise
be visualized using the matrix visualization (see 6(d)).

6 EXPERIMENTS AND DISCUSSION

In this section, we demonstrate the effectiveness and usefulness of our
uncertainty framework and visualization techniques based on three ex-
periments. Our techniques were implemented in Java and were tested
on an Apple Macbook Pro with Intel Core i7 2.66GHz CPU and 4GB
RAM. It took minutes to quantify the uncertainty information. Vi-
sual uncertainty flow can be created immediately when the uncertainty
analysis is completed. We set the confidence level 95% for all results
except the right uncertainty flow in Figure 7.

6.1 Multivariate Data Analysis

The first experiment is used to demonstrate the use of uncertainty
flow in a multivariate data analysis process called dual analysis [39].
Dual analysis allows the analysts to explore data iteratively in two
linked spaces, namely, items space and dimensions space. We use the
“Boston Neighborhood Housing Prices” dataset with 506 data items
and 14 dimensions for analysis. The purpose of the analysis is to de-
tect correlations among the data dimensions.

In many practical applications, data is usually simplified to con-
serve computer resources, which may introduce uncertainty [9, 27].
Following the practice, an analyst starts the dual analysis process by
randomly sampling the data. A sample contains only 20% of the orig-
inal data items, thus introducing uncertainty. The uncertainty of each
sampled data item is modeled as an error ellipsoid with 14 dimensions
and is quantified by the method described in Section 4.2. Next, the
data sample is visualized in the items space using a scatterplot. The
analyst interactively brushes the data items in the scatterplot (see Fig-
ure 7(a)), and then observes the changes of the means and standard
deviations of different dimensions in dimensions space using another
scatterplot (see Figure 7(b)). The dimensions that do not deviate much
due to the brushing are considered “stable”. The analyst intentionally
brushes the most stable dimensions in the dimensions space. Multidi-
mensional scaling (MDS) is applied using the selected dimensions.

Dual analysis is an explorative and iterative process, in which un-
certainty from the sampling may change. Figure 7 presents two vi-
sual uncertainty flows for a dual analysis process. They are created
using the standard error ellipsoids (defined in Equation (2)) and the
error ellipsoids (defined in Equation (4)) scaled by a confidence level
CL = 95%, respectively. Comparing these two uncertainty flows, we
can see that the right flow shows significantly less uncertainty than

the left flow. Using the unscaled uncertainty may mislead the ana-
lyst to become overconfident or too cautious about the analysis re-
sults, resulting in increased risk of erroneous decisions. Addition-
ally, unscaled uncertainty has inconsistent implications for different
numbers of data dimensions (see Section 4.2 for detailed discussion).
Figure 7(d) shows such an example where the input uncertainty with
14 dimensions from the previous items space brushing implies only
0.0001% confidence, while the output uncertainty from the dimen-
sions space brushing with 6 dimensions implies 1.4385% confidence.
In contrast, they consistently represent 95% confidence in Figure 7(e).
The comparison in Figure 7 demonstrates the usefulness of our uncer-
tainty quantification to faithfully and consistently reveal uncertainty.
Our multi-level uncertainty visualization system can help analysts
intuitively validate the analysis results from the perspective of uncer-
tainty and find out how to reduce it. Assume that in a dual analysis
process an analyst discovers an interesting split of the data items into
two groups (see Figure 8(a)). Figure 8 shows the uncertainty flow
which indicates that the finding contains a high degree of uncertainty,
and so the finding is questionable. The uncertainty flow allows the
analyst to quickly figure out that the uncertainty mainly increases in
the previous brushing steps. By inspecting the overall error ellipsoid
in the dimensions space brushing step using the matrix visualization
(see Figure 8(b)), she immediately knows that two dimensions of the
data (“crim” indicating “per capita crime rate by town” and “medv”
indicating “the median value of owner-occupied homes” highlighted
by the green rectangles) are the major factors that cause the uncer-
tainty amplification. Thus, she goes back to the items space brushing
step and checks the uncertainty in the items space. Figure 8(c) shows
the uncertainty at the item level, where uncertainty is encoded as the
opacity values of the data items. We can see that a region in the bot-
tom right section of the scatterplot (in the green rectangle) contains
mostly uncertain data items. The analyst filters out these uncertain data
items (see Figure 8(d)), which leads to a lower degree of uncertainty
in the related node. She performs the dual analysis again. Figure 8(e)
presents the analysis result which is almost the same as the previous
result. However, as we remove uncertain data items, the uncertainty
degree of the result is reduced, leading to a more reliable finding.

6.2 Customer Opinion Analysis

Our uncertainty framework based on error ellipsoids is primarily used
for multidimensional uncertainty information. However, as error el-
lipsoids are a generalization of one-dimensional standard deviation,
the framework also works for the uncertainty represented by standard
deviation. In the experiment, we visualize the uncertainty flow of a
customer opinion analysis process. The opinion data set used was ob-
tained from www . TripAdvisor.com. It consists of 8§ dimensions
including user information, hotel information, and opinion scores with
3891 data items (opinions). The opinion scores were extracted by an
opinion mining technique [18]. We modeled the uncertainty associ-
ated with the extracted opinion scores using one-dimensional error el-
lipsoids (standard deviations) to reflect the lexical and structural am-
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Fig. 8. Uncertainty flow of a dual analysis process. (a) A scatterplot showing an interesting split into two groups but with a high degree of uncertainty;
(b) A matrix visualization of the uncertainty revealing that two dimensions amplify the uncertainty; (c) and (d) Scatterplots showing the uncertainty
in items space; and (e) A scatterplot showing a revised analysis result by removing highly uncertain data items from (d).

biguity of human languages, as suggested by [42].

Finding opinion patterns regarding categorical information is a fun-
damental task of opinion analysis in hospitality research [2]. Figure 1
shows a typical opinion analysis process and the related visual uncer-
tainty flow of the analysis process. It starts with opinion mining where
the uncertainty arises, followed by user searching or filtering (brush-
ing) in items space and correlation analysis for finding opinion pat-
terns. For instance, the analyst selects opinions about high-class hotels
in the items space brushing step (Figure 1(a)). In subsequent correla-
tion analysis, she analyzes the opinion scores against customers’ ages,
genders, and locations iteratively using a histogram/bar chart. This
process is repeated for different classes of hotels. Finally, the analyst
finds that there seems to be an opinion pattern regarding the genders
of the customers. She combines the histograms in the previous corre-
lation analysis steps for further analysis (Figure 1(c) and (d)).

In the analysis process, the uncertainty can be split into pieces as
the analyst brushes the data, or the uncertainty is merged together as
the analyst combines the analysis results. Moreover, uncertainty can
increase or decrease as the data is analyzed. Our system can generate
a visual uncertainty flow (see Figure 1) for the opinion analysis pro-
cess. From the uncertainty flow, we can clearly see the variation of the
uncertainty information through the process, in which the uncertainty
information splits, merges, decreases (Figure 1(a)), or increases (Fig-
ure 1(b)). Note that the uncertainty in the correlation analysis steps
remains the same because the opinion scores are not changed and the
data items are just aggregated with respect to different opinion scores.

Underestimated uncertainty may result in questionable opinion pat-
terns. Figure 1(c) presents an analysis result by combining the previ-
ous analysis results. The result reveals an interesting opinion pattern:
female customers complain more than male customers, while male
customers tend to provide more positive feedback. However, from the
uncertainty flow, we can see that the pattern is not very trustworthy
because two correlation analysis results used for the combined analy-
sis contain a high degree of uncertainty. The uncertainty flow allows
us to track the uncertainty information, which reveals that the uncer-
tainty of the correlation analysis results mainly arises from the items
space brushing steps, where high-class hotels are selected. We remove
the uncertain correlation analysis results from our combined analysis
result (see Figure 1(d)). The uncertainty of the combined result is
re-approximated by fusing the uncertainty of the remaining three cor-
relation analysis results. A more reliable opinion pattern is identified
in Figure 1(d): female customers of economic hotels tend to complain
more. This experiment clearly proves that our uncertainty visualiza-
tion system can help the analyst quickly evaluate the results from the
perspective of uncertainty, and find out how to reduce the uncertainty
to improve the analysis result.

6.3 Combustion Simulation Analysis

The third experiment demonstrates that our approach can also facilitate
scientific data analysis. The data set for analysis is a time-varying vol-
ume data set generated by a scientific combustion simulation. Com-
bustion simulations trace a large number of particles and generate a
huge amount of data [8]. The data contains more than one million
moving particle records. Each record has two time-varying physical
dimensions (temperature and mixture fraction). Recent advanced vi-
sualization systems can help users interactively explore particle behav-
iors in combustion simulations [41]. Sampling is often used to sim-
plify the data, which introduces uncertainty. Other transformations,
such as filtering and clustering, may also produce uncertainty.

We consider the analysis pipeline described in [41], which helps
users classify trajectories of particles. The system pipeline has four
main steps (see Figure 9 from the left to right). First of all, particles
are sampled from the source data. Trajectories of the sampled particles
are initially clustered into a number of groups. Next, according to the
users’ domain knowledge, groups of particles are selected, followed
by a semi-supervised classification. Finally, the centroids are obtained
to represent their corresponding groups. It is an explorative analysis
process and each step can repeat multiple times. In the analysis, un-
certainty information arises from data sampling and clustering.

Figure 9 shows an uncertainty flow. Initially, the data is ran-
domly sampled over particles and time space, which introduces two-
dimensional uncertainty information. The trajectories of the sampled
particles are then divided into k clusters by a model-based clustering
method. Figure 9(a) and (b) show the clustering results with £k = 10
and k = 6 in the upper and lower branches of the initial clustering step,
respectively. The clustering generates a probability vector v of size k
for each particle, where v; indicates the probability of the particle be-
ing inside group i. This actually introduces a new source of uncertainty
with k dimensions. In this step, the number of dimensions of every
data item increases from 2 dimensions to 2 + k dimensions, where k
dimensions are from the related probability vector, and we merge the
original sampling uncertainty and the new clustering uncertainty into
an overall uncertainty.

In Figure 9, we see that the uncertainty variation induced by the
clustering with k = 10 is smaller. As we go back to the data with
2+ k dimensions, we find that the k-dimensional sub-vectors have less
deviation in the case of clustering k = 10. The uncertainty merge pro-
cess stabilizes the results in this case and hereby reduces the amount
of uncertainty according to Equation (3). For each clustering result,
we choose two clusters and then try two different brushing opera-
tions. Note that in the brushing step, arbitrary brush-out may also
cause uncertainty. For example, the uncertainty degree in the third
branch is larger than the forth one after the brushing operations. The
first branch results in a small degree of uncertainty, which reflects that
we have properly filtered out outliers from the selected clusters. In
the final clustering step, according to the brushing information, parti-
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Fig. 9. Uncertainty flow of a combustion data analysis process. In the initial clustering step, (a) shows the resulting 10 trajectory clusters, and (b)
shows 6 clusters. The uncertainty flow reveals that splitting more clusters leads to more certain results. In the brushing step, inconsistent curve
brushing may magnify uncertainty. In the last step, we present two final clustering results with smaller uncertainty values in (c) and (d).

cles are re-clustered into two groups, where the probability vector of
each data item is two-dimensional. We incorporate the obtained two-
dimensional probability vectors again to merge all uncertainty error
ellipsoids. Finally, we can see that the uncertainty value in the first
branch is the smallest among the four cases. From this experiment, we
can see that our uncertainty framework can effectively combine two
different sources of uncertainty information from the data sampling
and data clustering steps, respectively.

6.4 Discussion

Effective visualization of uncertainty information is demanded in
many data analysis applications. In the early stages of our research,
we came across difficulties in modeling and quantifying the uncer-
tainty information. We found that uncertainty information can arise
in any stage of an analysis process and may increase, decrease, split,
or merge through the entire process. With the increasing complex-
ity of modern analytical processes, tracking and managing uncertainty
information through the entire processes has become even more chal-
lenging. However, existing studies focus on a certain stage of an an-
alytics process and fail to characterize the complex variations of the
uncertainty along the entire process. This poses a great obstacle to de-
veloping an effective visualization system. To tackle this problem, we
came up with a new uncertainty framework to model and characterize
the variations of uncertainty information through analytical processes.

Another lesson we learned is the importance of preserving the con-
sistency of estimated uncertainty information. Although our approach
can quantitatively measure uncertainty information, the quantified un-
certainty can be overestimated or underestimated, which may cause
analysts to make erroneous decisions, as demonstrated in Figure 7. We
propose scaling the quantified uncertainty information according to a
confidence level specified by a user, such that the derived uncertainty
information is consistent along the entire analysis.

Our system runs as a background process in parallel with the gen-
eral visual analytics system to automatically collect the necessary his-
tory information of the analysis. The time-consuming uncertainty
analysis using MCS is only performed when users request an uncer-
tainty visualization from the system. It may take minutes to quantify
the uncertainty information for each data item and obtain the overall
uncertainty for every recorded analysis step. Thus, the system can be
regarded as a post-processing step of a visual analytics process. Al-
though it cannot run in real time, it is still very useful for analysts
to revisit their analysis processes, validate their analysis results, and
figure out a way to reduce the uncertainty. We plan to accelerate the
uncertainty analysis by improving the Monte-Carlo sampling process

and using more advanced parallel computing techniques.

The framework is adapted from previous work [9] to better char-
acterize the uncertainty variations along analysis processes. Although
our experiments prove that the framework can be successfully applied
to practical problems, there is still room for improvement. For in-
stance, visual analytical reasoning is a rather complex iterative pro-
cess. It is challenging to model and capture the analytical processes
effectively [20]. In some complicated scenarios, the history tree-like
graph structure used by the framework may fail to capture the analyt-
ical processes. The framework quantifies the uncertainty information
using statistical techniques. It may not always work in some applica-
tions where it is more effective to model the uncertainty using other
techniques such as fuzzy sets and evidence sets. We will investigate
this issue and study how to adapt the framework to these applications.

7 CONCLUSIONS

We present a new approach to characterizing, tracking, and visualiz-
ing complex uncertainty variations through analytical processes. One
major benefit of this work is that it allows users to effectively manage
uncertainty of the entire analysis, such that they can validate their re-
sults, locate the analysis steps that result in increasing uncertainty, and
improve the results by reducing the uncertainty. Our approach can be
used by different types of visual analysis applications, as demonstrated
in our experiments. The generalizability of the approach is guaranteed
by its three characteristics. First, it fully supports multidimensional
uncertainty information, which usually arises in multivariate data anal-
ysis. Second, it can capture the uncertainty variations, such as uncer-
tainty integration, transformation, and propagation, commonly found
in visual analytics processes. Third, the techniques used by the ap-
proach, such as the uncertainty modeling based on error ellipsoids and
the uncertainty evaluation based on MCS, are well-established tech-
niques that have been used extensively in uncertainty quantification
and other related fields. Therefore, we believe that our approach can
be applied to many different practical applications.
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