New Geometric Methods of Mixture Models for Interactive Visualization

Jia Li Bruce Lindsay Xiaolong (Luke) Zhang

The Pennsylvania State University University Park

Outline

- Project overview
- Geometric methods of mixture models
 - Modal EM (MEM)
 - Hierarchical mode association clustering (HMAC)
- Application example: weather forecast

Project Overview

Big Picture

- Goal
 - Advance visualization and visualization with geometric methods of mixture models
- Approach
 - Developing theories and algorithms to uncover geometric features of mixture density
 - Developing tools for data clustering and dimension reduction
 - Developing visualization systems by integrating statistical tools to analyze large-scale, highdimensional, and temporally evolving data.
 - Meteorology datasets, engineering design datasets
 - Understanding the use of our systems

Research Team

- Researchers
 - Jia Li, Associate Professor of Statistics
 - Bruce Lindsay, Professor of Statistics
 - Xiaolong (Luke) Zhang, Assistant Professor of Information Sciences & Technology
- Partners
 - Fuqing Zhang, Professor of Meteorology and Statistics
 - Tim Simpson, Professor of Industrial & Manufacturing Engineering

Geometric Methods of Mixture Models

• For more details about the models

<u>http://www.stat.psu.edu/~jiali/hmac/</u>

Clustering by Mixture Models (Conventional)

• Cluster: a component in a mixture model

$$f_k(x) = \phi(x \mid \mu_k, \Sigma_k)$$

Overall data

$$f(x) = \sum_{k=1}^{K} a_k f_k(x) = \sum_{k=1}^{K} a_k \phi(x \mid \mu_k, \Sigma_k)$$

An Example

- Fit a two-component Gaussian mixture via the EM algorithm
- Cluster by MAP (Maximum A Posteriori)

 $\arg\max_k a_k f_k(x)$

Heuristic Justification

• Challenge: Associating every cluster with a single mixture component may not be a good practice.

Framework of Modal Clustering

- Form a density estimation by kernels or mixture models.
- Associate every point to a mode (local maximum).
 - Hill climbing to a mode without crossing "valleys".
- Group data according to common modes.

Compare the Roles of Mixture Models

- Conventional approach
 - Dual roles:
 - Density estimation
 - Each component captures one cluster
 - Potential issues:
 - Violation of the parametric distribution assumed for each component
 - Poorly separated components
- Modal clustering
 - Single role: Density estimation
 - Kernel density can be used (free of initialization)
 - Geometric heuristics
 - Every cluster is a hill (bump) of the density.

Model EM (MEM)

- Let a mixture density be $f(x) = \sum_{k=1}^{K} \pi_k f_k(x)$. - $x \in \mathcal{R}^d$
 - $-\pi_k$ is the prior probability of mixture component k.
 - $f_k(x)$ is the density of component k.
- Given any initial value $x^{(0)}$, MEM solves a local maximum of the mixture by alternating two steps.

Model EM

1. Let

$$p_k = \frac{\pi_k f_k(x^{(r)})}{f(x^{(r)})}, \ k = 1, ..., K.$$

2. Update

$$x^{(r+1)} = \operatorname*{argmax}_{x} \sum_{k=1}^{K} p_k \log f_k(x).$$

Mode Association Clustering (MAC)

- The MAC Algorithm
- 1. Form kernel density $f(x | S, \sigma^2) = \sum_{i=1}^{n} \frac{1}{n} \phi(x | x_i, D(\sigma^2))$, where $S = \{x_1, x_2, ..., x_n\}$.
- 2. Use $f(x|S, \sigma^2)$ as the density function. Use each x_i , i = 1, 2, ..., n, as the initial value in the MEM algorithm to find a mode of $f(x|S, \sigma^2)$. Let the mode identified by starting from x_i be $\mathcal{M}_{\sigma}(x_i)$.
- 3. Extract distinctive values from the set $\{\mathcal{M}_{\sigma}(x_i), i = 1, 2, ..., n\}$ to form a set G. Label the elements in G from 1 to |G|.
- 4. If $\mathcal{M}_{\sigma}(x_i)$ equals the kth element in G, x_i is put in the kth cluster.

Hierarchical Mode Association Clustering (HMAC)

• Gradually increase kernel bandwidth:

 $\sigma_1 < \sigma_2 < \sigma_3 \cdots$

- Kernel density at level *i*: $f(x | S, \sigma_i^2)$
 - σ_i ↑→ smoother density, fewer modes
- Starting points at level *i* are the modes acquired at the previous level *i* 1.
- The hierarchy by design:

$$x_i
ightarrow \mathcal{M}_{\sigma_1}(x_i)
ightarrow \mathcal{M}_{\sigma_2}(\mathcal{M}_{\sigma_1}(x_i))
ightarrow \cdots$$

An Example

- Glass identification data set
 - 105 samples
 - Only take the first two principal components of the original 9 dimensions

Clustering result at level 2

At level 3, merge the modes from level 2. MEM paths are shown.

Clustering result at level 3

At level 4, merge the modes from level 3.

Hierarchical Mode Association Clustering (HMAC)

- Advantages of MAC and HMAC
 - MAC requires no model fitting and uses a nonparametric kernel density estimation.
 - The density of a cluster is not restricted to be parametric, for instance, Gaussian, but ensures uni-modality.
 - MAC is similar to mixture-model-based clustering in the sense of characterizing clusters by smooth densities.
 - HMAC seems to combine the complementary merits of bottom-up clustering such as linkage and top-down clustering such as mixture modeling and k-means.
 - MAC can be performed hierarchically or in a one level manner.
 - For hierarchical clustering, HMAC can either generate a nested structure as a conventional dendrogram, or a non-nested hierarchy.
 - Ridgelines between pairs of clusters can be computed to numerically profile the separation between clusters, a useful feature for diagnosis.

Application Example: Weather Forecast

Weather Forecast

- Data
 - Multi-dimensional prognostic variables
 - Dry air: the mass, moving velocities (x, y and z), potential temperature, ...
 - Geopotential and mixing ratios for cloud, rain, ice, water vapor, and snow
 - .
- Human analytic activities
 - Satellite images, forecasting models, 3D views, spreadsheet, ...
- Challenges in interacting with data and models and making quick decisions about what may happen next.

After Typhoon Morakot

From boston.com

Task 1: Ensemble-Based Analysis and Forecast

- An ensemble
 - A collection of forecasting models
- Ex. Typhoon Morakot

00Z09

Challenges

- Analyze 60 models
 - Examining the variations of the resulting forecasts from different models
 - Estimating the uncertainty of the prediction.
 - Delivering the best forecast
- Project

– Where will the Typhoon go and how severe will it be?

Our Approach

- Clustering model data
 - Different clustering criteria
 - Path + sea level pressure + wind strength
 - Sea level pressure + wind strength
 - Path only
 - Sea level pressure only
 - Wind strength only
- Interactive tools
 - Choose different clustering methods
 - Examining the modes and ranges of model clusters
 - Examining the temporal evolution of model clusters

Demo: Multi-Scale Clustering

Task 2: Understanding Hurricane Cloud Maps

- Questions to answer
 - How many cloud clumps are there?
 - What are their trends?

Our Approach

Clustering cloud image pixels with MAC
 – Location + brightness

Some Results

Comparison between Our Method and Single Gaussian Modeling

Preliminary Feedback

- Promising results
- Eager to see an interactive system to put various tools together

Next Step

- Improving algorithms
 - Mixture modeling for density-estimation of high dimensional data
 - -Scale-sensitive vs. scale-independent
 - -Speed of clustering
 - Real-time analysis

Next Step

- Developing visual tools and testing how helpful our approach is
 - Typhoon Morakot data
 - Which typhoon models are similar?
 - What areas are most likely to be flooded
 - •
 - Cloud maps
 - Where will a cloud clump look like in 5 hours?

•

For More Information

http://gmmv.ist.psu.edu/