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Project Goals

Bring tools from Computational Geometry and 
Topology to the analysis and visualization of 
massive, distributed data sets
Perform global structure discovery on such data

Produce meaningful topological and geometric maps 
over the data
Extract structural similarities or structure preserving 
correspondences within and across data sets

Exploit this discovered structure in enabling 
visual exploration and human interaction with 
the data 2



Understand Data via Maps
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The Problem of Correspondences
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Some Tools
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Heat Diffusion on Manifolds

Persistent Homology
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β0:  # components

β1:  # tunnels or loops

β2:  # voids

: Laplace-Beltrami Operator (div grad)

Persistence diagrams (barcodes)



Three Quick Vignettes

I. Isometric Descriptors and Shape 
Correspondences 

II. Circular Coordinates for Data Sets
III. Interlinked Image Collections

Continuous Discrete

Topology

Geometry

Multiscale
Analysis
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Structure Discovery
in Geometric Data



I. Isometric Descriptors and Shape 
Correspondences

[Ovsjanikov, Sun, G., SGP’08,
Sun, Ovsjanikov, G., SGP’09]
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Extrinsic vs. Intrinsic
Most multi-scale methods of geometric analysis, e.g. 
wavelets, require explicit parametrizations of the 
geometry, e.g. coordinate functions
What if we have only metric, or distance information?
And what if the distances are intrinsic, not extrinsic?

8
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• Invariance under  translation, rotation, reflection 
and scaling (Isometries of the ambient space)

• Invariance of geodesic distances under self-
mappings. For a homeomorphism 

Extrinsic vs. Intrinsic Symmetries

• Break under isometric deformations of the 
shape

• Persist under isometric deformations

Extrinsic Symmetry Intrinsic Symmetry
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Correspondences are Often 
Based on Descriptors
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Shape Descriptors
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For shapes, there are many descriptors invariant to 
rigid motions:

Many tradeoffs among different descriptors …
But what about intrinsic descriptors? Heat kernel 
signatures

Spin Images:
Johnson, Hebert  ‘99Shape Contexts:

Belongie et al. ’00
Frome et al. ‘04

Integral Invariants:
Manay et al. ’04

Pottmann et al. ‘09



The Issue of Scale
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Given a point (  ) on a shape, find other points with “similar” 
neighborhoods

Inherently multiscale question: on a manifold, locally all points are the 
same. Need a meaningful way to compare point neighborhoods at 
different scales
At what scale do neighborhoods become unique?

Small scale Large scale



Background
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Heat equation on a Riemannian manifold:
If              is the amount of heat at point    at time   , 

then

: Laplace-Beltrami Operator (div grad)

Given an initial distribution        . After time   :  

heat operator





Background
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Heat kernel :

: amount of heat transferred from     to     in 
time   .  How well     and    are connected at scale    -- an 
integral over all paths from    to    



Heat Kernel Properties
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Basic Properties

LB eigenvalues and eigenvectors



Heat Kernel Properties

16

Invariant under isometric deformations
If                        is an isometry, then: 

Conversely: it characterizes the shape up to isometry.
If then

is an isometry

This is because:

where                 is the geodesic distance



Heat Kernel Properties
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Multiscale:
For a fixed    , as    increases, heat diffuses to larger 
and larger neighborhoods

Therefore,             is determined by (reflects the 
properties of) a neighborhood that grows with    

truncation effect



Heat Kernel Properties
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Robustness:
is the probability density function of BM, a 

weighted average over all paths, which is generally 
not very sensitive to small perturbations

Only paths through the modified area     will change



Defining a Signature
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Let               be the signature of      at scale    
The heat kernel has all the properties we want 
Except easy comparison …

is a function on the entire manifold
Nontrivial to align the domains of such functions across different shapes, or 
even for different points of the same shape



Defining a Signature
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Let               be the signature of     at scale    
The heat kernel has all the properties we want. 
Except easy comparison …

We define the Heat Kernel Signature (HKS), by 
restricting to the diagonal of the kernel:

Now HKSs of any two points can be easily compared, 
since they are defined on a common domain (time) 



Defining a Signature
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Since HKS is a restriction of the heat kernel, it is:
Robust
Multiscale

Question 1: How informative is it?
Related to Gaussian curvature for small   :



Defining a Signature
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HKS can be interpreted as a multiscale, robust, intrinsic 
curvature:

HKS computational aspects omitted in this talk



Informative Theorem
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The set of all HKSs on a shape almost always defines it 
up to isometry

Theorem: If      and     are two compact  manifolds, such 
that          and          have only non-repeating eigenvalues, 
then a homeomorphism                       is an isometry
if and only if, for all 

The set of all HKSs characterizes the intrinsic structure of 
the manifold!



Applications of HKS
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Multi-scale matching, structure discovery

Feature extraction



Multiscale Matching
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Two heuristics for making HKSs comparisons practical:
For a fixed point   , sample HKS on a logarithmic 
scale at times

For a fixed time    scale each HKS, by the sum over 
all points of M

Compare using L2 norm of these HKS vectors

ti



Multiscale Matching
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Comparing points through their HKS signatures:



Multiscale Matching
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Finding similar points – robustly:

Medium scale Full scale

Armadillo



Multiscale Matching
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Finding similar points across multiple shapes:

Medium scale Full scale



Feature Detection
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Persistent feature detection:
Intuition: heat diffuses slower at points with high 
curvature. Heat will tend to concentrate in “hot spots” –
extremities of the surface
Approach: track the local maximum of the heat kernel for 
increasing   





Feature Detection
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Persistent feature detection:
Find points that are long term maxima of their heat kernels:



Feature Detection
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Persistent feature detection:
Find points that are long term maxima of their heat kernels:

This may be expensive since the heat kernel at every point 
is a function over the whole shape. However, long term 
behavior at nearby points is similar due to mixing
Approximation: find points that are local maxima of 

for large enough 



Shared Structure
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2D MDS embedding of feature points on three shapes 
according to distances of their HKS 



Shared Structure
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2D MDS embedding of feature points on 175 shapes 
according to distances of their HKS. 

Feature points found on a few poses of 
the dancer model by Vlasic et al. 

MDS of features from 
all 175 poses using a 
full range of scales

Partial and approximate intrinsic symmetries can be detected this way



Informative Theorem

34

How general is the theorem?

If there are repeated eigenvalues, it does not hold:

On the sphere, but
there are non-isometric maps between spheres.

Do not know if an “approximate” version of the theorem is 
true, but suspect so



Intrinsic Measures of
Shape Similarity

Gromov-Hausdorff distance: a second order 
optimization over correspondences

evaluated via intrinsic distances

35

intrinsic distance
distortion



Are There Perfect Signatures?
To optimally align two shapes, is it 
sufficient to optimally align their point 
signatures, or certain features derived 
from these signatures?

Optimal alignment can be defined in 
terms of certain intrinsic but hard-to-
compute shape distances, such as 
Gromov-Hausdorff

If this is so, then we only have a first-
order optimization problem to solve …

Of course this can fail if there are 
symmetries …

36
[data sets: Stanford 3D Scanning Repository / Carsten Stoll]



Key Points and Issues
Heat kernel signatures (HKS) provide a powerful 
tool for describing shape neighborhoods. They are

Robust
Multiscale
Informative. Related to curvature and geodesics
Easily computable

They can be used to
Provide point signature for multiscale matching
Extract shape features
Discover intrinsic symmetries
Study a formal spectral metric between shapes

37



II. Circular Coordinates for Data 
Sets
[de Silva, Morozov, Vejdemo-Johansson, SoCG’09]
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Circular Structures

Circular structures are 
often present in data
Classically

Linear coordinatization: find 
linear transformations from X
to Rd

Principal component analysis, 
projection pursuit

Recently
Non-linear methods: drop the 
expectation of linearity for the 
transformation
MDS, kernel methods, locally 
linear methods

39



Problematic Cases

Some shapes take up 
too many coordinates
Circle - locally 1-
dimensional, globally 
needs 2 coordinates
Torus - locally 2-
dimensional, globally 
needs 3, or even 4 
coordinates



How Can We Fix This?

Circle-valued coordinates
Use                                   as an additional coordinate space
Fixes the circle
Fixes the torus
Occurs naturally:

Phase coordinates for waves
Angle coordinates for directions

41



Approach

Exploit canonical isomorphism

Use persistent cohomology to pick out features
Compute over Zp, for several p

Use least-squares smoothing to generate nice circle-
valued functions from cocycles
Cohomology is calculated with variant on the 
persistence algorithm: coboundaries are computed and 
matched for consecutive simplices



Double Torus Correlation Plots
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Key Points and Issues
Circular structures are very common in real data
Linear structures can also be discovered this way, 
by appropriate identification of endpoints
The need for such parametrizations arises in many 
other problems

The cohomology persistence algorithm is very 
lightweight and fast (faster than regular persistence)

44



III. Interlinked Image Collections
[Heath, Gelfand, Ovsjanikov, Aanjenaya, G., ‘09]
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Image Match Links



Paths Through Image 
Collections

49



Homotopy Classes
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Large Scale Image Acquisition
Acquiring, storing, and sharing large 
image collections is becoming easier 
and easier

Ubiquitous cell phone cameras
Inexpensive storage
Wireless networking

Photo sharing sites (e.g., Flickr, Picasa)
Systematic commercial acquisition 
projects (e.g., Google Streets)
Camera sensor networks

51



Image Webs

The idea of Image Webs is to interlink images through a 
variety of link types, based on both content and image 
metadata (GPS, time) 
The same way that the WWW of documents has proved 
useful, the hope is that interlinked webs of signals will 
also be valuable for propagating, extracting, and 
filtering information – and the web types two can cross-
link and cross-fertilize

52



Image Webs Agenda
Understand the local and global structure of 
image webs, aiming at a softer, more 
topological understanding
Develop efficient construction algorithms
Explore applications (image browsing, 
annotation transfer, social networks, etc.)

53[Snavely et. al., Siggraph ’06] [Zheng et. al., CVPR 2009] [Gammeter et al., ICCV 2009]



The Space of All Images
If we frieze time, the local structure of 
the space of images is well understood: 
it that of a low dimensional manifold –
the manifold of views
This is also the local structure of an 
image web based on match links

But at larger scales the structure is 
more complex

because of moving objects
because of repeated similar objects

For us this is exactly the structure that 
is of interest

54



Non-Local Links
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Proximity Through Mobility:
Home to Office

56



Proximity Through Mobility
on the Stanford Campus

57

teleportation



Getting Down to It: 
Building Image Webs

Feature Extraction: interest points, associated with a 
region and summarized by a descriptor

58

Harris-Affine

Hessian-Affine

Maximally Stable 
Extremal Regions

K. Mikolajczyk, et al. A comparison of affine region detectors. IJCV, 2005

Geometric verification



Getting Rid of False Feature 
Matches
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after geometric
verification

raw matches



Symmetries and Repetitions: 
Link Aliasing

60



Overlap and Pivot Links
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Overlap link Pivot link

Basic element of a Web is a pair (patch, image)



Links and Their Decorations

Match (M)-links
Overlap (O)-links
Pivot (P)-links

Link decoration:

(quality of match, transform attributes) 

(degree of overlap) 

(patch distance, visual attributes) 



Image Webs Pipeline
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Feature Matching

Co-Segmentation

Geometric Verification

Image webs are
complexes (graphs)
on image patches,
not images

CBIR



Gaining Efficiency:
Pruning Pairs by CBIR Filtering

Content-Based Image Retrieval (CBIR) via “Bag of 
Words” models:

cluster and quantize descriptors into vocabulary trees
use document information retrieval type indices

Used to retrieve “visually similar” images – in our case 
possible Web neighbors for which match links exist 64

[Fei Fei, Fergus, Torralba]



Computation Times (w. a Cluster)
Image matching steps (VGA image size)

Feature extraction (~ 4 sec per image)
CBIR indexing (~ 30 sec per image)
Cosegmentation operation (~ 1.5 sec per 
image pair)

Image Web construction times*
Car (70 images ~ 1 minute)
Art museum (1200 images ~ 52 minutes)
Stanford campus (4200 images ~ 3 hours)

*just cosegmentation stage using up to 500 compute nodes



Scaling Up Web Construction

We want to build Image Webs with millions of 
images -- and understand how they are 
connected
We cannot afford to try cosegmentation on all 
image pairs
CBIR is a useful filter, but …
Vital connectivity information may reside in 
sparser areas of the Web

66



Getting an Unknown Graph to 
Reveal Itself …

Testing for the presence of links is expensive
Which images pairs should we try to connect?
We seek a sparser graph which captures the 
connectivity of the unknown Web

On the one hand, the CBIR filter favors image pairs 
where links are likely to exist
But how can we tell is a particular link improves 
connectivity?
What should be our ultimate measure of Web utility?

Spectral graph theory and harmonic analysis to 
the rescue

67



Algebraic Connectivity Measures
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Connectivity of a graph based on heat diffusion notions
Second smallest eigenvalue of the graph Laplacian

Smallest eigenvalue of L is always 0 – and has a 
constant eigenvector

Multiplicity of 0: number of connected components



Algebraic Connectivity
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Connectivity Measure: Second smallest eigenvalue of 
the graph Laplacian

Related to the diameter D of a graph with n nodes, 
random walk convergence, diffusion distances, and 
many other measures of graph connectivity
The eigenvector corresponding to      is the Fiedler 
vector, and is often used to partition the graph



Building a “Good” Graph 
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Objective: 
Build a “well connected” graph in minimal time

Difficulty:
Given a graph, finding the k extra edges which 
maximally increase algebraic connectivity is NP-
hard

Use a greedy strategy:
For every potential new connection, test its 
EdgeRank R – how much it will increase 
connectivity



Building a “Good” Graph 

71

Use a strategy from graph cuts

Assign to each node its value in the Fiedler vector
Add an edge (i, j) to maximize connectivity score:
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Building a “Good” Graph 
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Practical considerations

Update the Fiedler vector after each new edge
Can use the old estimate as a guess
Use a power iteration to update the Fiedler vector

-0.26
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Building a “Good” Graph 
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Power Iteration 

Converges to the Fiedler vector

Convergence is fast if have a good estimate. We 
don’t expect the Fiedler vector to change drastically 

Small overhead: only 1 vector in memory 



Results on Real Data Sets
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Applications:
An Image Webs Browser

How can we navigate 
through large Image 
Webs effectively?

How do we mitigate the 
effects of wrong links?

How do we extract 
“persistent” global 
structure

75



Computing a `Summary Graph’

76
A global map makes navigation easy



Persistent Local Homology

Image Webs are often stratified 
spaces because of the 
acquisition process –
understanding the strata 
structure helps

Use some algebraic topology: 
image webs as combinatorial 
complexes
Rips-Vietoris complex on 
images, based on distances 
coming from the links (affine 
maps)
Exploit filtered complexes and 
persistence ideas

77



Persistent Local Homology
Different types of nodes in an Image Web:

Branch 1

Branch 2

Branch 3

Branch 4



Persistent Local Homology

Google StreetView Data from Pittsburgh



Summarizing Image Webs



Parametrizing Edges/Loops



Web Navigation: Video 1
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Other Applications

Object models as 
subwebs: focus and 
context

Annotation transfer

Linking people through 
their images

Mobile webs: photo-
guided navigation, 
collaborative exploration

83



Key Points and Issues
Interlinked images and other signals contain a wealth of 
information not apparent in any one image or signal 
alone
Such signal webs form networks of maps; maps can be 
used to carry to transport information and arrive at a 
global understanding of both the sensed environment 
and the acquisition process

The information is in paths induced by the maps

84



Mapper Application: Breast 
Cancer Study

85

This flare consists entirely of patients which survive. This is a new piece of the 
taxonomy of breast cancer, not identified before, and which cannot be recognized 
by clustering.

[M. Nicolau, G.C.]
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The Information is in the Maps

87

We understand data by studying maps
or self-maps among the data, and
networks of such maps
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