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Abstract

Typical data visualizations result from linear pipelines that include both
characterizing data by a model or algorithm to reduce the dimension and sum-
marize structure; and displaying the data in reduced dimensional form. Sense-
making then takes place as users observe, digest, and internalize any informa-
tion displayed. The problem is that visualisations driven solely by algorithms
or models may limit sensemaking because they have the potential to mask ex-
pected or known structure in the data. In this paper, we present a framework
for creating data displays that rely on both mechanistic data summaries and
expert judgement. In order for users to communicate their judgements, we
present a new form of human-data interactions to which we refer as “Visual to
Parametric Interation” (V2PI). Here, we develop both the theory and methods
to create VA tools for users to adjust the parameter space while staying within
the visual space. The coupled visual and parametric adjustments defines V2PI.
When tools have V2PI capabilities users may not need to leave the visual space
to explore data and test hypotheses. We demonstrate the benefits of V2PI in
three examples.

1 Introduction

Organizing and understanding large data sets are complex tasks for many scientists,
engineers, and intelligence analysts. To aid users in such sensemaking endeavors,
tools have been developed to display high-dimensional data visually. These tools rely
on mathematical models or algorithms that collapse high-dimensional data matrices
to much smaller visual spaces (i.e., spaces of only two or three dimensions). For
example, a spatialization of textual data (which may include 1000’s of dimensions)
extends upon a geography metaphor in that it portrays complex observations in a
two-dimensional map (Andrews and Fox 2007). For a variety of reasons, a spatial
visualization of text data can lack interpretability for users. When this happens,
users have limited options to correct any problems, and we say that the “pipeline”
or framework in which the visualization was created is broken. In this paper, we
propose a new framework for creating data displays that mends the pipeline and
fosters sensemaking by enabling a new form of human interaction with data.
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Displays of data in two or three dimensions result typically from a visualization
pipeline shown in Figure 1, where data (D) are summarized by a mathematical model
or algorithm (M(θ)) first and subsequently mapped to a visual display (V ). A display
is controlled solely by the algorithm that generated it and adheres only to predefined
mathematical objectives or constraints denoted by θ. When these constraints con-
tradict expert judgment, visualisations can lose interpretability because they warp or
miss useful data features. For example, Principal Component Analysis (PCA) (Jolliffe
2005) and Multidimensional Scaling (MDS) (Kruskal and Wish 1978) are common an-
alytical approaches used to visualize data. PCA projects data sets to two dimensions
in the directions with the highest variance, but experts may know in advance that
useful features in the data do not correlate with variance. Additionally, MDS places
equal weight across the data dimensions when calculating new, two-dimensional co-
ordinates for observations; however, users may know in advance that a subset of the
variables deserves more weight than others to explain any expected behavior in the
data.
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Figure 1: Standard visualization pipeline, where data (D) feeds into a mathematical
model (M(θ)), and produces a visualization (V ). The users (U) make sense of the
visualization to the best other their abilities. To correct any visual inaccuracies, users
must either change the data or the mathematical model directly.

It may be difficult (if not, impossible), to develop mathematical models or al-
gorithms that summarize every complexity in a data set and match the extensive
domain expertise of users. Yet, as defined by the current pipeline (Figure 1), users
do not have an intuitive means to correct visual inaccuracies. The only way for users
to correct visual problems is to either transform the data set or adjust the underlying
mathematical models or algorithms. This means that users, who may not have the
appropriate mathematical training, must have a deep enough understanding of the
display-generating models to change them in a way that will result in useful visual-
izations. When users cannot parameterize their expert judgements, the pipeline is
broken and sensemaking ceases.

To assist users in altering quantitative data summaries, some visual analytics
(VA) tools have been developed. For example, iPCA (Jeong et al. 2009) and XGvis
(Buja et al. 1998) allow users to adjust dials or sliders that either augment or out-
right change influential parameters in PCA or MDS, respectively. However, iPCA
and XGvis still force users to understand the mathematical models or algorithms
underlying the visualizations. Without understanding the mathematics, changes to
visualizations are blind in that users can only hope (not know) that their slider or
dial adjustments will convey their expert judgments appropriately. Additionally, it is
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understood that users’ mental maps of data sets tend to match visualizations closely,
not mathematical characterizations. Therefore, users may never obtain a visualization
that reflects their expertise, regardless of how they tweak dials or sliders.

The root of the problems inherent of iPCA and XGvis is that user interactions
take place within an abstract parameter space and never where users host their intu-
ition - within the visual space. Tools that enable users to edit displays independent
of the underlying models or algorithms still limit usability. Despite the pitfalls of
characterizing data quantitatively, rigorous analyses have the potential to reveal new
knowledge to users and foster the sensemaking process. Thus, purely editorial changes
to displays can diminish the role of visualisations in the sensemaking process as well.
Users need a mechanism to balance parametric and editorial or “surface level” ad-
justments to data displays.

In this paper, we propose a bi-directional, visualization pipeline that parallels the
sensemaking process and enables a third form of human interaction with data. We re-
fer as “Visual to Parametric Interation” (V2PI). Our pipeline is an extension of Figure
1 in that users are not simply at the receiving end of the pipeline. Rather, we embed
users in the scheme formally so that adjustments to displays are indirect adjustments
to underlying model parameters which may, in turn, create new visualizations. The
coupled adjustments to the visual and parametric spaces define V2PI.

In order to commit V2PIs to displays, we need smart VA tools that have the
capacity to 1) capture user interactions with the visual metaphor, 2) interpret the
interactions quantitatively, and 3) reconfigure visualizations based on the user input.
Crucially, the tools enable users to remain in a visual metaphor to organize informa-
tion and generate/test hypotheses analytically. In effect, the tools replace the role of
an analytical expert (e.g., mathematician, statistician, or computer scientist) in that
they parameterize feedback from the users and communicate with the users via the
visual metaphor. Users are shielded completely from any underlying mathematical
technicalities and are free to focus their attention on the application; i.e., analysts
are not distracted from their applied research questions by trying to learn the techni-
cal underpinnings of visualizations when they use the VA that we prescribe. In this
paper, we develop a general framework for creating these tools, and we provide three
examples.

The motivations to develop the bi-directional pipeline and V2PI are grounded
within theoretical and practical concepts in VA that are discussed in the next section.
We describe in Sections 3 and 4, respectively, a general form for bi-directional visual-
ization pipelines and describe a specific instance when V2PI is possible. Additionally,
we make suggestions in Section 4 for creating smart VA tools that parameterize user
display interactions and enable V2PI. In sections 5, we exemplify the usefulness of
bi-directional visualisations with V2PI in three applications. We conclude with a
discussion in Section 6.
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2 Visual Analytics (VA)

The key aspect of VA that makes it different from both data analytics and data visu-
alization is its emphasis on user interactions with data and analytical processes that
lead to insight. As indicated by Pike et al. (2009), “interaction is the insight,” and
according to Thomas and Cook (2005), VA “is the science of analytical reasoning fa-
cilitated by interactive visual interfaces.” In this section, we highlight the importance
and challenges of modeling high-dimensional, complex data sets and three forms of
user interaction. The third form is V2PI.

2.1 Mathematical Models and Algorithms

Before we begin, we note that from this point forward we will use the terms “model”
or “algorithm” interchangeably to refer to the quantitative display-generating mech-
anism or “M” in Figure 1. The differentiation is irrelevant within the context of this
paper.

In interactive systems, users rely on automated, mathematical algorithms to cre-
ate initial data displays. These displays organize data based on both sub-features
in data and quantitative constraints and/or assumptions inherent to the algorithms.
Although the constraints are necessary to assure mathematical coherence and justi-
fiable inferences, they can inhibit sensemaking as well. Thus, model developers (e.g.,
mathematicians, statisticians, and computer scientists) undergo a plethora of steps
to validate constraints for every application. Among these steps are 1) diagnostically
checking that the model assumptions are met by the data, 2) making sure the model
answers a relevant question, and 3) the model is interpretable. Step 1 usually relies
upon theoretically rigorous methods and/or visual inspections of relevant figures. Vi-
sual inspections often suffice for justifying modeling assumptions. Steps 2) and 3)
are critical for ascertaining whether we can learn something from the data; i.e., can
the model provide any meaningful insights about the data? A mathematical char-
acterization of the data may describe irrelevant aspects of the data, even when the
modeling assumptions seem appropriate.

To avoid failures in any of the steps, domain and modeling experts tend to work
together. In the case of statistical modeling, a statistician and domain expert may
collaborate during all stages of an analysis, including both the data collection and
inferential stages. Domain experts can provide guidance regarding expected behavior
in the data and modelers can develop procedures which adhere to the guidance.
However, verbal communication may be time consuming and error prone. Domain
experts often complain that modelers “do not speak their language” in that common
or familiar terminologies differ among domain and modeling experts. In turn, VA
tools have been developed that enable domain experts to interact with the data and/or
models directly. However, domain experts are not relieved from the responsibility of
implementing any or all of the aforementioned validation steps.

If modelers could develop a generalizable algorithm that would characterize a
variety of data structures successfully, domain experts could be protected from many
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technical modeling issues. Needless to say, such an algorithm does not exist, thus
domain experts are limited to either the models that they understand or working
with quantitative collaborators. In the next section, we develop a form of human-
data interaction that empowers users to adjust algorithms so that they are valid and
applicable to a variety of data sets.

2.2 Interaction Types

In an effort to allow users to perform an analysis visually, many tools incorporate
visual interaction. In VA, various types of interactions have been studied, and Pike
et al. (2009) categorize them into two main groups: lower- and higher- level interac-
tions. The key difference between these groups relates to the goal of the users when
they interact with the data. With lower-level interactions, users aim to summarize
“low-level structure” in the data including maxima, minima, simple patterns, and lin-
ear trends. Examples of such interactions include filtering, sorting, and other specific
formal queries. Any interactions that are not considered lower-level are higher-level.
The purpose of higher-level interactions is to “understand” the data by uncovering
features based on abstract or complex (e.g., nonlinear) data characterizations.

In this section, we refine the interaction groups further and define surface level,
parametric, and visual to parametric interactions. We will explain each interaction
within the context of Figure 2. Figure 2 was created by a VA tool called IN-SPIRE
(Pak Chung et al. 2004) and displays a “Galaxy View” of text data that were collected
for an intelligence analysis. In this spatialization, the data points, i.e., documents,
are represented by dots and clustered algorithmically by IN-SPIRE. The aim for IN-
SPIRE is to assist users in grouping similar documents together and displaying them
in an accessible fashion.

2.2.1 Surface level interactions

Surface level interactions are performed purely within the visual domain and are
contained in the lower-level class of interactions. Data rotations, reflections, and
translations, highlighting or editing observations, and zooming into a portion of the
visual space are each examples of surface level interactions. These interactions, while
capable of enhancing the understanding of complex data structures, do not necessarily
relate coherently to mathematical data structures. Within the context of Figure 2,
surface level interactions may include opening, closing, highlighting, and filtering
documents or repositioning clusters. For example, users may wish to drag the cluster
labeled by, “rain, snow, storm,” to the bottom right of the screen because they feel
that the cluster is unimportant. This adjustment is independent of the underlying
algorithm and committed purely for organizational purposes.
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Figure 2: A “galaxy view” of text data from an intelligence analysis that was created
by the IN-SPIRE suite of data visualizations. In-SPIRE uses complex mathematical
models in order to discern structure (e.g., clusters) in high-dimensional data.

2.2.2 Parametric Interactions

Parametric interactions are performed directly on the mathematical models that con-
trol visualizations. iPCA and XGvis are VA tools that permit parametric interactions;
iPCA allows users to interact directly with the principle eigenspace of the data, and
XGvis enables users to change either the analytical metric scaling method (measure
for distance between observations) or the local optimization scheme used to solve for
lower dimensional versions of high-dimensional observations. If IN-SPIRE had the
capability for a user to specify, say, the number of clusters in Figure 2, it would be
an example of a tool that also permits parametric interactions. The following is a
non-exhaustive list of other parametric interactions:

• In a cluster-based visualization, a user defines a cluster by specifying the re-
quired shape, minimum distance from other clusters, or minimum number of
elements.

• In a visualization of a network, a user adjusts the number of nodes and/or edges.

• In a tree-based visualizations, a user adjusts the probabilities that a branch
splits.
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2.2.3 Visual to Parametric Interactions (V2PI)

Surface level interactions are intuitive to commit to visualizations, but may lack
analytical interpretation because they are independent of the mathematical under-
pinnings of visualizations. Parametric interactions maintain the integrity of math-
ematical data characterizations, but can be difficult for analysts to implement. To
combine the ease of surface level interactions and the mathematical rigor of para-
metric interactions, we introduce V2PI, Visual to Parametric Interation. Tools that
enable V2PI accept and interpret surface level interactions as parametric interactions.

For example, one interpretation of the clustering structure in Figure 2 is that
observations within clusters are more correlated than observations between clusters.
Suppose a user chose to merge two neighboring clusters together. This surface level
action suggests that the algorithm, as parameterized, that drives the IN-SPIRE vi-
sualization under estimates the correlation between a subset or all observations. If
IN-SPIRE had V2PI capabilities, it would quantify and parametrize the merger to
adjust all or a subset of pairwise correlation measurements.

VA tools with V2PI capabilities enable users to make parametric changes to mod-
els that control visualizations while remaining in the visual data domain. Thus, the
users need not learn about the technicalities of characterizing data with mathematical
models. However, developers of V2PI VA tools, must know, in advance, how to in-
terpret, process, and parametrize various surface level interactions. Table 1 provides
a set of surface level interactions with parametric interpretations.

In Section 4, we discuss the machinery we use to process and parametrize some
surface level interactions. In the next section, however, we show how V2PI fits into
a bi-directional visualization pipeline that enhances sensemaking.

Table 1: A non-exhaustive list of V2PI. V2PI requires parametric interpretations of
surface level interactions.

Visualization Surface Level A Parametric
Interaction Interpretation

• Display of data in clusters Move two points from differ-
ent clusters to the same clus-
ter

Up weight the current clus-
tering role of the dimensions
in which the observations
are similar

• Two dimensional map of
data

Change the relative loca-
tions of points

Down weight the dimensions
that dictate the current map

• Display a network across
nodes/data points

Delete a connection between
nodes

Decrease the current corre-
lation between the nodes

• Classification tree diagram Delete a classification
branch

Reduce the current marginal
probability of belong to the
corresponding class

7



3 The Bi-directional Visualization Pipeline

The process of using data to update domain specific knowledge is referred to as
sensemaking (Lederberg 1989; Thomas and Cook 2005) and has been represented
in the form of a sensemaking process (Pirolli and Card 2005; Card et al. 1999).
In this process, analysts (i.e., experts, users, applied researchers, etc.) begin with
a knowledge base that they hope to either expand or adjust given the data. The
information discernible in data is often unclear to analysts. Thus, learning from data
may take place over time or a series iterations during which analysts explore the data
and assimilate what they observe with their knowledge bases. The iterative process
is the “sensemaking process” and stops when analysts believe that they have “made
sense” of the data.

The current method of building visualizations allows analysts to observe struc-
ture in data (e.g., clusters, tree diagrams, etc), but the static nature of the end result
(the data display) limits or, at best, slows the sensemaking process. The respon-
sibility of understanding and digesting what is revealed in displays lies fully in the
hands of users. Analysts are experts in their respective fields and often have mental
maps of data which include known or expected data features. When data visuali-
sations and mental data maps do not match, analysts have two choices to complete
the sensemaking process. First, they may learn about the underlying visualization-
generating algorithm and either adjust the data or the algorithm so that the visual-
ization changes. Second, they may make surface level interactions and remember (if
they can) how/why the visualisations fail to update their current knowledge base.

In this paper, we propose a bi-directional pipeline that generalizes a framework to
create dynamic visualizations that adjust to feedback provided by users. We display
our pipeline in Figure 3 and note that it is similar to Figure 1, except users U
may receive and distribute information. Specifically, Steps 1, 2, and 3 of the bi-
directional pipeline are similar to the original pipeline in Figure 1. Data D are fed
into a mathematical model M(θ) to construct a visualization V that is then assessed
by domain experts. In Step 4 analysts supply feedback F about the model and, in
Step 5, the feedback is used to update the model. Subsequently, the process repeats
to create new visualizations and enable more opportunities for feedback. Steps 2-5
continue until the user decides to stop the sensemaking process.

The mechanisms by which users communicate feedback in step 4 or update the
model in step 5 depend upon the resources available to the users and how they may
interact with the data. For example, users who understand the model, may internalize
their feedback and update the model directly using parametric interactions; or, users
who do not understand the model, may commit surface level interactions that, say, a
Statistician may interpret to change the model accordingly. Additionally, users who
have access to VA tools with V2PI capabilities may make surface level interactions in
step 4, that are automatically translated to parametric interactions in step 5 which
are worthy of updating the model. In the next section, we return to V2PI and
the procedures needed to both parameterize visual adjustments and update display-
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Figure 3: Human interactive pipeline into a mathematical model. Steps: 1) Fit a
mathematical model M to the data D, 2) provide data summaries for visualizations
V , 3) display visualizations for users U , 4,5) Users adjust the visualization to update
model M .

4 Visualizing with V2PI

In the previous section, we suggested a general framework for creating dynamic visu-
alisations. Now, we develop a specific instance of the framework, shown in Figure 4,
that relies on VA tools which offer V2PI capabilities. All of the steps are the same in
Figure 4 as they are in Figure 3, but we make the forms in which users inject feed-
back and the mechanisms for updating models explicit. For example, VA tools with
V2PI capabilities consider changes to visualizations as feedback for Step 4 of Figure
3 and paramaterize the feedback so that Step 5, updating M(θ), is straightforward.
Thus, in this section, we start by refining our concept of feedback F to reflect the fact
that there are two versions in V2PI: a visual or cognitive version and a parametrized
version. Additionally, we explain the ease of completing step 5, given parameterized
feedback.

4.1 Refining Feedback

When V2PI is an option, analysts use the visual space of the data to communicate
their feedback. In effect, they create a new visualization, V ′, which is an adjustment
to V . For this reason, Figure 4 draws an arrow from users U to V ′ and considers this
to be step 4 in the visualization process.

An adjustment to the visual space of data is a representation of a user’s cognitive
interpretation of the display and his/her judgements. Thus, we define Cognitive
Feedback, Fc, and show in Figure 4 that the result of step 4 (which is V ′) in the V2PI
bi-directional pipeline relies on the user cognitive feedback Fc.

VA tools with V2PI capabilities have the functionality to recognise the differences
between V and V ′ and interpret them quantitatively. The result of the interpretation
is a parameterized version of Fc that we represent as Fp.

.
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Figure 4: Bi-directional pipeline with V2PI.

4.2 Parameterizing Feedback

We represent the connection between Fp and M in Figure 4 by a dotted line because,
to the user, the parametrization of Fc is a “black box” procedure embedded in the
VA tools. The black box depends intricately upon both the mathematical model and
application at hand. Here, we explain the general procedure and refer readers to
Section 5 for examples.

As stated previously, interactive systems rely on mathematical formulations of
data which are viewable. These formulations include tunable parameter(s) θ which
we set initially by the data to create visualizations V . For example, we may set θ
to optimize a predetermined function that depends upon the data. If we were to
change θ for a data set, the visualization of the data set would change as well. Thus,
provided user adjustments to displays, we have a classic inverse problem. We solve
for θ such that the result provides the adjusted display. We denote the solution for θ
as θF ; Fp = θF .

We make the distinction between the original value for θ and the parameterized
feedback θF because we aim to have tunable parameters guided by users, not specified
by users. This means that we do not necessarily set θ to θF to update underlying
models of visualizations, and we allow users to inject feedback sequentially. In the
next section we discuss the sequential process for updating models and feedback.

4.3 Update Inferences

An important feature of the bi-directional pipeline is that users may iterate through
the visualizations steps multiple times. Suppose that we denote iterations through
the bi-directional pipeline in Figure 4 by i. For each iteration, we have θ(i) from step
1 and F

(i)
p = θ

(i)
F from step 4. To derive θ(i+1), we may consider a variety of methods.

We opt to take a weighted average between θ(i) and θ
(i)
F ,

θ(i+1) =
αθ

(i)
F + βθ(i)

α + β
, (1)

where α and β are measures that support the feedback and previous visualization,
respectively, and are chosen either by the user or by default mechanisms. These
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measures α and β change from iteration to iteration. Notice that if we normalize α
and β, we have ρ = α/(α+β) and 1−ρ = β/(α+β) that lay within [0, 1] and reflect the
proportion of θ(i+1) that generates from user feedback and the previous visualization
respectively. Users can observe how their feedback changes a visualization by slowly
transitioning p between 0 and 1. Selecting a good choice for ρ may require additional
expert judgment.

Other methods for updating θ and visualizations rely on formalizing display-
generating models probabilistically, where information in data is fully measurable
and quantifiable. In fact, House et al. (2010) show by example that the weighted av-
erage in Equation (1) is justifiable under a theoretically rigorous Bayesian sequential
updating scheme.

Note, that bi-directional pipeline does not have a formal measure of convergence
as users iterate and explore data. Rather, users choose to stop iterating when they
feel comfortable with their data exploration; e.g., when the data visualizations make
sense.

5 Three Examples

In this section, we provide three case studies which outline the steps in the bi-
directional pipeline and rely on V2PI. To visualize data in two dimensions, each
case study uses one of the following analytical procedures: PCA, MDS, and Isomap
(Tenenbaum and V. de Silva 2000). The use of the bi-directional pipeline and V2PI
is not limited to these procedures, and, under some conditions, these procedures may
provide similar data visualizations. Thus, all three methods may enable users to ex-
plore high-dimensional data similarly. Specifically, however, we use PCA in our first
example to uncover clusters in data and we use MDS and Isomap in the subsequent
examples to assess the relative difference between observations.

The following three subsections begin with a theoretical description of the pro-
cedures. Then, we discuss how and/or why a procedure may fail to reveal in a
visualization useful data structure. When failures occur, we propose fixing the prob-
lems by including expert judgement via V2PI. Thus, we describe how to include the
procedures in an interactive, bi-directional pipeline and we detail one method (for
each application) that we use to parameterize feedback. We also demonstrate how
visualizations may change given user interactions.

The purpose for this section is to demonstrate, by example, a proof of concept for
the bi-directional pipeline. We emphasize this point during a short discussion at the
conclusion of this section.

5.1 PCA

PCA is a deterministic analytical procedure that relies on an optimal linear projector
to reduce the dimension of a data set. Consider a center-shifted, p-dimensional data
set x that contains observations xi where i ∈ {1, ..., n}; i.e., x = {x1, ...,xn} and
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x is p × n. PCA relies on the solution for the q × p transformation matrix W that
maximizes the variance of z, where

z = W ′x. (2)

To solve for W , one option is to take the eigen-decomposition of the sample variance
(of x), S, such that S = UΛV ′, where U is p× p and contains the eigenvectors of S,
U = V , and Λ is a diagonal matrix that includes the ordered eigenvalues of S (e.g., the
[1,1] element in Λ contains the largest eigenvalue of S). Since the eigenvectors that
correspond to the two largest eigenvalues mark the top two directions that explain
the most amount of variance in x, W is assigned to the first two columns of U ,

W = U

 1 0
0 1
0p−2 0p−2

 ,
where 0p−2 represents a (p− 2)× 1 vector of zeros.

PCA, in its current form, has the potential to miss features in data because of
its strict variance criteria and explicit assignment of W . Informative data structures
may not correlate with variance and we cannot incorporate expert judgement in
PCA to guide the specification of W . For example, if hidden clusters exist in a
high-dimensional data set and the within-cluster variance is larger than the between-
cluster variance, the clusters will not appear in the variance-based PCA projection, z.
Additionally, we cannot adjustW despite knowing the presence and/or characteristics
of the clusters.

Now, we transform PCA from a deterministic, dimension reduction algorithm
to an expert guided, structure-discovering projection method. Based on the bi-
directional pipeline in Section 4, experts may include their judgements or hypotheses
about the data in PCA via V2PI. We use the bi-directional pipeline steps described
in Sections 3 and 4 to guide our discussion of PCA with V2PI.

5.1.1 PCA with V2PI

We develop the use of V2PI in PCA within the context of a simulated example and
assume the roles of both analytical and applied experts. To avoid confusion however,
we reserve the word “expert” to reference applied experts only and explain interactive
PCA from the point of view of analytical experts, e.g., Mathematicians, Statisticians,
or Computer Scientists.

We simulated a p = 3 dimensional data set x that contains n = 300 observations
and three clusters, as shown in Figure 5a. Since we simulated the data, we have
access to detailed information concerning the cluster assignments of each observation.
Although, for the sake of the exercise, we reveal the cluster assignments to experts
for only 20 of the 300 observations; ten observations were selected at random from
clusters 1 and 2 each. The goal of this section is to develop an approach that will
enable experts to visualize the data using PCA, include what they know about the
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selected observations in the visualization, and make sense of the data concerning both
the number of clusters and the cluster assignments for the remaining observations.

We start by using PCA for Steps 1-3 in Figure 4. We derive W in accordance
with Equation (2) and display z in Figure 5b. For Step 4, experts participate in
the data analysis by assessing and/or injecting feedback about the projection. In this
case, experts will certainly want to inject feedback because Figure 5b does not display
any structure and the 20 observations about which experts know the classifications
do not cluster well.

Typical cluster analyses of data aim to group observations together that are sim-
ilar, and in visualizations, an intuitive measure of observation similarity is distance.
Thus, when experts assess a data display, similar observations should appear close in
proximity relative to those that differ. However, data projectors are not necessarily
distance preserving operators, so projection-based visualizations may fail to depict
pairwise relationships, as defined by distance. In such cases (e.g., Figure 5b), experts
may adjust the distance between a pair of observations according to their beliefs.
In this example, experts may choose to drag two observations from the same cluster
that appear far from each each other together (e.g., the observations marked by ‘×’ in
Figure 5b). Or, experts may choose to drag two observations from different clusters
that seem close in proximity apart (e.g., the observations marked by ‘+’ in Figure
5b). We refer to the result of dragging observations in a display as cognitive feedback,
Fc (Section 4).

An important point to make is that Fc is based on the knowledge of pairwise
relationships between observations and not on global assessments of the dimensions
nor data structures. This means that we do not expect experts to have reliable
judgments concerning, say, the dimensions in the data that define clusters; the number
of clusters in the data set; nor the size of data clusters. We only expect experts to
understand the data and whether visualizations reflect their pariwise, observation-
level judgements accurately.

Before we complete step 5, we must parameterize Fc, the separation or consolida-
tion of points. To do so, we keep step 5 in mind in that we recognize that adjustments
to a display indicate that we need to update aspects of the data that control the degree
to which dimensions are portrayed in the display. In PCA projections, this means
that we need to re-weight the variances of the dimensions; dimensions represented
well or poorly in PCA projections are those with high and low variances respectively.
Thus, we derive a distance matrix as Fp that is both indicative of the observation
adjustments and similar in nature to a data covariance matrix; we denote the matrix
by SF . The matrix SF is p × p and semi-definite. We describe one procedure for
deriving SF from Fc in Appendix A.

5.1.2 Adjusting the Sample Covariance

The final step in V2PI, bi-directional pipeline, Step 5, is to update the mathematical
procedure the creates the visualization. To do so, we exploit the variance criterion
of PCA and adjust the data covariance matrix (used to derive W ) by SF . Let S(1)
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Figure 5: Figure a) displays the simulated data in three dimensions. Observations in
red, green, and blue denote groups 1, 2, and 3 respectively. Figure b) displays the
PCA projection of the simulated data with the 20 observations that were selected
at random to assist experts in adjusting the display. Again, red and green points
represent observations in groups 1 and 2 respectively. Figures c) and d) show updated
displays after an adjustment to Figure b). Figure c) is the result of moving points
marked by ‘+’ in Figure b) apart and Figure d) is the result of moving the points
marked by ‘×’ in Figure b) together. Notice that both adjusted visualizations capture
the clustering structure.
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represent the adjusted variance which we define as

S(1) = ρSF + (1− ρ)S

where ρ (ρ ∈ [0, 1]) is provided by the expert and defined in Equation (1). When
observations are adjusted in a display, we request that experts provide a measure of
their own certainty for the adjustment. This measure tells us the degree to which we
should weight their adjustment relative to the current data projection. The weight
ρ should be high (close to one) when experts feel strongly about their adjustments
and close to zero otherwise. Regardless of the value for ρ, the adjusted matrix S(1)

is a semi-definite matrix because both SF and S are semi-definite. In turn, we can
re-apply PCA machinery and update a visualization by deriving a new W based on
S(1). The result is a new set of coordinates for z to display.

We provide two adjusted PCA visualizations in Figure 5. Figures 5c and 5d are
based on the cognitive feedback that two observations were dragged together and
apart in step 4, respectively. Notice that regardless of the action taken for Fc, the
adjusted figures display three clusters. From PCA with V2PI, we learned 1) that
the data include three, not only two, clusters and 2) the cluster-assignments of every
observation simultaneously.

5.2 MDS

In a classical MDS scheme (Torgerson 1958; Kruskal and Wish 1978), the objective
is to preserve pairwise distances between observations in low-dimensional representa-
tions of high-dimensional data. Thus, we can learn about high-dimensional differences
between observations by viewing their relative distances in two dimensional maps.

Given two observations in a high-dimensional space (xi,xj), the MDS procedure
finds points in a lower dimensional latent space (zi, zj) such that

min
z1,...,zn

∑
i<j≤n

∣∣∣‖zi − zj‖ − δ(x)i,j

∣∣∣ , (3)

where xi,xi ∈ Rp, zi, zj ∈ Rq, q << p, and δ
(x)
i,j = ‖xi − xj‖ is a predefined norm

of the distance between xi and xj . Equation (3) is typically referred to as a stress
function, and the resolved minimum is called the stress. The norms used in MDS will
influence the solution to the problem, if the distances themselves are sensitive to the
norm under which they are computed. For our purposes, we choose to work in the
L2 norm

δ
(x)
i,j =

√∑
d

(xid − xjd)2), (4)

where xid and xjd represent the dth element in observations xi and xj respectively.
This choice is arbitrary and can be adjusted easily to accommodate other norms. The
pairwise norms of z, e.g., ‖zi − zj‖, are computed similarly to δ

(x)
i,j .
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The solution to Equation (3) provides a reasonable q-dimensional representation of
x because the low-dimensional, pairwise distances between observations approximates
the corresponding pairwise, high-dimensional distances. Albeit, the solution for z is
invariant to rotations and reflections, and the scale of z can be arbitrary, but analysts
can still learn from MDS about how observations relate to one another by viewing
observational proximities. Observations close in proximity relate more to one another
than those that are distant.

Weighted Multi Dimensional Scaling (WMDS) (Carroll and Chang 1970; Schiff-
man et al. 1981) is similar in spirit to MDS, however, the features or dimensions of
the high-dimensional space are weighted in order to express their relevance in the q-
space. Let w represent a p−vector of feature weights, w = {w1, ..., wp}. We compute
weighted distances by

δ
(w)
i,j =

√√√√ p∑
d=1

wd(xid − xjd)2,

where
∑

dwd = 1. To solve for z, we simply replace replace δ(x) with δ(w) in Equation
(3). The solutions are identical when wi = wj for all i, j ∈ {1, ..., p}.

The weights, while not immediately estimable, give users a way to decrease or
increase the importance particular features have in deriving z and visualizing useful
structure in data. In the next section, we demonstrate how to include feedback from
users in WMDS to guide the specification for w.

5.2.1 WMDS with V2PI

Consider a case where a user encounters high-dimensional data, where only a small
subset of the dimensions contain useful information. We will show by example how
the WMDS method with injected human knowledge via V2PI, will be able to identify
the useful dimensions and reveal informative visualizations.

Let x represent a six dimensional data set. The first two dimensions represent
the longitude and latitude for 19 US cities (Atlanta, Chicago, Denver, Houston, LA,
Miami, NYC, San Francisco, Seattle, Washington D.C., Reno, Tucson, Boston, De-
troit, Helena, Atlantic City, Charlotte, Knoxville, and Blacksburg). The remaining
four dimensions represent random noise; the dimensions consist of four samples of 19
from a Gaussian distribution that is centered at zero and scaled to a degree that is
comparable to the variance observed in the longitude and latitude vectors. In this
data set x, only two of the six features contain real information and the remaining
features are essentially junk. Our goal is to visualize the data in a geographically
sensible manner.

By applying the WMDS procedure, with wi = 1/6 for i ∈ {1, ..., 6}, we obtain
a set of two-dimensional latent feature vectors. Since the longitude and latitude are
contained in the data set, we would hope that the user would be able to assess a
view of the data that is consistent with the US map. Although, even after rescaling
the latent features and performing a Mercator projection (Pearson 1990) onto the US
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map, the WMDS solution for visualizing the data is less than ideal. We see from
Figure 6 that the latent features are inconsistent with the true spatial coordinates of
the cities; e.g., Denver appears located in the Gulf of Mexico. The problem is that
the four miscellaneous dimensions are masking the two dimensions that are consistent
with true spatial proximities of cities.

Figure 6 constitutes steps 1-3 of the bi-directional pipeline for the six dimensional
data set. Without expert judgement, no automated algorithm has the capacity to dif-

Figure 6: The automated MDS solution for the 6-dimensional data set that includes
latitude, longitude, and four noisy dimensions. The solution was rotated and scaled
to overlay the US map.

ferentiate the useful from the un-useful features. Step 4 of the bi-directional pipeline
process prompts users for cognitive feedback about visualizations. In this example,
users may select a small subset of visualized points and rearrange them so that they
match their mental maps of the United States. Figure 7 shows a possible reconfig-
uration of six cities, Seattle (Sea), San Fransisco (SF), Los Angeles (LA), Houston
(Hou), Miami (Mia), and New York City (NYC). We denote the new coordinates
for the adjusted cities as z̃. An important point to make is that the bi-directional
pipeline does not require users to have comprehensive nor perfect judgements about
all of the data. Hence, z̃ need not be of the same dimension of z nor contain the true
coordinates of the selected cities.

The subset z̃ represents cognitive feedback for a user and contains information
concerning how we should re-weight the importance of the dimensions. We now
explain how we parameterize z̃ in the form of a weight vector and complete one
iteration of the bi-directional pipeline.
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Figure 7: An example of cognitive feedback for WMDS with V2PI.

5.2.2 Updating Weights

To update the weights w = (w1, . . . , w6), we start by calculating a distance matrix
for z̃ which we denote by δ(z̃). If k observations were adjusted, this matrix is K ×K,
where K =

(
k
2

)
. We derive each element in δ(z̃) using the same L2 formulation that

is provided in Equation (4).
Next, we select the observations that were manipulated in the visualization from

the original data matrix x and solve for a new w based on the difference between cor-
responding pairs of high dimensional weighted norms and elements of δ(z̃). Explicitly,
we solve for w such that

∑
dwd = 1 and

min
w1,...,w6

∑
i<j≤K

∣∣∣∣∣∣
√√√√ 6∑

d=1

wd(x(i)d − x(j)d)2 − δ(z̃)i,j

∣∣∣∣∣∣ , (5)

where x(i)d represents the dth element in the observation of x that maps to z̃i in the
adjusted visualization. The solution to Equation (5) is easily found using a gradient
search method (see Mordecai 1976), where the constraint

∑
dwd = 1 is satisfied. We

denote the vector of new weights by wF ; Fp = wF .
For our example, we found that wF = (0.465, 0.5154, 0.0079, 0, 0.0002, 0). Since

we rescaled the data before computing wF so that each dimension has a common
variance, the elements of wF are on comparable scales. Thus, the solution for wF

suggests that only the first two features (latitude and longitude) are important and
explain the user’s mental model or Figure 7.

5.2.3 Updating the visual display

Provided wF , we complete Step 5 in Figure 4 and update z to reconfigure the data
visualization. We find the configuration by minimizing the convex combination of
stress functions:

min
z1,...,zn

∑
i<j≤n

ρ
∣∣∣‖zi − zj‖ − δ(wF )

i,j

∣∣∣+ (1− ρ)
∣∣∣‖zi − zj‖ − δ(w)

i,j

∣∣∣ , (6)
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where ρ reflects the degree of certainty the users wish to assign to their feedback. As
defined in Section 4.3, 0 ≤ ρ ≤ 1.

For our example, we apply Equation (6) (given wF from Section 5.2.2 and ρ = 1)
and obtain a new set of latent coordinates z. After re-scaling and rotating z, we
overlay z and the US map in Figure 8. This figure includes both our estimate and
the true city coordinates. Notice that the new visualization approximates the true
map better than the original visualization in Figure 6. Additionally, the layout of
the observations in Figure 7 does not match those in the new visualization. This
demonstrates that our procedure is robust to improperly scaled cognitive feedback.

Figure 8: The WMDS solution after V2PI. The solution points are marked by starts
(∗) and the true locations of the cities are marked by open circles (◦). In comparison
to Figure 6, the solution using V2PI is more similar to the true map.

Our example shows that while WMDS is useful for summarizing data, it may
require human guidance to provide useful spatial visualizations. As the dimension of
x increases, we expect the need for guidance from users to increase.

5.3 Isomap

While both PCA and MDS are simple and efficient methods for data visualization,
such methods do not approximate nonlinear data structures well. To enable ana-
lysts to discover such structures, we consider a data characterization procedure called
Isomap (Tenenbaum and V. de Silva 2000). Isomap is used for a variety of applica-
tions, including face or pattern recognition and bioinformatics (e.g., Jafri and Arabnia
2009; Nilsson et al. 2004), and estimates low dimensional, nonlinear manifolds that
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Figure 9: Figure a) represents a high dimension visualization with a low-dimensional
manifold. Figure b) display the low-dimensional manifold (i.e., line).

may be embedded in high dimensional data sets. For example, the coil in Figure 9a)
contains a one dimensional manifold that is nonlinear in two dimensions. When the
manifold is unraveled however, it is a simple line, as shown in Figure 9b). If we were
to use Isomap for this example, Isomap would estimate the manifold in Figure 9b).
In some contexts, we say that 9b) “is an Isomap of the manifold” within the coil.

Similar to MDS (Section 5.2), the objective for Isomap is to learn about the
differences between observations by observing their relative distances on a map of
three or fewer dimensions. In the map, Isomap tries to preserve all pairwise, high
dimensional geodesic distances between observations. The geodesic distance between
two observations is a measure of the distance between observations along the manifold.
For example, the euclidean distance between the beginning and end of the coil in
Figure 9a) is approximately eight units, but the distance between the same points
along the manifold, i.e., the geodesic distance, is over 200 units. Figure 9b) preserves
the geodesic distance between any pair of observations in the two dimensional space;
e.g., between the beginning and end points of the coil.

The challenge is that to measure geodesic distances, an understanding of the
manifold - the very structure we are trying to estimate - is needed. Thus, Isomap is a
three step procedure that uses estimates for local manifolds within high dimensional
spaces to learn global manifolds. The procedure starts by defining localities and
subsetting the data. The idea is that if the data are subsetted so that every subset is
contained fully on the manifold and approximately linear, the process for estimating
all pairwise geodesic distances decomposes to 1) measuring the euclidean distances
between pairs within each subset and 2) adding appropriate distances together across
subsets. There are a variety of ways to determine subsets in high dimensional data.
For our purposes, we use a nearest neighbor approach. For example, let xi represent
an observation in the high dimensional space where xi is p× 1 and i ∈ {1, ..., n}. We
define a subset or neighborhood Nk(xi) by selecting the k nearest observations to xi in
euclidean distance. We segment the entire dataset by the overlapping neighborhoods
around each data point. We refer to the boundaries marking the segmented data
space as the “graph structure” of the data.
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The next step toward estimating an Isomap is to calculate the pairwise euclidean
distances within each subset and store a matrix that contains all pairwise geodesic
distance approximations. Let dhe (xi,xj) represent the euclidean distance between
observations i and j within neighborhood h. If observations i and j are not within
neighborhood h, we set dhe (xi,xj) =∞,

dhe (xi,xj) =

{
dhe (xi,xj), if xi,xj ∈ neighborhood h
∞, if xi,xj /∈ neighborhood h

Note, dhe (xi,xj) = dh
′

e (xi,xj) if observations i and j are contained in both neighbor-
hoods h and h′. We store all pairwise, neighborhood euclidean distances in an n× n
matrix De, where for all i, j ∈ {1, ..., n} and h ∈ {1, ..., H}

De[i, j] = min(d1
e(xi,xj), ..., d

H
e (xi,xj),∞).

Each pair of observations within the neighborhoods mark an edge that can be
traversed to estimate geodesic distances between observations. Let d̂g(xl,xm) rep-
resent our estimate for the geodesic distance between observations l and m. The
measure d̂g(xl,xm) equals the length of all the edges traversed along the shortest
path between observations l and m,

d̂g(xl,xm) =
∑

h,i,j∈Pl,m

dhe (xi,xj),

where Pl,m denotes the set of edges and neighborhoods that define the shortest path
between observations l and m. We use algorithms including Floyd’s algorithm or
Dijkstra’s algorithm (for sparse neighborhood structures) to learn Pl,m and obtain

estimates d̂g(xl,xm) for all pairs (l,m) (Kumar et al. 1994). We refer to the distance
traveled on an edge (i.e., between two points on the shortest path) selected by an
algorithm as a “hop.” Let Dg represent an n × n distance matrix where Dg[l,m] =

d̂g(xl,xm). Note, Dg[l,m] = De[l,m] when observations l and m are within one
neighborhood.

The final step in the Isomap procedure is to apply classical MDS using the distance
matrix Dg. Similar to Equation (3), let zi represent the lower dimensional analog
of observation xi. We solve for each zi and zj that preserves the geodesic distance
between observations xi and xj for all i, j ∈ {1, ..., n}.

5.3.1 Tunable Parameters in Isomap

The Isomap is, by definition, a deterministic procedure. Although, depending upon
characteristics of the data it can be sensitive to some specifications, including the
specification for k and the measure (e.g., euclidean distance) used to assess pairwise
observational distances within neighborhoods.

Tenenbaum and V. de Silva (2000) show, that for a uniform and sufficiently high
point density on the manifold in the high dimensional spaces, there exists a k such
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that the shortest path approaches the true geodesic distance. However, in practice,
it can be hard to select the best k which avoids ‘short-circuiting’ the manifold; e.g.,
skipping off the manifold and falsely assuming that two points are close in geodesic
distance when they are not. The number k is sensitive to both the manifold geometry
or shape and the density of the data points on the manifold.

For example, one approach for avoiding the problem of short-circuiting may be
to choose an arbitrarily small k. Although, if the data are sparse in the high dimen-
sional space, the local detection of the manifold becomes increasingly difficult, if not,
impossible. Estimating a manifold with only a few points is analogous to estimating
the radius for the curvature of an arc that is marked by only a few points. Addition-
ally, with sparse data, the k nearest neighbors subroutine can create disjoint graph
structures. This means that two observations in disjoint neighborhoods may not have
a continuous path between them.

When the high dimensional data are noisy, an Isomap will likely short-circuit the
manifold, regardless of the specification for k. To correct the Isomap, it may help
to adjust the measure used to assemble De that stores all pairwise, neighborhood
distances between observations. Since algorithms, such as Floyd’s or Dijkstra’s, select
edges to traverse between two observations based on De, a change in De may steer
the algorithms to select new paths. In particular, if a new measure increases the
magnitude for the length of edges that short circuit the manifold, the algorithms will
likely avoid these edges when defining the shortest path between observations. In
the next section we discuss how to use feedback from experts to scale the lengths of
short-circuiting edges.

5.3.2 Isomap with V2PI

Similar to the other methods, we use an example to explain Isomap with V2PI. We
simulated n = 1000 observations in the form of a ‘Swiss roll’ as shown in Figure 10a).
Our goal is to learn the planar manifold embedded in the Swiss roll using Isomap with
V2PI. Note that the observations in Figure 10a) are color-coded so that they change
along the manifold according to the rainbow (ROYGBIV). A successful estimate of
the manifold will maintain the same sequence of colors.

To implement Steps 1-3 as defined in Section 3, we set the parameter k to 15
and create the graph structure of the Swiss roll in Figure 10b) to produce a data
visualization in Figure 11a). We set k = 15 because it has the potential to be small
enough (k = 15 is less than 2% of n = 1000) to avoid short-circuiting the manifold
and large enough to avoid gaps in the graph structure. We determine the shortest
path between observations by the Dijkstra’s algorithm. We can see in Figure 11a)
that the Isomap procedure failed to estimate a simple, planar structure of the data.

Similar to PCA and WMDS with V2PI, users have the option to express their
cognitive feedback by sliding observation(s) together or apart with a measure ρ (Sec-
tion 4.3) of their confidence for the move. Moving observations together suggests
that analysts believe that the observations are “well connected” or adjacent on the
manifold, and moving observations apart suggests otherwise.
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a) b)

Figure 10: Figure a) displays the simulated Swiss roll data in three dimensions. Figure
b) displays the graph structure based on k = 15 nearest neighbors. Note the short
circuited edges.

For explanatory reasons, suppose a user has the domain expertise to believe
strongly that observations l and m which appear close in proximity in Figure 11a) are
actually different in the high dimensional space and distant from one another on the
manifold. This user completes Step 4 in the bi-directional visualization pipeline by
moving observations l and m apart, as depicted in Figure 11a), and setting ρ = 0.90.
For this case, we define Fc to represent the specification for ρ and the choice to move
observations apart.

Before moving to Step 5, we parameterize Fc. As mentioned in Section 5.3.1, k
and De are tunable components in the Isomap procedure. Thus, we could interpret
Fc as a specification for k or as an adjustment to De. We choose the latter. To
paramaterize Fc, we derive a new, neighborhood distance matrix which we denote by
DF ; Fp = DF . When users suggest that observations should appear farther apart in
the visualizations than they appear, the Isomap procedure has underestimated the
geodesic distance between the observations. This means that either the Floyd’s or
Dijkstra’s (in this case, Dijkstra’s) algorithm has selected a path Pl,m based on De

which includes one or more edges that short circuit the manifold.
The first step in deriving DF is to identify the short circuiting edge(s) in Pl,m. For

these edges and all those in the structure graph with comparable lengths, we scale
the euclidean distances by α where α ≥ 1,

DF [i, j] =

{
αDe[i, j] if edge xi,xj * manifold
De[i, j] if edge xi,xj ⊆ manifold

In Appendix B, we describe how we identity edges to scale and assign α. A notable
feature in our development of α is that if there is evidence in the data that suggests
a user is incorrect (e.g., a user has dragged two observations apart that are, in deed,
adjacent on the manifold), we set α ≈ 1. Thus, Isomap with V2PI enables experts to
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a) b)

Figure 11: Figure a) displays the Isomap based on k = 15 nearest neighbors as seen
by the user. User selected data points in color with arrows denoting the cognitive
feedback that the colored points should be farther apart from each other. Figure b)
displays the Isomap based on k = 15 nearest neighbors and after the user feedback is
incorporated in the algorithm.

guide the procedure to reveal structure while controlling experts from making poor
judgements.

5.3.3 Updating Neighborhood Distance Matrix

As described in Section 4.3 and exemplified in Sections 5.1.2 and 5.2.2, we update the
neighborhood distance matrix that underlies Figure 11 by taking a weighted average
of De and DF based on ρ. Let De

(1) represent an adjusted version of De. For Step 5,
we define De

(1) as

De
(1) = (1− ρ)De + ρDF . (7)

Figure 11b) displays a new visualization based on De
(1). Although there is a slight

“fraying” of the observations, the Isomap appears generally as a simple plane. Ad-
ditionally, we validate the use of V2PI by revealing the observation colors in Figure
11b). The colors on the Isomap progress in the order of ROYGBIV.

5.4 Discussion for Examples

In Sections 5.1–5.3, we discussed three common methods to assess and visualize data.
In each example, constraints in the mathematical data characterization procedures
limited the usefulness of initial data displays because they did not reveal expected
nor meaningful structure. In turn, we incorporated the mathematical procedures
into the bi-directional visualization pipeline to receive guidance from users via V2PI.
The V2PI mechanisms that we presented may be adjusted or altered for different
applications. For instance, in each example we prescribed specifically that users move
either two (Sections 5.1 and 5.3) or six (Section 5.2) observations to communicate
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expert judgement. Different VA tool developers might enable users to move any
number of observations. For complex applications, we suspect that an optimal number
of observations to move may not exist because the process of exploring and learning
from data is expert specific. Different users may benefit more from moving, say, two
observations than moving several; and visa verse for other users.

Additionally, VA tool developers may enable users to inject cognitive feedback
in forms other than what we present; i.e., moving observations. For example, users
may highlight or filter data in displays as forms of injecting cognitive feedback. The
only requirement for forms of cognitive feedback is that developers have the means
or software in place to parameterize it accurately. This means that in order for
developers to be prepared, they must predict how users may naturally include their
judgments in visualizations. Future work in V2PI will entail extensive human studies
to assess intuitive ways in which users may adjust visualizations.

We conclude this section, by reminding readers that bi-directional pipelines do
not include formal measures for convergence. Users may accept and distribute infor-
mation about data until they feel that they have completed the sensemaking process.
One concern is that users may inject judgements that will warp real data structures
and mislead users. For some mathematical procedures, the concern is valid and VA
tool developers must be aware. Although, for other procedures, the concern is un-
warranted. For example, feedback from users for PCA via V2PI does not change
the data. Rather, the feedback changes the direction in which data are projected for
visualization.

6 Conclusion

In this paper, we introduced two fundamental concepts: the bi-directional visualiza-
tion pipeline and V2PI. When we combine the two, we have a visualization scheme
that enables experts to visualize data and either correct visual inaccuracies or explore
potential inaccuracies without understanding the display-generating models. Since
users do not need to understand the mathematical underpinnings of visualizations,
they are free to build upon their knowledge base and merge their expertise with the
information in data instantly. That is, they have an opportunity to learn and interact
with the data directly in the visual domain - the domain in which experts host their
expertise and intuition.

An important feature of the bi-directional pipeline is that users receive and dis-
tribute information; expert judgement and standard data sets are considered to be
valid components in quantitative analyses of complex applications. In Bayesian terms,
this means that we combine subjective information (communicated via the visualiza-
tion) with the likelihood to formulate inference. In layman terms, this means that we
use both “soft” and “hard” data to update visualisations and construct knowledge.
Since we consider feedback to be reliable, useful information worthy of analysis, it is
effectively a form of “data” that are collected from experts to learn about the appli-
cation at hand. Since these data are subject to human biases, we add the qualifier
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“soft”. Hard data, on the other hand, consists of observations collected formally in
a traditional manner for an analysis. Although, hard data sets are still susceptible
to biases, even when assumed to contain objective, application specific information.
Steps 1 and 2 of the first iteration in the bi-directional visualization scheme rely on
hard data.

The successful combination of hard and soft data relies upon the VA tool and
mechanisms that support V2PI. The best VA tools are intuitive and accessible to
users with varying levels of expertise. In this paper, we did not mention aesthetic
aspects of VA tools that need to be considered for human cognitive purposes. Rather,
we discussed the mechanics needed to enable tools to allow V2PI. Additionally, VA
tool developers must predict the forms in which users may inject feedback so that
the machinery is in place to parameterize the feedback and update the visualization.
This is a complex task upon which we did not elaborate thoroughly. The act of
dragging observations together or apart is only one of many forms in which users
may communicate their judgements about visualizations and the underlying models.
The best tools will enable multiple forms of feedback injection that are natural and
intuitive to users.

Finally, from the perspective of a model or algorithm developer, the methods
to update models in this paper may appear ad-hoc. For example, the choice to
take the weighted average between data-driven parameter values and feedback might
seem arbitrary. Although, we show in House et al. (2010) that if we were to take
a fully probabilistic approach to summarize data for visualizations, the weighted
average can be justified theoretically for some applications. For other applications,
the probabilistic approach may prove that other forms of incorporating feedback into
analyses is adequate.

A Paramaterizing Feedback for PCA

Since we can either move observations together or apart, we define distances matrices
for each move-type. Let Σa and Σt represent the distance matrices for the apart
and together move-types respectively. We then take a weighted average of each to
calculate the Fp,

Fp = νΣa + (1− ν)Σt,

where ν ∈ [0, 1].
The derivations of ν, Σa, and Σt are deterministic functions of numerical sum-

maries from the cognitive feedback.

Derivation of ν: This parameter reflects the degree to which experts move
observations together or apart. Thus, to determine ν we calculate the ratio
of the distances between observations j and k in the two dimensional display
before and after the injection of cognitive feedback:

F̃ =
||z̃j − z̃k||2
||zj − zk||2

,
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where z· and z̃· reference respectively the before and after coordinates of ob-
servations j and k. When observations are consolidated, F̃ is less than one and
greater than one otherwise. Since ν ∈ [0, 1], we use tan−1(·) to transform F̃
accordingly; ν = 2tan−1(F̃ )/π.

Derivation of Σa: When observations are separated, we learn that the dimen-
sions reflected poorly in the display need to be up-weighted. Thus, we start by
quantifying the degree to which dimensions are unexplained in the visualization.
Let d represent the p× 1 raw discrepancy vector between observations j and k,

d = |xj − xk| (8)

and dl refer to the observation discrepancy in dimension l. We define the pro-
jected discrepancy as

d(p) = |W (eldl)|

where el is the lth unit vector. The only nonzero element in d(p) is the lth

element, d
(p)
l . If the raw and projected discrepancies are similar (or different)

in dimension l, the visualization characterizes dimension l well (or poorly). To
quantify this relationship, we choose to calculate the percent of unexplained
discrepancy for each dimension l, Ul = (1− d(p)l /dl), and define d

(u)
l as

d
(u)
l = dlUl.

Collectively, we define the vector of unexplained discrepancies as d(u) = [d
(u)
1 , ..., d

(u)
p ].

To define the projection plane that is reflective of the injected feedback, we
need two perpendicular vectors which we denote as κ(u) and κ(o). We define
κ(u) based on d(u) where κ(u) is the normalized sum of d and d(u),

κ(u) =
d+ d(u)

||d+ d(u)||2
.

This vector, in comparison to the first principal component, has the potential
to double the weight of under-represented dimensions in the visualisation. For
example, if two dimensions have similar residual variances, this vector will add
more weight to directions that were not previously explored in the contested
visualization. To define the other vector, κ(o), we select the direction that is
both perpendicular to κ(u) and explains the most amount of variance in x.

The last step is to combine vectors κ(u) and κ(o) and determine Σa. To do so,
we take the outer-produce of κ(u) and κ(o),

Σa = [κ(u) κ(o)][κ(u) κ(o)]′.

The spectral decomposition of Σa includes, by definition, eigenvectors κ(u) and
κ(o) with corresponding eigenvalues of one.

27



Derivation of Σt: When observations are consolidated, we learn explicitly that,
in an ideal display of the data, the adjusted observations should appear close to-
gether. One way to obtain an ideal display is to project the data in the direction
defined d in Equation (8). This projection will map the adjusted observations
to the exact same coordinates. To determine the vectors that define the pro-
jected plane, we solve for vectors κ(1) and κ(2) that are both perpendicular to
one another and d. Thus, the solution to the following system of equations
determines a useful projection plane that is reflective of observations j and k
together:

0 = d′κ(1) = d′κ(2) = κ(1)′κ(2).

B Paramaterizing Feedback for Isomap

Tunable components in Isomap include the neighborhood size k and the neighborhood-
distance matrix De. We opt to do the latter.

Users have the option to provide their cognitive feedback by moving one or more
points apart. Suppose a user opted to drag a set of points in a visualization which
we denote as Sa away from another set which we denote as Sb. Within Section 5.3.2,
the sets Sa and Sb each contain only one observation; i.e., Sa = xl and Sb = xm. Let
na and nb represent the cardinality of each set respectively.

When users inject the cognitive feedback that observations should appear farther
apart in the visualizations than they appear, the Isomap has underestimated the
geodesic distance between the observations. This means that the algorithm used to
select the shortest paths between Sa and Sb has selected one or more edges within
the paths that short circuit the manifold. Thus, we must interpret the feedback so
that we a) identify the short circuiting edge(s) and b) transform (i.e., lengthen) the
identified edges. The point is to increase the measure for the lengths of the short
circuiting edges so that they seem long relative to all neighboring edges. In turn, any
algorithm that identifies the shortest paths between observations will avoid the short
circuiting edge(s) (because they are long). We store both the scaled and non-scaled
edge lengths in an n× n matrix which we denote as DF .

Identify the short circuiting edge(s). We start by identifying the shortest
paths PSa,Sb

between Sa and Sb; there are nanb paths in PSa,Sb
. Under a sufficiently

high and uniform data density on the manifold, the largest hop across all nanb paths
corresponds likely to a short circuited edge between set Sa and Sb. Thus, we flag the
largest edge and denote it’s length by dmaxe .

Re-scale the measure of the short circuiting edge(s). For this step, we
aim to rescale every edge in De that is of a comparable length to dmaxe . To determine
comparability, we assign a weight to every edge that depends upon it’s current length
and the average edge length in De. Let w(xi,xj) represent the weight we assign to
the edge the connects xi and xj , and let davge represent the average hop length in De.

28



Figure 12: Sigmoid scaling function for hop distances for average hop distance equal
to 3 and scaling rate, γ = 2, 3 and 4. Average hop distance is always scaled to 0.5.

We use the following sigmoid function to define w(xi,xj),

w(xi,xj) = 1− 1

1 + e−γ(d
avg

e −dh

e (xi,xj))
(9)

where γ controls the rate at which we penalize large deviations from davge . This
parameter is selected by the VA tool developer and depends upon the sparsity of
the data graph structure (e.g., Figure 10b). As a rule of thumb, dense graphs need
small values for γ and sparse graphs need high values for γ. Figure 12 shows the
impact values for γ may have on w(xi,xj). The specific function we chose to define
w(xi,xj) is arbitrary with the exception that it is has useful properties including,
w(xi,xj) ∈ [0, 1] and w(xi,xj) = 0.5 when dhe (xi,xj) = davge . Also, small and large
edges have weights near zero and one respectively.

Let wsd represent the empirical standard deviation across all weights, and let wmax

represent the weight that we assign the edge with distance dmaxe . We scale the lengths
for all edges with weights greater or equal to wmax − wsd. If we denote the scaled
distance between observations by dhs (xi,xj), we have

dhs (xi,xj) =

{
αdhe (xi,xj) if w(xi,xj) ≥ wmax − wsd

dhe (xi,xj) otherwise,
(10)

where

α =

(
1 +

log(M)wmax

B

)B
, (11)

and M and B control respectively the magnitude of α and the extent to which α
mimics an exponential increase (ew

max
= limB →∞ (1 + wmax

B )B).
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Similar to Equation (9), Equation (11) is also arbitrary with the exception that it
controls erroneous cognitive feedback. For example, suppose users provide feedback
that is in conflict with the true manifold; e.g., users move observations apart in a
visualization when they are actually adjacent on the manifold. Edges of adjacent
points on the manifold will be smaller than average so that wmax ≈ 0. In turn, α ≈ 1
and dhs (xi,xj) ≈ dhe (xi,xj) for all edges.

Define DF We represent the parameterized feedback Fp in the form of an n× n
distance matrix, DF where

DF [i, j] = dhs (xi,xj)

. This matrix equals De for every element excluding those with weights greater than
or equal to wmax − wsd.
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