
Topology and Data

Gunnar Carlsson ∗

Department of Mathematics, Stanford University
Stanford, California 94305

October 2, 2008

1 Introduction

An important feature of modern science and engineering is that data of various kinds is being produced at
an unprecedented rate. This is so in part because of new experimental methods, and in part because of the
increase in the availability of high powered computing technology. It is also clear that the nature of the data
we are obtaining is significantly different. For example, it is now often the case that we are given data in the
form of very long vectors, where all but a few of the coordinates turn out to be irrelevant to the questions
of interest, and further that we don’t necessarily know which coordinates are the interesting ones. A related
fact is that the data is often very high-dimensional, which severely restricts our ability to visualize it. The
data obtained is also often much noisier than in the past, and has more missing information (missing data).
This is particularly so in the case of biological data, particularly high throughput data from microarray or
other sources. Our ability to analyze this data, both in terms of quantity and the nature of the data, is
clearly not keeping pace with the data being produced. In this paper, we will discuss how geometry and
topology can be applied to make useful contributions to the analysis of various kinds of data. Geometry and
topology are very natural tools to apply in this direction, since geometry can be regarded as the study of
distance functions, and what one often works with are distance functions on large finite sets of data. The
mathematical formalism which has been developed for incorporating geometric and topological techniques
deals with point clouds, i.e. finite sets of points equipped with a distance function. It then adapts tools
from the various branches of geometry to the study of point clouds. The point clouds are intended to be
thought of as finite samples taken from a geometric object, perhaps with noise. Here are some of the key
points which come up when applying these geometric methods to data analysis.

• Qualitative information is needed: One important goal of data analysis is to allow the user to
obtain knowledge about the data, i.e. to understand how it is organized on a large scale. For example,
if we imagine that we are looking at a data set constructed somehow from diabetes patients, it would
be important to develop the understanding that there are two types of the disease, namely the juvenile
and adult onset forms. Once that is established, one of course wants to develop quantitative methods
for distinguishing them, but the first insight about the distinct forms of the disease is key.

• Metrics are not theoretically justified: In physics, the phenomena studied often support clean
explanatory theories which tell one exactly what metric to use. In biological problems, on the other
hand, this is much less clear. In the biological context, notions of distance are constructed using some
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intuitively attractive measures of similarity (such as BLAST scores or their relatives), but it is far from
clear how much significance to attach to the actual distances, particularly at large scales.

• Coordinates are not natural: Although we often receive data in the form of vectors of real numbers,
it is frequently the case that the coordinates, like the metrics mentioned above, are not natural in any
sense, and that therefore we should not restrict ourselves to studying properties of the data which
depend on any particular choice of coordinates. Note that the variation of choices of coordinates
does not require that the coordinate changes be rigid motions of Euclidean space. It is often a tacit
assumption in the study of data that the coordinates carry more intrinsic meaning than they actually
do.

• Summaries are more valuable than individual parameter choices: One method of clustering
a point cloud is the so-called single linkage clustering, in which a graph is constructed whose vertex set
is the set of points in the cloud, and where two such points are connected by an edge if their distance
is ≤ ε, where ε is a parameter. Some work in clustering theory has been done in trying to determine
the optimal choice of ε, but it is now well understood that it is much more informative to maintain the
entire dendrogram of the set, which provides a summary of the behavior of clustering under all possible
values of the parameter ε at once. It is therefore productive to develop other mechanisms in which the
behavior of invariants or construction under change of parameters can be effectively summarized.

In this paper, we will discuss methods for dealing with the properties and problems mentioned above. The
underlying idea is that methods inspired by topology should address them. For each of the points above, we
describe why topological methods are appropriate for dealing with them.

• Topology is exactly that branch of mathematics which deals with qualitative geometric information.
This includes the study of what the connected components of a space are, but more generally it is
the study of connectivity information, which includes the classification of loops and higher dimensional
surfaces within the space. This suggests that extensions of topological methodologies, such as homology,
to point clouds should be helpful in studying them qualitatively.

• Topology studies geometric properties in a way which is much less sensitive to the actual choice of
metrics than straightforward geometric methods, which involve sensitive geometric properties such as
curvature. In fact, topology ignores the quantitative values of the distance functions, and replaces it
with the notion of infinite nearness of a point to a subset in the underlying space. This insensitivity
to the metric is useful in studying situations where one only believes one understands the metric in a
coarse way.

• Topology studies only properties of geometric objects which do not depend on the chosen coordinates,
but rather on intrinsic geometric properties of the objects. As such, it is coordinate-free.

• The idea of constructing summaries over whole domains of parameter values involves understanding
the relationship between geometric objects constructed from data using various parameter values. The
relationships which are useful involve continuous maps between the different geometric objects, and
therefore become a manifestation of the notion of functoriality, i.e the notion that invariants should
be related not just to objects being studied, but also to the maps between these objects. Functoriality
is central in algebraic topology, in that the functoriality of homological invariants is what permits
one to compute them from local information, and that functoriality is at the heart of most of the
interesting applications within mathematics. Moreover, it is understood that most of the information
about topological spaces can be obtained through diagrams of discrete sets, via a process of simplicial
approximation.

The last point above, concerning functoriality, is critical. In developing methods to address the first two
points, we find that we are forced to make functorial geometric constructions and analyze their behavior on
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maps even to obtain information about single point clouds. Functoriality has proven itself to be a powerful
tool in the development of various parts of mathematics, such as Galois theory within algebra, the theory of
Fourier series within harmonic analysis, and the applicaton of algebraic topology to fixed point questions in
topology. We argue that, as suggested in [46], it has a role to play in the study of point cloud data as well,
and we give two illustrations of how this could happen, within the context of clustering.

Informally, clustering refers to the process of partitioning a set of data into a number of parts or clusters,
which are recognizably distinguishable from each other. In the context of finite metric spaces, this means
roughly that points within the clusters are nearer to each other than they are to points in different clusters.
Clustering should be thought of as the statistical counterpart to the geometric construction of the path-
connected components of a space, which is the fundamental building block upon which algebraic topology
is based. There are many schemes which construct clusterings based on metric information, such as single,
average, and complete linkage clustering, k-means clustering, spectral clustering, etc. (see [31]). Although
clustering is clearly a very important part of data analysis, the ways in which it is formulated and implemented
are fraught with ambiguities. In particular, the arbitrariness of various threshhold choices and lack of
robustness are difficulties one confronts. Much of current research efforts are focused in this direction (see
e.g. [43] and [39]), and functoriality provides the right general mathematical framework for addressing
them. For example, one can construct data sets which have been threshholded at two different values, and
the behavior of clusters under the inclusion of the set with tighter threshhold into the one with the looser
threshhold is informative about what is happening in the data set. We present two additional examples of
how functoriality could be used in analyzing some questions related to clustering.

Example: In the case of very large X, it may often be difficult to apply the clustering algorithm to a full
data set, and one may instead find it desirable to cluster subsamples from X. One is then confronted with
the task of attempting to verify that the clustering of the subsample is actually representative of a clustering
of the full data set X. One way of proceeding is to construct two samples from X, and hoping that they are
consistent in an appropriate sense. One version of this idea would be to consider the subsamples X1 and X2,
together with their union X1 ∪X2. One could apply the clustering scheme to each of these sets individually,
and suppose we denote the set of clusters for the three sets X1, X2, and X1 ∪ X2 by C(X1), C(X2), and
C(X1∪X2) respectively. If the clustering scheme were functorial, i.e. if inclusions of data sets induced maps
of the collections of clusters, then one would have a diagram of sets

C(X1 ∪X2)

C(X1) C(X2)
��
�*

HH
HY

If the clusterings are consistent, i.e. if the clusters in C(X1) and C(X2) in C(X1 ∪ X2) correspond well
under these maps, one can regard that as evidence that the subsample clusterings actually correspond to
clusterings on the full data set X. Of course, what the phrase “correspond well” means is not well defined
here. Later in the paper, we will discuss a way to attach more quantitative information to questions of this
type.

Example: Suppose that we have data X which varies with time. One could then ask for information
concerning the behavior of clusterings produced by clusterings over time. Clusters can appear, vanish,
merge, or split into separate clusters. The analysis of this behavior can be studied using functoriality. For
t0 < t1, we let X[t0, t1] denote the set of points in the data set occurring between times t0 and t1. If we have
t0 < t1 < t2 < t3, then we have a diagram of point cloud data sets
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X[t1, t2]

X[t0, t2] X[t1, t3]

Q
Q
Qs

�
�
�+

If the clustering scheme is functorial in the sense of the preceding example, we obtain the corresponding
diagram of sets

C(X[t1, t2])

C(X[t0, t2]) C(X[t1, t3])

HH
HHj

��
���

This set contains information about the behavior over time of the clusters. For example, the diagram

would correspond to a single cluster at time t0, which breaks into two clusters in the interval [t1, t2], which
in turn merge back again in the interval [t2, t3].

This paper will deal with a number of methods for thinking about data using topologically inspired methods.
We begin with a discussion of persistent homology, which is a mathematical formalism which permits us
to infer topological information from a sample of a geometric object, and show how it can be applied to a
particular data sets arising from natural image statistics and neuroscience. Next, we show that topological
methods can produce a kind of imaging of data sets, not by embedding in Euclidean space but rather
by producing a simplicial complex associated to certain initial information about the data set. We then
demonstrate that persistence can be generalized in several different directions, providing more structure and
information about the data sets in question. We then show that the philosophy of functoriality can be used
to reason about the nature of clustering methods, and conclude by speculating about theorems one might
hope to prove and discussing how the subject might develop more generally.

The author is extremely grateful to his collaborators A. Blumberg, A. Collins, V. de Silva, L. Guibas, T.
Ishkanov, F. Memoli, M. Nicolau, D. Ringach, G. Sapiro, H. Sexton, G. Singh, and A. Zomorodian. In
addition, he is grateful to a number of people for very useful conversations on this subject. They include T.
Beke, P. Diaconis, R. Ghrist, S.Holmes, K. Mischaikow, P. Niyogi, S. Oudot, S. Smale, and S. Weinberger.
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2 Persistence and homology

2.1 Introduction

In thinking about qualitative properties of spaces X, an obvious one which comes to mind is its decomposition
into path connected components. It is a partition of X, and the cardinality of the collection of blocks in this
partition is an invariant of X, and surely deserves to be called a qualitative invariant of X. There are other
qualitative properties to be considered.

Example: Consider the two spaces in the image below.

We note that both spaces are path-connected, but we can see that they are qualitatively distinct in that the
letter “B” on the left has two essentially different loops and the “O” on the right has only one. This property
is preserved under continuous deformations, and so if one can formalize it into a precise mathematical
statement one can then rigorously distinguish between the two spaces. We refer to information about
loops and higher dimensional analogues in a space as “connectivity information”. The decomposition into
path connected components would be regarded as zeroth level connectivity information, loops as level one
connectivity information, and so forth. The mathematical formalism which makes these notions precise is
algebraic topology. It provides signatures which capture the intuitive notions of essential loops or essential
higher dimensional surfaces within a space. We describe the output of the formalism. See [33] for a thorough
treatment. We recall that two continuous maps f, g : X → Y are said to be homotopic if there is a continuous
map H : X × [0, 1]→ Y so that H(x, 0) = f(x) and H(x, 1) = f(1).

• Definition: For any topological space X, abelian group A, and integer k ≥ 0, there is assigned a
group Hk(X,A).

• Functoriality: For any A and k as above, and any continuous map f : X → Y , there an induced
homomorphism Hk(f,A) : Hk(X,A) → Hk(Y,A). One has Hk(f ◦ g,A) = Hk(f,A) ◦Hk(g,A) and
Hk(IdX ;A) = IdHk(X,A). These conditions are called collectively functoriality. We refer the reader to
[44] for a treatment of categories and functors.

• Homotopy invariance: If f and g are homotopic, then Hk(f,A) = Hk(g,A). It follows that if X
and Y are homotopy equivalent, then Hk(X,A) is isomorphic to Hk(Y,A).

• Normalization: H0(∗, A) ∼= A, where ∗ denotes the one point space.

• Betti numbers: For any field F , Hk(X,F ) will be a vector space over F . Its dimension, if it is
finite dimensional, will be written as βk(X,F ), and will be referred to as the k-th Betti number with
coefficients in F . The k-th Betti number corresponds to an informal notion of number of independent
k-dimensional surfaces. If two spaces are homotopy equivalent, then all their Betti numbers are equal.

Example: For any topological space X with a finite number of path components, β0(X) is the number of
path components.

Example: The first Betti number β1 of the letter “B” above is two, and for the letter “O” it is one. In this
case, it provides a formalization of the count of the number of loops present in the space.
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The actual definition of homology which applies to all topological spaces (singular homology) was introduced
in [27]. It relies on the linear algebra of infinitely generated modules over the ring Z in defining homology
groups, and for this reason it is not useful from a computational point of view. Computations can be carried
out by hand using a variety of techniques (long exact sequence of a pair, long exact Mayer-Vietoris sequence,
excision theorem, spectral sequences), but direct computation from the definition is not feasible for general
spaces. However, when one is given a space equipped with particular structures, there are often finite linear
algebra problems which produce correct answers, i.e. answers which agree with the singular technique. A
particularly nice example of this applies when the space in question is described as a simplicial complex.

Definition 2.1 An abstract simplicial complex is a pair (V,Σ), where V is a finite set, and Σ is a family
of non-empty subsets of V such that σ ∈ Σ and τ ⊆ σ implies that τ ∈ Σ. Associated to a simplicial complex
is a topological space |(V,Σ)|, which may be defined using a bijection φ : V → {1, 2, . . . , N} as the subspace
of RN given by the union

⋃
σ∈Σ c(σ), where c(σ) is the convex hull of the set {eφ(s)}s∈σ, where ei denotes

the i− th standard basis vector.

Intuitively, a simplicial complex structure on a space is an expression of the space as a union of points,
intervals, triangles, and higher dimensional analogues. Simplicial complexes provide a particularly simple
combinatorial way to describe certain topological spaces. For this reason, one often attempts to approximate
(in various senses) topological spaces by simplicial complexes. The key point for this section, though, is
that for simplicial complexes, the homology can be computed using only linear algebra of finitely generated
Z-modules. We describe this in detail. Given any simplicial complex X = (V,Σ), we write Σk for the subset
of Σ consisting of all σ ∈ Σ for which #(σ) = k+ 1. Elements of Σk are referred to as k-simplices. We define
the group of k-chains in X as the group of formal linear combinations of elements in Σk, or equivalently the
free abelian group on the set Σk, and denote it by Ck(X). If we impose a total order on the vertex set V ,
we define set operators di : Σk → Σk−1, for 0 ≤ i ≤ k, by letting di(σ) = σ− {si}, where si denotes the i-th
element in σ, under the given total ordering. We now define linear operators ∂k : Ck(X)→ Ck−1(X) by

∂k =
k∑
i=0

(−1)idi

Since the groups Ck(X) are equipped with the bases Σk, these operators can be expressed as matrices D(k)
whose columns are parametrized by Σk, whose rows are parametrized by Σk−1, and where for σ ∈ Σk and
τ ∈ Σk−1, the entry D(k)τσ is = 0 if τ 6⊂ σ, and = (−1)i if τ ⊆ σ and if τ is obtained by removing the
i-th member of the subset σ. The key observation is now that ∂k ◦ ∂k+1 ≡ 0. It follows that Image(∂k+1) ⊆
Kernel(∂k), and that one can therefore define Hsimp

k (X,Z) by

Hsimp
k (X,Z)∼=Kernel(∂k)/Image(∂k+1)

This basis independent version of the definition can be replaced by the result of matrix manipulations on
the collection of matrices {D(k)}k≥0F , as in [22]. The end results of these calculations are always the Smith
normal form of various matrices constructed out of the D(k)’s. It turns out that Hsimp

k (X,Z) is always
canonically isomorphic to the singular homology of the space |X|. The conclusion is that for simplicial
complexes, homology is algorithmically computable.

2.2 Building coverings and complexes

Since the homology of simplicial complexes is algorithmically computable, it is frequently desirable to con-
struct simplicial complexes which compute the homology of an underlying space X, or at least has a strong
relationship with it. One way to guarantee that the simplicial complex computes the homology of X is to
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produce a homotopy equivalence from X to the simplicial complex, or a homotopy equivalence from a space
homotopy equivalent to X to the simplicial complex. There are a number of simplicial complexes which can
be constructed from X together with additional data attached to X. We begin with the Čech complex. Let
X be a topological space, and let U = {Uα}α∈A be any covering of X.

Definition 2.2 The Čech complex of U , denoted by Č(U), will be the abstract simplicial complex with vertex
set A, and where a family {α0, . . . , αk} spans a k-simplex if and only if Uα0 ∩ . . . ∩ Uαk 6= ∅.

This is an extremely useful construction in homotopy theory. One reason is that one has the following
“nerve theorem” (see [5]), which provides criteria which guarantee that Č(U) is homotopy equivalent to the
underlying space X. (Recall that two spaces X and Y are said to be homotopy equivalent if there are maps
f : X → Y and g : Y → X so that f ◦ g and g ◦ f are homotopic to IdY and IdX respectively. A space which
is homotopy equivalent to the one point space is called contractible.)

Theorem 2.3 Suppose that X and U are as above, and suppose that the covering consists of open sets and
is numerable (see [51] for a definition). Suppose further that for all ∅ 6= S ⊆ A, we have that

⋂
s∈S Us is

either contractible or empty. Then Č(U) is homotopy equivalent to X.

One now needs methods for generating coverings. When the space in question is a metric space, one covering
is given by the family Bε(X) = {Bε(x)}x∈X , for some ε > 0. More generally, for any subset V ⊆ X for
which X =

⋃
v∈V Bε(v), one can construct the nerve of the covering {Bε(v)}v∈V . This is a useful theoretical

construction, in view of the following theorem.

Theorem 2.4 Let M be a compact Riemannian manifold. Then there is a positive number e so that
Č(Bε(M)) is homotopy equivalent to M whenever ε ≤ e. Moreover, for every ε ≤ e, there is a finite
subset V ⊆M so that the subcomplex of Č(Bε(M)) on the vertices in V is also homotopy equivalent to M .

One problem with this construction is that it is computationally expensive, in that it requires storage of
simplices of various dimensions. An idea for dealing with that problem is to construct a simplicial complex
which can be recovered solely from the edge information. This suggests the following variant of the Čech
construction, referred to as the Vietoris-Rips complex.

Definition 2.5 Let X denote a metric space, with metric d. Then the Vietoris-Rips complex for X, attached
to the parameter ε, denoted by V R(X, ε), will be the simplicial complex whose vertex set is X, and where
{x0, x1, . . . , xk} spans a k-simplex if and only if d(xi, xj) ≤ ε for all 0 ≤ i, j ≤ k.

We note that the vertex sets of the two constructions are identical, so they can both be viewed as subcom-
plexes of the complete simplex on the set X. The following diagram indicates the difference between the
complexes.
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The leftmost figure shows the covering, the middle the Čech complex, and the rightmost the Vietoris-Rips.

The following comparison between the two complexes is easy to verify. We will see how to make use of it in
the next section.

Proposition 2.6 We have inclusions

Č(X, ε) ⊆ V R(X, 2ε) ⊆ Č(X, 2ε)

Even the Vietoris-Rips complex is computationally expensive, though, due to the fact that its vertex set
consists of the entire metric space in question. A solution to this problem which has been used to study
subspaces of Euclidean space is the Voronoi decomposition. Let X be any metric space, and let L ⊆ X be a
subset, called the set of landmark points. Given λ ∈ L, we define the Voronoi cell associated to λ, Vλ, by

Vλ = {x ∈ X|d(x, λ) ≤ d(x, λ′)}

for all λ′ ∈ L. It is immediate that the Voronoi cells form a covering of X, and we define the Delaunay
complex attached to L to be the nerve of this covering. When the underlying space is Euclidean space, the
Voronoi decomposition gives rise to an extremely useful decomposition of the space, and in favorable cases
the Delaunay complex gives a triangulation of the convex hull of L, referred to as the Delaunay triangulation
[21]. For submanifolds of Euclidean space, one may construct the restricted Delaunay triangulation as in [25].
The value of this construction is that it produces very small simplicial complexes, whose dimension is often
equal to the dimension of the manifold under consideration. Both the the Čech and Vietoris-Rips complexes
typically produce simplices in dimensions much higher than the dimension of the space. The definition of
the Delaunay complex makes sense for any metric space, in particular for finite metric spaces. However, for
finite metric spaces, it generically produces degenerate (i.e. discrete) complexes, with no one dimensional
simplices. This is due to the fact that for finite metric spaces, it is generically the case that each value of the
distance is taken only for one pair of points, so one does not have any points which are equidistant between
a pair of landmarks. In order to make the method useful for finite metric spaces, we therefore modify the
definition of the Delaunay complex to accommodate pairs of points which are “almost” (as permitted by the
introduction of a parameter ε) equidistant from a pair of landmark points. Precisely, we have the following
definition from [8].

Definition 2.7 Let X be any metric space, and suppose we are given a finite set L of points in X, called
the landmark set, and a parameter ε > 0. For every point x ∈ X, we let mx denote the distance from this
point to the set L, i.e. the minimum distance from x to any point in the landmark set. Then we define
the strong witness complex attached to this data to be the complex W s(X,L, ε) whose vertex set is L, and
where a collection {l0, . . . , lk} spans a k-simplex if any only if there is a point x ∈ X (the witness) so that
d(x, li) ≤ mx + ε for all i. We can also consider the version of this complex in which the 1-simplices are
identical to those of W (X,L, ε), but where the family {l0, . . . , lk} spans a k-simplex if and only if all the pairs
(li, lj) are 1-simplices. We’ll denote this by W s

V R

There is a modified version of this construction, which is quite useful, called the weak witness construction.
Suppose we are given a metric space X, and a set of points L ⊆ X. Let Λ = {l0, . . . , lk} denote a finite
subset of a metric space L. We say a point x ∈ X is a weak witness for Λ if d(x, l) ≥ d(x, li) for all i and all
l /∈ Λ. Given ε ≥ 0, we will also say that x is an ε weak witness for Λ if d(x, l) + ε ≥ d(x, li) for all i and all
l /∈ Λ.

Definition 2.8 Let X, L, and ε be as above. We construct the weak witness complex for the given data,
Ww(X,L, ε) by declaring that a family Λ = {l0, . . . , lk} spans a k-simplex if and only if Λ and all its faces
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admit ε weak witnesses. This complex also clearly has a version in which a k-simplex is included as a simplex
if and only if all its 1-faces are, and we will denote this version by Ww

V R.

It is clearly the case that if we have 0 ≤ ε ≤ ε′, then we have an inclusion

W s(X,L, ε) ↪→W s(X,L, ε′)

and similarly for W s
V R,W

w, and Ww
V R.

2.3 Persistent homology

Let X be a subspace of Rn. Suppose further that we have a method of sampling points from X, perhaps
with noise. By sampling with noise, we will mean that we are sampling points from a probability distribution
concentrated near X. Let X be one sample as described above. An interesting question is to what extent it is
possible to infer the Betti numbers of X from X. In general, of course, the answer is no. For example, it will
clearly be necessary to assume something about the density of the sampling. Niyogi, Smale, and Weinberger
in [52] provide sufficient hypotheses which guarantee that this is possible for Riemannian manifolds. Their
method is to prove that the Čech complex associated to a covering by balls of a fixed radius ε is homotopy
equivalent to the underlying manifold. If one is interested in studying data from experiments, though, one
typically cannot assume that the data lies along a submanifold. Further, even if one could assume that the
data lies along a manifold, one is usually not in a position to verify that the stringent hypotheses of [52] are
satisfied. The key to obtaining the desired homological information is to avoid selecting a fixed value of the
threshhold ε, and instead obtaining a useful summary of the homological information for all the different
values of ε at once. This philosophy is referred to as persistence, and was first introduced in [24].

We begin with the set X. It is of course a finite metric space, and we may consider the Čech complexes
Č(X, ε), attached to the collection of balls of radius ε with centers at the points of X. Note that if the
centers actually lie on a submanifold M ⊆ Rn, and the set X is sufficiently dense in M , then this complex
is the Čech complex attached to a covering of M . If further ε is sufficiently small, then all the balls will be
geodesically convex, and the complex will compute the homology of M correctly. This connection provides
heuristic justification for the use of this Čech complex as a method for approximating the homology of M .
Now recall that whenever we have ε ≤ ε′, we have an inclusion of complexes Č(X, ε) ⊆ Č(X, ε′). Consider the
picture below, which is that of a Čech complex constructed on a finite collection of points in the Euclidean
plane.

1=3

We note that the main shape of the set is concentrated around a circle. However, if we compute the homology
of this complex, it will yield a first Betti number of three, namely including the large main loop and secondly
the two smaller loops corresponding to the two smaller holes in the complex. Intuitively, we regard these two
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holes as coming from faulty sampling or other errors in the recovery of the data. One could then argue that
this comes from an incorrect choice of the parameter ε, and that one should simply increase the parameter
value to obtain a complex with the correct higher connectivity structure. This would give rise to the following
picture.

1=2

Note that while the two smaller holes have now been “filled in”, a new hole has been introduced in the
lower right hand portion of the figure. Consequently, if we computed the homology of this complex, we
would obtain a first Betti number of two. The result is incorrect for either of the parameter values. We now
observe, though, that there is an inclusion of the upper complex into the lower complex, since the upper
one corresponds to a smaller parameter value than the lower one. We can therefore ask about the image
of the homology of the upper complex in the homology of the lower complex. The two small cycles in the
upper complex vanish in the lower complex, since they are filled in. On the other hand, the small cycle in
the lower complex is not in the image of the homology of the upper complex, since the required edge is not
filled in in the upper complex. We see therefore that the image consists exactly of the larger cycle, which is
what we regard as the “correct” answer in this case. The goal of this section is to make this observation into
a systematic computational scheme which will provide the desired summary of the behavior of homology
under all choices of values for the scale parameter ε.

We begin with the following definition. Again, refer to [44] for material on categories, functors, and natural
transformations.

Definition 2.9 Let C be any category, and P a partially ordered set. We regard P as a category P in the
usual way, i.e. with object set P, and with a unique morphism from x to y whenever x ≤ y. Then by a P
persistence object in C we mean a functor Φ : P → C More concretely, it means a family {cx}x∈P of objects
of C together with morphisms φxy : cx → cy whenever x ≤ y, such that φyz ◦ φxy = φxz whenever x ≤ y ≤ z.
Note that the P-persistence objects in C form a category in their own right, where a morphism F from Φ
to Ψ is a natural transformation. Again, in more concrete terms, a morphism from a family {cx, φxy} to a
family {dx, ψxy} is a family of morphisms {fx}, with fx : cx → dx, and where the diagrams

cx cy

dx dy
?

fn

-φxy

?

fy

-ψxy

all commute. We will denote the category of P-persistence objects in C by Ppers(C). We note finally that if
f : P → Q is a partial order preserving map, we obtain an evident functor f∗ : Qpers(C)→ Ppers(C) defined
by f∗(Ψ) = Ψ ◦ f , where f is f regarded as a functor P → Q.

We let R and N denote the partially ordered sets of real number and non-negative integers, respectively. We
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now observe that all of the constructions of the previous subsection (Čech, Vietoris-Rips, witness) yield an
R-persistence simplicial complex attached to X. We can now construct the associated chain complexes and
homology groups and obtain R-persistence chain complexes and R-persistence groups. What makes homology
useful as a discriminator between topological spaces is the fact that there is a classification theorem for finitely
generated abelian groups. If one had a classification theorem for R-persistence abelian groups, then it could
act as a summary of the behavior of the homology of all the complexes Č(X, ε). However, we do not have
such a theorem. However, it turns out that there is a classification theorem (see [64]) for a subcategory of
the category of N-persistence F -vector spaces, where F is a field.

To understand this classification, we observe that N-persistence abelian groups can be identified with a more
familiar notion, namely that of a graded module over a graded ring. Let {An} be any N-persistence abelian
group. We will define an associated graded module θ({An}) over the graded polynomial ring Z[t], where t is
assigned degree 1, as follows. We set

θ({An}) =
⊕
s≥0

As

where the n-th graded part is the group An. The action of the polynomial generator t is given by

t · {αn} = {βn}, where βn = ψn−1,n(αn−1)

It is readily checked that θ is a functor from Npers(Ab) to the category of graded Z[t]-modules, and is in fact
an equivalence of categories, since an inverse functor can be given by M∗ → {Mn}, where the morphisms
ψmn are given by multiplication by tn−m. The conclusion is that the category Npers(Ab) is equivalent to
the category of non-negatively graded modules over Z[t]. Now, there is still no classification theorem for
graded Z[t]-modules. However, if we let F denote any field, then there is a classification theorem for finitely
generated graded F [t]-modules. See [23] for the non-graded case. The graded case is proved in identical
fashion.

Theorem 2.10 Let M∗ denote any finitely generated non-negatively graded F [t]-module. Then there is an
isomorphism

M∗ ∼=
m⊕
s=1

F [t](is)⊕
n⊕
t=1

(F [t]/(tlt))(jt)

where for any graded F [t]-module N∗, the notation N∗(s) denotes N∗ with an upward dimension shift of s.
So, N∗(s)l = Nl−s. The decomposition is unique up to permutation of factors.

It is therefore a useful question to ask which N-persistence F -vector spaces correspond under θ to finitely
generated non-negatively generated F [t]-modules. We have the following.

Proposition 2.11 We say an N-persistence F -vector space {V }n is tame if every vector space Vn is finite
dimensional, and if ψn,n+1 : Vn → Vn+1 is an isomorphism for sufficiently large n. Then we have that
θ({Vn}n) is a finitely generated F [t]-module if and only if {Vn}n is tame.

We now have an easy translation of the classification result 2.10. For any 0 ≤ m ≤ n, we define an
N-persistence F -vector space U(m,n) by setting U(m,n)t = 0 for t < m and t > n, U(m,n) = F for
m ≤ t ≤ n, and ψs,t = IdF for m ≤ s ≤ t ≤ n. We extend this definition to the value n = +∞ in the evident
way.
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Proposition 2.12 Any tame N-persistence F -vector space {Vn}n can be decomposed as

{Vn}n ∼=
N⊕
i=0

U(mi, ni)

where each mi is a non-negative integer, and ni is a non-negative integer or +∞. The decomposition is
unique in the sense that the collection of pairs {(mi, ni)}i is unique up to ordering of factors.

We can reformulate this result as follows. By a bar code, we mean a finite set of pairs (m,n), where m is a
non-negative integer, and n is a non-negative integer or +∞. We can now restate Proposition 2.11 as the
assertion that just as finite dimensional vector spaces are classified up to isomorphism by their dimension,
so tame N-persistence vector spaces are classified by associated bar codes.

Returning to the R-persistence simplicial complexes we construct, we may use any partial order preserving
map N→ R to obtain an N-persistence simplicial complex. There are at least two useful ways to construct
such maps. The first would be to choose a small number ε, and define a map fε : N → R by fε(n) = nε.
A second method would be as follows. Given a finite point cloud as above, it is clear that there are only
finitely many real values at which there are transitions in the complex. This follows from the nature of the
conditions together with the fact that the distance function takes only finitely many values on X. Letting
these transition values be enumerated in increasing order as {t0, t1, . . . , tN}, we define an order preserving
map g : N→ R by g(n) = tn for n ≤ N , and g(n) = tN for n ≥ N . The first construction can be interpreted
as sampling values of the persistence parameter from a uniform lattice. Of course, the sampling is finer
as ε decreases. The second method more efficient, since it is precisely adapted to the complex at hand.
Furthermore, it contains complete information about the original R-vector space.

The methodology we now use to study the homology of the complexes constructed above is now as follows.

• Construct the R-persistence simplicial complex {Cε} using Čech, Vietoris-Rips, or witness methods.
We will denote it by Φ.

• Select a partial order preserving map f : N→ R.

• Construct the associated N-persistence simplicial complex.

• Construct the associated N-persistence chain complex {C∗(n)}n with coefficients in F . (It is evi-
dent from the finiteness hypotheses on X and the nature of the constructions that the associated
N-persistence F -vector spaces are tame.)

• Compute the barcodes associated to the N-persistence vector spaces {Hi(C∗(n))}n.

The last step turns out be tractable due to the translation into commutative algebraic terms above. We
recall (see [22]) that homology computation can be performed by putting a matrix in Smith normal form.
The algorithms for Smith normal form are typically applied for matrices over Z, but they are applicable in
the context of any principal ideal domain, of which F [t] is one. The fact that the ring is graded and the
boundary matrices are homogeneous makes the application simpler. This is the observation made in [64],
where the algorithm for computing persistent homology which we use is described in detail.

In interpreting the output, one now finds that long intervals in the output barcode indicates the presence of
a homology class which “persists” over a long range of parameter values, while short intervals indicate cycles
which are “born” at a given parameter value and then “die” at a nearby parameter value. The pictures and
discussion above allow us to formulate the intuition that long intervals correspond to large scale geometric
features in the space, and short intervals correspond to noise or inadequate sampling. Of course, what is
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short and what is long is very problem dependent. Also, in some cases, it may be a false dichotomy, and
the more useful point of view is that the barcodes represents the space at various scales, and the whole
multiscale version of the space may actually be of interest.

2.4 Example: Natural image statistics

Images taken with a digital camera can be viewed as vectors in a very high dimensional vector space. Each
image consists of a number (the gray scale value) attached to each of a large number of pixels, and therefore
we may think of the image as lying in RP , where P is the number of pixels used by the camera. From this
point of view, one can ask questions about the nature of the collection of all possible images lying within
RP . For example, can it be modeled as a submanifold or subspace of RP ? If it were, one could conclude
on the one hand that it is very high dimensional, since images are capable of expressing such a wide variety
of scenes, and on the other hand that it would be a manifold of very high codimension, since random pixel
arrays will very rarely approximate an image. David Mumford gave a great deal of thought to questions like
this one concerning natural image statistics, and came to the conclusion that although the above argument
indicates that whole manifold of images is not accessible in a useful way, a space of small image patches
might in fact contain quite useful information. In [41], A. Lee, D. Mumford, and K. Pedersen performed
an analysis constructed in this way, and we will summarize the results of that paper. They began with a
database of black and white images taken by J. van Hateren and A. van der Schaaf in [34]. The database
consisted of images taken around Groningen, Holland, in town and in the surrounding countryside. Within
such an image, one can consider 3× 3 patches, i.e. square arrays of 9 pixels.

Each such patch can now be regarded as a 9-tuple of real numbers (the gray scale values again), i.e. a
vector in R9. A preliminary observation is that patches which are constant, or rather nearly constant,
will predominate among these patches. The reason is that most images have large solid regions, where the
gray scale intensity does not change significantly, and these regions will contribute more to the collection
of patches than the patches in which some transitions are occurring. These nearly constant patches will be
referred to as low contrast. Of course, the low contrast patches do not carry interesting structure, so Lee,
Mumford, and Pedersen proceeded as follows. They first define the D-norm of a 3 × 3 image patch, as a
certain quadratic function of the logs of the gray scale values. It is a way of defining the contrast of an image
patch. Then they select 5,000 patches at random from each of the images from [34], and select the top 20%
as evaluated by the D-norm. This will now constitute a database of high contrast patches from the patches
occurring in the image database from [34]. They then perform two transformations on the data, as follows.

1. Mean center the data. The mean intensity value over all nine pixels is subtracted from each pixel
value, to obtain a patch with mean zero. This means that if a patch is obtained from another patch by
adding a constant value, i.e. “turning up the brightness knob”, then the two patches will be regarded
as the same. Note that this transformation puts all points in an 8-dimensional subspace within R9.

2. Normalize the D-norm. Since all the patches chosen will have D-norm bounded away from zero, one
can divide by it to obtain a patch with D-norm = 1. This means that if one patch is obtained from
another by “turning the contrast knob”, then the two patches will be regarded as identical.
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The result of this construction is a database M of c:a 4.5 × 106 points on a 7-dimensional ellipsoid in R8.
The goal of the paper [41] is now to obtain some understanding of how this set sits within S7, and what can
be said about the patches which do appear. A first observation is that the points are scattered throughout
the 7-sphere, in the sense that no point on S7 is very far from the set, but that the density appears to vary a
great deal. In particular, in [41] indications were found that the data was concentrated around an annulus.
In [11], a systematic study of the topology of the high density portion was carried out, and this work is what
we will describe in the remainder of this section.

The first issue to be addressed is what is meant by “high density” portion. Density estimation is a highly
developed area within statistics (see for example [58]). We selected a very crude proxy for density, in the
interest of minimizing the computational burden. It is defined as follows. Fix a positive integer k, and define
the k-codensity function δk of x ∈ X, where X is a set of point cloud data, by

δk(x) = d(x, νk(x))

where d denotes the distance function in X, and where νk(x) denotes the k-th nearest neighbor of x in X.
Note that δk(−) is inversely related with density, since a concentrated region will have smaller distances to
the k-th nearest neighbor, so we will be studying subcollections of points for which δk(−) is bounded from
above by a threshhold. Secondly, we also note that each δk yields a different density estimator. In rough
terms, δk for large values of k computes density using points in large neighborhoods of x, and for small
values uses small neighborhoods. So, δk for large k corresponds to a smoothed out notion of density, and for
small k corresponds to a version which carries more of the detailed structure of the data set.

For any subset M0 ⊆ M, we now define subsets M0[k, T ] ⊆ M0, where k is a positive integer, and T is a
percentage value, by

M0[k, T ] = {x ∈M0|δk(x) lies among the T% lowest values of δk in M0}

The goal of the paper [11] is to infer the topology of a putative space underlying the various sets of points
M[k, T ]. In some cases we will approximate this via a subset M0[l, T ]. It is fairly direct to see that the
variable k scales with the size of the set, so that if ρ = #(M)/#(M0), then M0[k, T ] is comparable with
M[ρk, T ]. We do this by obtaining the data sets M0[k, T ], then selecting a set of landmark points, and
finding various barcodes attached to witness complexes associated to the space. Below is the barcode for
H1(WM0[300, 30])), where M0 is a sample of 5 × 104 points from M, and W denotes a witness complex
constructed with 50 landmark points.
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k = 300, T = 30%

We note that there are a number of short lines, and one long one. According to the philosophy mentioned
above, this suggests that the first Betti number should be estimated to be one. The barcode is stable, in the
sense that it appears repeatedly when the set of landmark points is varied, and when the sample from the
full data set is varied. Therefore, the simplest possible explanation for this barcode is that the underlying
space should be a circle. One can then ask if there is a simple explanation involving the data which would
yield a circle as the underlying space. The picture below gives such an explanation.

Primary circle

More formally, the picture suggests the explanation that the most frequently occurring patches are those
approximating two variable functions which depend only on a linear projection from the two variable space,
and so that the function is increasing in that linear projection. This explanation is consistent with an annulus
conjectured to represent the densest patches in [41].

The next picture is a barcode for H1(WM0[15, 30])), whereM0 is as above, again with 50 landmark points
chosen.
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k = 15, T = 30%

We note that in this case, there are many short segments and 5 longer segments. It is again the case that
this barcode is stable over the choices of landmark points and samples fromM. This suggests that the first
Betti number of the putative underlying space should be five. It now becomes more difficult to identify the
simplest explanation for this result, and a number of such models are possible. The one which ultimately
turns out to fit the data is pictured as follows.

Three circle model

This picture is composed of a primary circle, pictured in black, and two secondary circles, pictured in green
and red. Although it is perhaps not clear from the image, the intent is that the secondary circles each
intersect the primary circle in two points, and do not intersect each other. A space constructed this way
can readily be seen to have a first Betti number of five. An explanation for this geometric object in terms
of image patches is now the following.

PRIMARY

SECONDARY SECONDARY

Three circle model in the data

The secondary circles interpolate between functions which are an increasing function of a linear projection
to functions which are “bump functions” with an internal local maximum evaluated on the same linear
projection. Note that the two secondary circles each intersect the primary circle in two points, as indicated
by the coloring, and that they do not intersect each other. We informally confirmed that the indicated
patches are the ones which occur in the high density portions of the data set.
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Remark: We note that there is a preference within the data for patches which are aligned in vertical and
horizontal directions, since one can construct versions of the secondary circles which are not aligned in the
vertical direction, and they do not appear. One explanation for this is that patches in natural images are
biased in favor of the horizontal and vertical directions because nature has this bias, since for example objects
aligned in a vertical direction are more stable than those aligned at a 45 degree angle. Another explanation
is that this phenomenon is related to the technology of the camera, since the rectangular pixel arrays in the
camera have the potential to bias the patches in favor of the vertical and horizontal directions. We believe
that both factors are involved. In [13], we have studied 5 × 5 patches, and found the three circles model
appearing there as well. In that case, one would expect to see less bias in favor of the vertical and horizontal
directions, since the pixels give a finer sampling of the image.

One could now ask if there is a larger 2-dimensional space containing the three circle model, occurring
with substantial density. We will first ask to find a natural embedding of the theoretical three circle model
in a 2-manifold. It turns out that the model embeds naturally in a Klein bottle (Image courtesy of Tom
Banchoff).

To see this, we first recall that the Klein bottle can be described as an identification space as pictured below.

P

P Q

Q

R

R

S

S

The colored arrows indicate points being identified using the quotient topology construction (see [33]), which
informally means that the top vertical edge is identified with the lower vertical edge in a way which preserves
the x-coordinate, and the right hand vertical edge is identified with the left hand vertical edge after a twist
which changes the orientation of the edge. It is convenient to represent the Klein bottle in this way, since it
does not embed in Euclidean 3-space, and therefore cannot be precisely visualized, although a useful visual
representation including self intersections was shown above.

We are interested in finding a sensible embedding of the three circle model in the Klein bottle. Some
experimentation with the three circle model results in the following picture

17



SECONDARY
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R
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S

in which the red segments form the primary circle and the yellow and green segments form the secondary
circles. The red segments form a single circle since the intersection point of the lower red segment with
the right (respectively left) vertical edge is identified with the intersection point of the upper red segment
with the left (respectively right) vertical edge, and the yellow and green segments form circles since the
intersection of the yellow (respectively green) segment with the upper horizontal edge is identified with the
intersection of the yellow (respectively green) segment with the lower horizontal edge. We note that the
yellow and green circles intersect the primary circle in two points, and do not intersect each other, so the
picture in question produces a natural embedding of the three circle model in the Klein bottle.

Remark: The selection of the Klein bottle was the result of a great deal of mental experimentation with
various candidate 2-manifolds, in which we were unable to find similar natural embeddings in other candidate
manifolds, such as the torus or projective plane.

In [11], it was demonstrated that the Klein bottle effectively models a space of high contrast patches of high
density. To understand the results of that paper, it is necessary to discuss another theoretical version of the
Klein bottle. We will be regarding the 3× 3 patches as obtained by sampling a smooth real valued function
on the unit disc at nine grid points, and study subspaces of the space of all such functions which have a
rough correspondence with the subspaces of the space of patches we study. We will consider the space Q of
all two variable polynomials of degree 2, i.e. functions

f(x, y) = A+Bx+ Cy +Dx2 + Exy + Fy2

The set Q is a 6 dimensional real vector space. We now consider the subspace P ⊆ Q consisting of functions
f so that

∫
D

f = 0 and
∫
D

f2 = 1 (2–1)

The first condition is the analogue of the mean centering condition imposed on the patches, and the second
is the analogue of the normalization condition for the contrast. Imposing only the first condition, which is
linear, produces a 5 dimensional vector subspace, and the second, which is quadratic in character, produces
a 4 dimensional ellipsoid within this vector space. We now consider the subspace P0 ⊆ P, consisting of all
functions within P which are of the form

f(x, y) = q(λx+ µy)

where q is a single variable quadratic function, and where λ2 + µ2 = 1. The space of all functions of this
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form within Q is four dimensional (three variables parametrize q, and (λ, µ) lies on the (one-dimensional)
unit circle). The two additional constraints in 2–1 above imposed on it now yield the 2-dimensional complex
P0. We claim that P0 is homeomorphic the Klein bottle. To see this, we let A denote the space of single
variable polynomials q(t) = c0 + c1t+ c2t

2 satisfying the two conditions

∫ 1

−1

q(t) = 0 and
∫ 1

−1

q(t)2 = 1

It is easy to check that regarded as a subspace of R3, this subspace is an ellipse and therefore is homeomorphic
to a circle. For any unit vector ~v in R2 and any q ∈ A, we let q~v : R2 → R be defined by q~v(~w) = q(~v · ~w).
It is easy to check that for q ∈ A and ~v a unit vector, we have that

∫
D

q~v = 0 and
∫
D

q2
~v 6= 0

and that therefore the formula

(q,~v)→ q~v
||q~v||2

defines a continuous map θ from A×S1 to P0. The map θ is however not a homeomorphism, which one can
check as follows. Let ρ : A → A be the involution defined by ρ(c0 + c1t + c2t

2) = c0 − c1t + c2t
2. Then we

have the relation

θ(q,~v) = θ(ρ(q),−~v)

so that the map θ factors through the space of orbits under the involution. It is easy to check (a) that the
factorization is a homeomorphism and (b) that the orbit space is homeomorphic to a Klein bottle.

We now ask to what extent we can “see” a Klein bottle in the data. A naive approach to this question would
be to simply perform the experiments we did above for k = 15 but with a less stringent density threshhold,
for example 40 or 50. Performing these experiments do not produce a non-trivial β2. One might suppose,
though, that the set M0 is not large enough to provide sufficient resolution in the density estimation, and
that if one uses the full set M that one might obtain different answers. With this larger set, one might also
vary the estimator parameter k to obtain a finer estimation of density. After some experimentation, one can
construct a data set S by sampling 104 points from the data set M[100, 10]. The set S exhibits the three
circle model clearly, but enlarging it still does not exhibit the non-trivial β2 which would be characteristic
of the Klein bottle. In order to begin to understand the situation, one should then ask what the least
frequently appearing patches on the Klein bottle would be. In thinking about the polynomial model, one
expects that there should be a preference for the linear polynomials, and the experience with the three circle
model suggests that there is an additional preference for the patches which are lined up with the vertical
directions. This suggests that the least frequently appearing patches would be the pure quadratics composed
with the linear functions (x, y)→

√
2

2 x+
√

2
2 y and (x, y)→

√
2

2 x−
√

2
2 y. Slightly more frequently appearing

would be pure quadratics composed with any linear function which is not a projection on the x and y-axes.
This set of pure quadratics forms a pair of open one-dimensional arcs within the Klein bottle. These arcs
are indicated in blue in the image below, where as before the red circle arcs form the primary circle, and the
yellow and green arcs the secondary circles.
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The idea will be that we wish to include some points corresponding to the blue arcs to the data set, but
which turn out not to satisfy the density threshhold. We will find that once these points are added, the
set then carries the topology of a Klein bottle. This would then give a reasonable qualitative description
for a portion of the density distribution of the high contrast 3 × 3 image patches, in that it can be said
to concentrate around a Klein bottle, but with strongly reduced density around the non-vertical and non-
horizontal pure quadratic patches. In order to find such a map, we identify the pixels in the 3× 3 array with
the points in the set L = {−1, 0, 1} × {−1, 0, 1} in the Euclidean plane. For any given function f ∈ P0, we
define the associated patch by evaluating f at the nine points of L, and then mean centering and D-norm
normalizing. This produces a map h from the Klein bottle P0 to the normalized patch space. We then obtain
additional points to add to the data set by selecting 30 points at random from the blue arcs in the Klein
bottle, computing h on them, and then for each of the 30 points selecting the points of M[100, 10] which
lie closest to them, and finally adjoining them to the set S to obtain an enlarged set S ′. Witness complexes
with 50 landmark points computed for S ′ now display the barcodes which would be associated to a Klein
bottle. Here is a typical picture.
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We note that the β0 barcode (the upper picture) clearly shows the single component, the β1 shows two lines
from threshhold parameter value .15 to .35, and finally the β2 barcode shows a single line on roughly the
same interval. This gives β0 = 1, βi = 2, and β2 = 1. These are the mod 2 Betti numbers for the Klein
bottle.

Remark: There are actually two two-dimensional manifolds with these mod 2 Betti numbers, one is the
Klein bottle, and the other is a torus. These two are distinguished by mod 3 homology, and we have
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performed the computation to show that the mod 3 homology is consistent with the Klein bottle and not
with the torus.

Remark: One can also ask if the space we are studying is in fact closely related the theoretical Klein bottle
defined above using quadratic polynomials. That it is so is strongly suggested in [11] by a comparison with
data sets constructed by adjoining additional points obtained from the whole theoretical Klein bottle to the
set S. The resulting space also shows a strong indication of the same Betti numbers, indicating that the
spaces represent essentially the same phenomenon.

2.5 Example: Electrode array data from primary visual cortex

The goal of neuroscience is, of course, to obtain as complete as possible an understanding of how the nervous
system operates in performing all its tasks, including vision, motor control, higher level cognition, olfactory
sensation, etc.. One aspect of this kind of understanding is the analysis of the structure and function of
individual neurons, and the creation of an associated taxonomy of individual neurons. Another aspect is the
analysis of how families of neurons cooperate to accomplish various tasks, which could be referred to as the
study of populations of neurons. The second problem appears to be very amenable to geometric analysis,
since it will involve the activities of several neurons at once. In the paper [59], a first attempt at topological
analysis of data sets constructed out of the simultaneous activity of several neurons is carried out, with
encouraging results, and we will describe the results of that paper in this section.

The arrays of neurons studied in [59] are from the primary visual cortex or V1 in Macaque monkeys. The
primary cortex is a component in the visual pathway, which begins with the retinal cells in the eye, proceeds
through the lateral geniculate locus, then to the primary visual cortex, and then through a number of higher
level processing units, such as V2, V3, V4, middle temporal area (MT), and others. See [36] and [63] for useful
discussions. It is known that V1 performs low level tasks, such as edge and line detection, and its output is
then processed for higher level and larger scale properties further along the visual pathway. However, the
mechanism by which it carries out these tasks is not understood. A very interesting series of experiments
were conducted in the papers [62] and [38]. These authors study the behavior of the V1 in Macaque monkeys
by injecting a voltage sensitive dye in it, and then performing optical imaging of small regions of the cortex.
Voltage changes in this portion of the cortex will then give rise to color differences in the imaging. Since
the voltages change over time, so will the optical images. These papers study the behavior of the optical
images under two separate conditions, one the evoked state, in which stimuli are being supplied to the eye of
the monkey, and the unevoked or spontaneous state, in which no stimulus is being supplied. It was observed
in [38] that in an informal sense, the images in the different conditions appeared to be quite similar, and a
statistical analysis strongly suggested that the behavior of V1 in the spontaneous condition was consistent
with a behavior which consisted in moving through a family of evoked images corresponding to responses to
angular boundaries, without any particular order.

Another method for studying the behavior of neurons in V1 and other parts of the nervous system is the
method of embedded electrode arrays. In this case, arrays of up to c:a 100 regularly spaced electrodes are
implanted in the V1 (or whatever other portion of the nervous system one is studying) . The voltage at the
electrodes are then recorded simultaneously, so one obtains a voltage level at each of the electrodes at each
point in time. Sophisticated signal processing techniques are then used to obtain an array of N (where N
is the number of electrodes) spike trains, i.e. lists of firing times for N neurons. This experimental setup
provides another view into the behavior of the neurons in V1, and the idea of the paper [59] was to attempt
to the replicate the results of [38], which were carried out using the voltage sensitive dye technology, in
the embedded electrode setting and to attempt to refine the results presented there. We now describe the
experiments which were carried out, and the results of our analysis of the data obtained from them.

10× 10 electrode arrays were used in recording output from the V1 in Macaque monkeys who view a screen.
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Two segments of recording, each of roughly 20-30 minutes, were done under two separate conditions. In
the first, the eyes of the animal were occluded, so no stimulus was presented to the visual system. In the
second, a video sequence obtained by sampling from different movie clips. We refer to the data obtained
in the first setting as spontaneous, and in the second setting as evoked. A signal processing methodology
called spike sorting was then applied to the data, so that one could identify neurons and firing times for each
neuron. Next, the data was broken up into ten second segments in both cases. Each such segment was next
divided up into 200 50ms bins, and for each neuron one is able to count the number of firings within each
such 50ms bin. The five neurons with the highest firing rate were selected in each 10 second window, and for
each bin one can now obtain the 5-vector of number of firings of each of these five neurons. By performing
this construction over all 200 bins, one obtains a set of point cloud data consisting of 200 points in R5. Of
course, we have many such data sets, coming from different choice of 10 second segments and from different
choice of “regime” (spontaneous or evoked).

Beginning with these point clouds, witness complexes based on 35 landmark points were constructed. The
landmark sets were constructed by the “maxmin” procedure, a procedure designed to ensure that the land-
mark points are well distributed throughout the point cloud. This procedure begins with a seed point, and
then constructs the rest of the points deterministically from it. For each data set, we constructed witness
complexes from all the possible seed points. In order to derive topological signatures from each such witness
complex, one selects a threshhold as a fraction of the covering radius of the point cloud, and then determines
the Betti numbers β0, β1, and β2 of the witness complex with this given threshhold value of ε. Thus, for each
witness complex, one can now obtain a vector or signature of integers (β0, β1, β2). The observed signatures
are listed below, with pictures of simple models of possible geometries which they represent.

By far the most frequently occurring signatures were (1, 1, 0) and (1, 0, 1), corresponding to a circle and a
sphere, respectively. The picture below shows the distribution of occurrences of these two under various
choices of the threshholds.
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In order to validate the significance of the results, we ran the identical procedures with data generated at
random for firings with a Poisson model. Monte Carlo simulation show that the probability of obtaining
segments for β1 or β2 longer than 30% of the diameter of the point cloud is < .005.

The summary of the results of the experiment are that topological methods clearly distinguish the data
in both regimes from a Poisson null hypothesis model. They also suggest that there is a similarity in
the spontaneous and evoked regimes, since the same topological signatures occur. Further, though, the
statistics of the signatures occurring are also able to distinguish between the two regimes. We do not yet
understand the nature of the topological phenomenon, which is something which should be addressed by
mapping algorithms, perhaps along the lines of the following section. One aspect we have addressed in this
direction, though, is the question of whether a simple periodic phenomenon associated the body’s natural
rhythms are responsible for the topology. Such a phenomenon would likely create peaks in the amplitude
spectrum of the segments of the data we study. No statistically significant peaks of this type were observed.

3 Imaging: Mapper

3.1 Visualization

So far we have discussed the attachment of homological signatures to point clouds in an attempt to obtain
geometric understanding of them. Frequently, though, it is possible to find images of various kinds attached
to point cloud data which allow one to obtain a qualitative understanding of them through direct visualizaton.
One such method is the projection pursuit method (see [37]), which uses a statistical measure of information
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contained in a linear projection to select a particularly good linear projection for data which is embedded
in Euclidean space. Another method is multidimensional scaling, (see [1]), which begins from an arbitrary
point cloud and attempts to embed it isometrically in Euclidean spaces of various dimensions with minimum
distortion of the metric. Related developments are the Isomap (see [61]) and locally linear embedding (see
[56]). In all cases, the methodologies result in a point cloud in R2 or R3, which can then be visualized by
the investigator. There are, however, other possible avenues for visualization and qualitative representation
of geometric objects. One such possibility is representation as a graph or as a higher dimensional simplicial
complex. Such combinatorial representations can lead to useful qualitative understanding in their own right,
but graph visualization software such as Graphviz (available at http://www.graphviz.org/) can provide useful
visualizations. In thinking about how to develop such a representation, it is useful to keep in mind what
characteristics would be desirable. Here is a list of some such properties.

• Insensitivity to metric: As mentioned in the introduction, metrics used in analyzing many modern
data sets are not derived from a particularly refined theory, but instead are constructed as a reasonable
quantitative proxy for an intuitive notion of similarity. Therefore, imaging methods should be relatively
insensitive to detailed quantitative changes.

• Understanding sensitivity to parameter changes: Many algorithms require parameters to be set
before an outcome is obtained. Since setting such parameters often involves arbitrary, it is desirable to
use methods which provide useful summaries of the behavior under all choices of parameters if possible.

• Multiscale representations: It is desirable to understand sets of point cloud at various levels of
resolution, and to be able to provide outputs at different levels for comparison. Features which are
seen at multiple scales will be viewed as more likely to be actual features as opposed to more transient
features which could be viewed as artifacts of the imaging method.

The rest of this section will be devoted to the description of a method which addresses each of these points.
We have named it Mapper, and it is described in detail in [60].

3.2 A topological method

We begin with a topological construction based on a covering of a topological space X.

Definition 3.1 Let X be a topological space, and let U = {Uα}α∈A be a finite covering of the space X (so the
set A is finite). Let ∆[A] denote the standard simplex with vertex set A, so dim(∆[A]) = #(A)− 1. Further,
for any non-empty subset S ⊆ A, we let ∆[S] ⊆ ∆[A] denote the face spanned by the vertices corresponding
to elements of S, and we let X[S] =

⋂
s∈S Us ⊆ X. By the Mayer-Vietoris blowup of X associated to U ,

denoted by M(X,U), we mean the subspace

⋃
∅6=S⊆A

∆[S]×X[S] ⊆ ∆[A]×X

We note that there are natural projection maps f : M(X,U) → X and g : M(X,U) → ∆[A], which have
the following properties.

• The map f is a homotopy equivalence when X has the homotopy type of a finite complex and the
covering consists of open sets. In fact, using a partition of unity subordinate to the covering U , one
can obtain an explicit homotopy inverse ϕ : X →M(X,U).
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• The map g is a homotopy equivalence onto its image (which is the nerve of the covering, or the Čech
complex Č(U)) when all the sets X[S] are either empty or contractible. This is how the nerve theorem
(Theorem 2.3) is proved.

These two observations demonstrate that one obtains a map from X to Č(U) for any finite complex X.
Such a map can be viewed as a kind of coordinatization of the space X. Ordinary coordinatizations provide
maps to Euclidean spaces of various dimensions, and they often provide useful insights into the spaces in
question. Simplicial complexes, particularly low dimensional ones, can also often be readily visualized, and
can therefore also be expected to provide useful information about a space. This is so even if the map is
not a homeomorphism, so it does not provide complete information about a space. We will next observe
that there is a variant of the Č(U) construction which is a somewhat more sensitive target for this kind of
coordinatization map. Let X be any topological space, and let U be any covering of X. We will now define a
simplicial complex Čπ0(U) to be the nerve of the covering of X by sets which are path connected components
of a set of the form Uα, so the covering is indexed by the set of pairs {(α, ξ)}, where ξ is a path component
of Uα. The set map (α, ξ)→ α yields a map of simplicial complexes Čπ0(U)→ Č(U). It is further clear that
we have a map M(X,U) → Čπ0(U), which is induced by the projection Uα → π0(Uα) for each α. Finally,
the composite

M(X,U)→ Čπ0(U)→ Č(U)

is the earlier defined map g.

Example: Let X denote the unit circle, and let a covering U of X be given by the three sets A = {(x, y)|y <
0}, B = {(x, y)|y > 0}, and C = {(x, y)|y 6= ±1}. We note that π0(A) and π0(B) consist of a single point,
and π0(C) consists of two points.

A

B

C

The simplicial complexes Čπ0(U) and Č(U) are now given by the picture

Note that Čπ0(U) is actually homeomorphic to X, while Č(U) is not. This is an example of the fact that
Čπ0 is more sensitive that Č.

In order for this construction to be useful, one must develop methods for constructing coverings of topological
spaces. Earlier we have looked at constructions where the sets are open balls in a metric space, and where
we have versions of the Voronoi decomposition adapted to general metric spaces. We now suppose that we
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are given a reference map ρ from our space X to a metric space Z, and further that we are given a finite
open or closed covering U of Z. Then we may consider the covering ρ∗U given by ρ∗U = {ρ−1Uα}α∈A, when
U = {Uα}α∈A. This is clearly a covering of X. Typical examples of useful metric spaces Z include R, Rn,
and S1. These spaces admit natural coverings.

Example: For X = R, let R and e be positive real numbers. Then we may construct the covering U [R, e]
which consists of all intervals of the form [kR− e, (k+ 1)R+ e]. This is a two parameter family of coverings,
and as long as e < R

2 , it has covering dimension 1, in the sense that no non-trivial threefold overlaps are
non-empty. Products of these intervals would give a corresponding covering of Rn.

Example: Let X = S1,N be an integer ≥ 2, and ε > 0 be a real number. Then we can form a covering
U [N, ε] = {Uj}0≤j<N of X by setting

Uj = {(cos(x), sin(x))|x ∈ [
2πj
N
− ε, 2πj

N
+ ε]}

whenever ε > π
N .

Remark: When the reference space is R, our construction is closely related to the Reeb graph of a real
valued function on a manifold (see [55]). The actual Reeb graph should be viewed as a limiting version of
the construction as one studies the coverings U [R, ε] with R and ε tending to zero.

We must now describe a method for transporting this construction from the setting of topological spaces
to the setting of point clouds. The notion of a covering makes sense in the point cloud setting, as does
the definition of coverings of point clouds using maps from the point cloud to a reference metric space, by
“pulling back” a predefined covering of the reference space. The notion which does not make immediate
sense is the notion of π0, i.e. constructing connected components of a point cloud. The notion of clustering
(see [31]) turns out to be the appropriate analogue. Our main example of such a clustering algorithm will be
the so-called single linkage clustering. It is defined by fixing the value of a parameter ε, and defining blocks
of a partition of our point cloud as the set of equivalence classes under the equivalence relation generated
by the relation ∼ε defined by x ∼ε x′ if and only if d(x, x′) ≤ ε. Note that the set of clusters in this setting
is precisely π0 applied to the Vietoris-Rips complex V R(X, ε), and that each “cluster” corresponds to the
set of vertices in a single connected component. Now, our version of the construction Čπ0 in this context is
obtained as follows.

1. Define a reference map f : X → Z, where X is the given point cloud and Z is the reference metric
space.

2. Select a covering U of Z. If Z = R, then U can be obtained by selecting R and e as above, and
constructing the covering U [R, e].

3. If U = {Uα}α∈A, then construct the subsets Xα = f−1Uα.

4. Select a value ε as input to the single linkage clustering algorithm above, and construct the set of
clusters obtained by applying the single linkage algorithm with parameter value ε to the sets Xα. At
this point, we have a covering of X parametrized by pairs (α, c), where α ∈ A and c is one of the
clusters of Xα.

5. Construct the simplicial complex whose vertex set is the set of all possible such pairs (α, c), and where
a family {(α0, c0), (α1, c1), . . . , (αk, ck)} spans a k-simplex if and only if the corresponding clusters have
a point in common.

This construction is a plausible analogue of the continuous construction described above. We note that it
depends on the reference map, a covering of the reference space, and a value for ε. We observe that in
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fact any clustering algorithm could be used to cluster the sets Xα, and one could still obtain a sensible
construction. We note that if the covering U has covering dimension ≤ d, i.e. if whenever we are given a
family {α0, α1, . . . , αt} of distinct elements of α with t > d, then Uα0 ∩ . . . ∩ Uαt = ∅, then the dimension of
the simplicial complex we construct will be ≤ d as well. This follows immediately from the definitions.

We note that this construction readily produces multiresolution or multiscale structure which allows one to
distinguish actual features from artifacts. To see this, we begin with the definition of a map of coverings.
Let U = {Uα}α∈A and V = {Vβ}β∈B be coverings of a space Z. By a map of coverings from U to V we will
mean a set map θ : A→ B so that for all α ∈ A, we have Uα ⊆ Vθ(α).

Example: Consider the coverings U [R, e] of R defined above. The indexing set in this case consists of the
integers. It is clear from the definition that the identity map from Z to itself yields a map of coverings
U [R, e]→ U [R, e′] whenever e ≤ e′. In this case, the map of coverings consists simply of the inclusion of an
interval into an interval with the same center but with larger diameter.

Example: The map of integers k → bk2 c defines a map of coverings U [R, e] → U [2R, e], which is two to
one in the sense that every interval in U [2R, e] contains two intervals from U . In order to use these maps to
obtain a multiresolution version of the Mapper construction, we need a definition.

Definition 3.2 A clustering algorithm is said to be functorial if whenever one has an inclusion X → Y
of point clouds, i.e. a set map preserving distances, then the image of each cluster constructed in X under
f is included in one of the clusters in Y . It follows from the fact that the clustering algorithm produces a
partition of the point cloud in question that each cluster is contained in a unique cluster, and therefore that
we have an induced map of sets from the clusters in X to the clusters in Y .

Now suppose we are given data for applying Mapper, i.e. a point cloud X together with a reference map ρ
to a metric space Z. Suppose further that we are given two coverings U = {Uα}α∈A and V = {Vβ}β∈B of Z,
and a map of coverings θ : A → B. Since we have a map of coverings, it is clear that we obtain inclusions
ρ−1Uα ⊆ ρ−1Vθ(α) for all α ∈ A. If we apply a functorial clustering scheme to each of the sets ρ−1Uα and
ρ−1Vβ , it is clear from the definition that we will obtain a map from the set of clusters obtained by applying
the clustering algorithm to ρ−1Uα to the set of clusters obtained by applying it to ρ−1Vβ , and therefore a
map from the vertex set of M(X,U) to the vertex set of M(X,V). One readily checks that it is actually a
simplicial map, so we obtain an associated simplicial map Θ :M(X,U) →M(X,V). So now, for example,
we will always obtain a diagram of simplicial complexes

· · · → M(X,U [R/4, e])→M(X,U [R/2, e])→M(X,U [R, e])

As one moves to the left, the coverings of R (and therefore of X) become more refined, and are presumed to
give picture with finer resolution of the space in question. Studying the behavior of features under such maps
will allow one to get a sense of which observed features are real geometric features of the point cloud, and
which are artifacts, since the intuition is that features which appear at several levels in such a multiresolution
diagram would be more intrinsic to the data set than those which appear at a single level.

3.3 Filters

An important question, of course, is how to generate useful reference maps ρ. If our reference space Z is
actually Rn, then this means simply generating real valued functions on the point cloud. To emphasize the
way in which these functions are being used, we refer to them as filters. Frequently one has interesting
filters, defined by a user, which one wants to study. However, in other cases one simply wants to obtain a
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geometric picture of the point cloud, and it is important to generate filters directly from the metric which
reflect interesting properties of the point cloud. Here are some important examples.

• (Density): Consider any density estimator applied a point cloud X. It will produce a non-negative
function on X, which reflects useful information about the data set. Often, it is exactly the nature of
this function which is of interest.

• (Data depth): The notion of data depth refers to any attempt to quantify the notion of nearness
to the center of a data set. It does not necessarily require the existence of an actual center in any
particular sense, although a point which minimizes the quantity in question could perhaps be thought
of as a choice for a center. In our group’s work, we have referred to quantities of the form

ep(x) =
1

#(X)

∑
x′∈X

d(x, x′)p

(with an obvious generalization to p = ∞) as eccentricity functions, and have used them as filters.
Other notions could equally well be used. The main point is that Mapper output based on such
functions can identify qualitative structure of a particular kind. For example, if the space were as
pictured below,

then Mapper would recover the structure of the three flares coming out from the central point.

• (Eigenvectors of graph Laplacians): Graph Laplacians are interesting linear operators attached
to graphs (see [40]). In particular, their eigenfunctions produce functions on the vertex set of the
graph. They can be used, for example, to produce cluster decompositions of data sets when the graph
is the 1-skeleton of a Vietoris-Rips complex. We find that these eigenfunctions (again applied to the
1-skeleton of the Vietoris-Rips complex of a point cloud) also can produce useful filters in Mapper
analysis of data sets.

3.4 Scale space

The construction from the previous subsection depends on certain inputs, including a parameter ε. The
decision of how to choose this parameter is in principle a difficult one, for which one has little guidance.
Further, it may often be desirable to broaden the definition of the complex to permit choices of ε which
vary with α, i.e. over the reference space Z. In this section, we discuss a systematic way of considering
such varying choices of “scale”. We first note that the because the single linkage procedure applied to a
point cloud X can be interpreted as computing connected components of V R(X, ε), the persistence barcode
for β0 yields interesting information about the behavior of the components (or clusters) for all values of ε.
To be explicit about this, we consider the subset E(X) ⊂ R+ = [0,+∞) consisting of all the endpoints
of the intervals occurring in the barcode. E(X) is a finite set on the non-negative real line, and there is
consequently a total ordering on it induced from the total ordering on R+, and we write E(X) = {e1, . . . , et},
with ei < ej whenever i < j. From the definition, it is clear that whenever we have ei < η < η′ < ei+1, the
natural map on H0 induced by the inclusion V R(X, η) ↪→ V R(X, η′) is an isomorphism, and that therefore
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the inclusion induces a bijection on connected components. For this reason, we call each of the intervals
(ei, ei+1) a stability interval, or an S-interval for X. We now have the following definition.

Definition 3.3 Given a point cloud X, a reference map ρ : X → Z to a metric space, and a covering
U = {Uα}α∈A, we define a simplicial complex SS = SS(X, ρ,U) as follows. The vertices of SS are pairs
(α, I), where α ∈ A, and where I is a stability interval for the point cloud Xα = ρ−1(Uα). A (k + 1)-tuple
{(α0, I0), (α1, I1), . . . , (αk, Ik)} spans a k-simplex in SS if (a) Uα0 ∩ . . . ∩ Uαk 6= ∅ and (b) I0 ∩ . . . ∩ Ik 6= ∅.
The vertex map (α, I)→ α induces a map of simplicial complexes p : SS → Č(U). By a scale choice for X
and U , we will mean a section of the map p, i.e. a simplicial map s : Č(U)→ SS such that p ◦ s = IdČ(U).

Given any scale choice s for X and U , we set s(α) = (α, Iα). Now, for any scale choice s and α ∈ A,
we choose εα ∈ Iα. This gives a choice of the scale parameter ε varying with α, and we can build a new
complex whose vertex set consists of pairs (α, c), where c is a cluster in the single linkage clustering applied
to Xα = ρ−1Uα with perimeter value εα. From the definition of the stability intervals, it is clear that the
complex is independent of the choice of εα ∈ Iα.

Remark: The intuition behind the definition of scale choice is the following. We wish to permit a choice
of scale parameter ε which varies with α. Of course, the set of all such choices is too large to contemplate
using any kind of exhaustive enumeration of the possible values, and will in any case not be useful since we
will not have any criteria to determine which choices are more plausible than others. The definition given
above incorporates two different heuristics which permit us to restrict the choices of εα which we make, as
well as to evaluate various choices relative to each other.

• From the fact that the scale choice s is a simplicial map, it follows that whenever Uα ∩ Uα′ , we also
have Iα ∩ Iα′ . This means that the choices of parameters εα have a certain kind of continuity in the
variable α, which is surely a desirable feature of a varying choice of scales.

• The fact that the stability intervals have a notion of length allows us to evaluate scale choices. The
general rule of thumb is that choices of scale which are stable over a large range of parameter values are
to be preferred over those with stability over a shorter range. This permits various notions of numerical
weights (such as, for example,

∑
α l(Iα), where l(−) denotes length) which allow one to compare scale

choices.

3.5 Examples

We show the outputs from Mapper applied to various data sets. The first example comes from a six
dimensional data set constructed by G.M. Reaven and R.G. Miller from a diabetes study conducted at
Stanford University in the 1970’s. 145 patients were included. Details of the study and of the construction
of the data set can be found in [48]. Below is the output of Mapper applied to this data set, with two
different levels of resolution.
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The filter is in this case a density estimator, and high values are indicated in red, and low density values in
blue. At both scales, there is a central dense core, and two “flares” consisting of points with low density. The
core consists of normal or near-normal patients, and the two flares consist of patients with the two different
forms of diabetes. An imaging coming from the projection pursuit method is given below.

A second example comes from the paper [61], and consists of scanned images of handdrawn copies of the
digit “two”.

The images are compared using a simple L2-metric, and Mapper is applied using a density filter. One can
observe that the dominant feature which is changing as one moves along the graph is the increasing presence
of a loop in the lower left hand corner of the digit. This result is consistent with what was obtained by using
ISOMAP in [61].
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T opological M ethods for R NA Folding

Refolding Pathways by Mapper
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The picture above is constructed using a data set constructed with the folding@home project (http://folding.stanford.edu/),
by simulating the folding of so-called “RNA hairpins”. These are relatively small so-called motifs occurring
within larger RNA molecules, and are among the most frequently occurring such motifs. The actual data
set is obtained from a probabilistic simulation of the dynamics, based on the notion of a contact map. The
contact map is simply an array of zeroes and ones, whose slots correspond to the residues along the molecule,
and where an entry is one if the corresponding pair of residues are in contact with one another, by which we
mean that they are within a fixed threshhold of each other. One can impose a Hamming style metric on the
set of these contact maps. At this point, given a family of such contact maps generated by simulations, we
can employ a filter which is a good proxy for density, and apply Mapper. The output from this application is
the colored graph displayed above. One notes that in the middle, one has some slightly complicated behavior
among the orange nodes, in particular a loop in the corresponding graph. The contact maps corresponding to
members of the clusters corresponding to these nodes are displayed below the Mapper output. The contact
maps are displayed by inserting edges between residues which are in contact. We note that given only the
Mapper output, one might suspect that the small feature (the array of orange nodes) could simply be an
artifact, but examination of the data shows that they correspond to essentially distinct contact maps. Note
also that the data is obtained by simply examining the states occurring in the simulation, and that it does
not include any dynamic information which would show how the states are traversed in the folding process.
This example points out an advantage of the method, in that it is capable of locating small features within
a larger data set. The results described above appear in [6].

4 Generalized forms of persistence

4.1 Multidimensional persistence

We have studied families of spaces parametrized by a single parameter ε as a way of extracting connectivity
information from a point cloud or finite metric space. It turns out that it is often useful to be able to analyze
the behavior of increasing families of spaces parametrized by more than one variable.

Example: Given a point cloud X, one often attempts to understand the nature of an underlying probability
distribution which may have given rise to it. This was clearly the case in the example of the image patch
data described in Section 2.4 above. One way to do this is to estimate the density function using one of many
possible density estimators (see [58]). Given such an estimator, one can now construct the family of spaces
X[T ], where T is a percentage parameter, and X[T ] ⊆ X is the subset of points which lie within the T -th
percentile of density as measured by the given density estimator. Clearly, if T ≤ T ′, we have an inclusion
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X[T ] ⊆ X[T ′], and one is often interested in understanding the geometric evolution of this set as T increases.
In the image patch example above, we chose a few possible values of T to locate levels for T in which we
saw interesting topological behavior, but if one were to be able to study all the values of T simultaneously,
and obtain a summary of the behavior across all values of T , then one would not have to search at random
through the different values of T . In this case, we note that when we apply, for example, the Vietoris-Rips
construction to these sets, one obtains a two parameter family of simplicial complexes {V R(X[T ], ε)}ε,T .
The parameter ε is used to introduce geometry into the discrete sets X[T ], and the parameter T is the
function value we wish to track.

Example: Persistent methods can be used to study qualitative properties of shapes which are not directly
topological. For example, if one has a manifold, one can study the filtration on the manifold by the value of
scalar curvature, and the evolution of the topology of the sublevel sets of this filtration can reflect interesting
properties of the shape, and can provide the basis for methods for discriminating between shapes. In
addition, one can build associated spaces to manifolds or other complexes by studying various versions of the
tangent bundle or the tangent cone of geometric measure theory, which can also be equipped with interesting
filtrations which provide interesting information about the shape, and which can also be used in locating
features such as singularities in the space. See [10], [17], [28], and [7] for details of these lines of research.
In order to study this kind of persistence for spaces given as point clouds, it is necessary to find discrete
versions of the geometric quantities (such as curvature) which are relevant, but it is also necessary to use
multiple persistence based on the geometric quantity and the scale parameter ε simultaneously. As in the
density example above, one needs the ε parameter in order to impose some geometry on the discrete point
cloud one is given.

Example: Suppose one is interested in studying the qualitative behavior of a real valued function f on Rn,
in terms of local maxima, minima, saddle points, etc. An efficient way of doing this is to study the evolution
of the topology of the sublevel sets SR = {x ∈ Rn|f(x) ≤ R}, as is done in Morse theory (see [49]). If one
does not have the explicit form of f , but only the values of f on some grid or other sample S of points in
Rn, one can approximate the topology of the sublevel sets by the Vietoris-Rips complexes of S ∩ SR, and
study their evolution as R increases. Of course, to extract the topology, one also needs the allow the scale
parameter ε in the Vietoris-Rips complexes to vary, and one obtains a two parameter family of simplicial
complexes {V R(S ∩ SR, ε)}ε,R.

It is clear from these examples that it very desirable to obtain useful and computable summaries of the
evolution of topology in situations where there is more than one persistence parameter. A theory which
describes how this can be done is developed in [12]. We now describe this theory.

We recall from Definition 2.9 the notion of a P-persistence object in a category C, where P is a partially
ordered set, as a functor P → C, where P regards P as a category in the usual way. The morphisms of
P-persistence objects are natural transformations of functors. Suppose we are given a family of topological
spaces (or simplicial complexes) {Xs,t}, with inclusions Xs,t → Xs′,t′ whenever s ≤ s′ and t ≤ t′. By
choosing any order preserving map N×N→ R×R, we obtain a N×N-persistence object in the category of
topological spaces (simplicial complexes). Of course, this can be carried out for more than two variables in
the obvious way. One can now apply any of the homology functors Hi(−) to obtain an N× N-vector space.
We recall from Section 2.3 that the category of N-persistence vector spaces is equivalent to the category of
non-negatively graded k[t]-modules. There is a corresponding statement concerning Ns-persistence vector
spaces.

Definition 4.1 By an n-graded ring, we will mean a ring A together with a direct sum decomposition of
abelian groups

A ∼=
⊕

t1,t2,...,tk

At1,t2,...,tn
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where each of the ti’s varies over N, and where the multiplication in the ring A satisfies the requirement

As1,s2,...,sn ·At1,t2,...,tn ⊆ As1+t1,...,sn+tn

Similarly, an n-graded module over an n-graded ring A is an A-module M equipped with a direct sum
decomposition

M ∼=
⊕

t1,t2,...,tk

Mti,t2,...,tk

so that the requirement
As1,s2,...,sn ·Mt1,t2,...,tn ⊆Ms1+t1,...,sn+tn

is satisfied. Notions of homomorphism and isomorphism of n-graded rings and modules are defined in the
obvious ways, making the collection of n-graded A-modules into a category.

The following proposition from [12] is now a straightforward observation.

Proposition 4.2 The category of Nn-persistence vector spaces over a field k is equivalent to the category of
n-multigraded modules over the polynomial ring A(n) = k[x1, x2, . . . , xn], where the multigrading structure
on A(n) is given by A(n)t1,t2,...,tn = k · xt11 x

t2
2 · · · ·xtnn .

As is well known to algebraists, the classification of finitely generated modules over multivariable polynomial
rings is much more complicated than the corresponding result for single variable polynomial rings, and in
fact no reasonable parametrization is known. This situation is also valid in the graded and multigraded
cases. The classification of finitely generated graded modules in the single variable case is parametrized by
a set which is independent of the field in question, while examples show that in the case of more than one
variable, the classification of multigraded modules definitely depends on the field in question. In fact, the
classification in the multivariable case is parametrized by points in moduli varieties over the ground field, and
we therefore say that the one variable classification is discrete while the classification in the multivariable
case is continuous. This observation is initially disappointing, since it suggests that useful classification
results are not likely to be available. However, it turns out that there are useful invariants, even though they
are not complete.

Definition 4.3 Let M be any finitely generated n-graded A(n)-module. Then for any vector

~t = (t1, t2, . . . , tn) ∈ Nn

we define d(~t) to be the dimension of the vector space M~t. Similarly, for any pair of vectors ~t,~t′ ∈ Nn, with
~t ≤ ~t′ in the sense that ti ≤ t′i for all i, we define r(~t,~t′) to be the rank of the multiplication map

x
t′1−t1
1 x

t′2−t2
2 · · ·xt

′
n−tn
n · : M~t →M~t′

The assignments ~t → d(~t) and (~t,~t′) → r(~t,~t′) can be regarded as N-valued functions on the sets Zn and
Pn = {(~t,~t′) ∈ Zn × Zn|~t ≤ ~t′} respectively. These functions are clearly invariants of the isomorphism class
of the module M , and we refer to them as the dimension and rank invariants, respectively.

The following result is proved in [12].

Proposition 4.4 In the case n = 1, the rank invariant is a complete invariant of the isomorphism class of
a finitely generated graded F [t]-module for F a field.
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This suggests that the computation of the rank invariant could be regarded as a suitable generalization of
single variable persistence, even though it clearly ignores potentially interesting information. One question
one could then ask is if there is an interesting generalization of barcodes, which could be used to understand
the rank invariant in the same way as barcodes do for the single variable case. This can be done as follows.

Suppose we are given an n-graded A(n) module M , and we have computed the dimension and rank invariants
dM and rM . We say two elements ~s and ~t of Pn are ρ-related, and write ~s ∼ρ ~t, if (a) dM (~s) = dM (~t) and (b)
rM (~s,~t) = dM (~s) = dM (~t). We then let 'ρ denote the equivalence relation generated by ∼ρ. This equivalence
now gives a partition of the set Nn. When we imagine the module as arising from a multidimensional
persistence vector space, we can imagine the various nodes in the persistence diagram (i.e. the elements of
Nn) as embedded in Rn, and we can assume that they are embedded quite densely, so that adjacent points
are very close in the actual Euclidean space. One can now color code the regions in the partition associated
to 'ρ, and if the dimension is ≤ 3, obtain a kind of image describing the regions of the partition. A typical
output might look like the image below.
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Regions of constant coloring then correspond to regions in which the vector space is constant, i.e. all the
members of a single color region have the same dimension, and further can be connected by a sequence of
isomorphisms associated to comparable members of Nn. These regions correspond to intervals of constancy
in the barcode, i.e. intervals which contain no endpoints of any intervals occurring in the barcode.

A difficulty which must be addressed in working with multidimensional persistence is the computational
efficiency, and indeed setting up a viable computational framework. In the case of single variable persistence,
we use algorithms developed for computing the Smith normal form of a matrix over a principal ideal domain.
This machinery is not available in the multivariable case, but it turns out that it can be replaced by
the Gröbner basis methodology (see [18] or [47]). The part of that methodology which is relevant is the
multigraded version of the notion of a Gröbner basis for a submodule of a free finintely generated module,
the Buchberger algorithm for constructing such a basis, and the algorithm for constructing syzygies attached
to homomorphisms of free multigraded modules (Schreyer’s algorithm). These results are developed in
[14]. The Gröbner basis provides a very compact description which contains all the information about the
multidimensional persistence problem. In particular, it permits the reconstruction of the rank invariant,
which naively would have to be stored as sets of values for very large sets of inputs.

4.2 Quivers and zigzags

In Section 2.3, we developed the notion of a P-persistence object in a category C, where P is a partially
ordered set. We then developed the theory of such persistence objects in the case P = N to define and
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analyze persistent homology. In the previous section, we extended this development to the case P = Nn,
and saw that it permitted the study of additional kinds of problems not addressed in the case n = 1. In this
section, we wish to develop the notion of P-persistence for another class of partially ordered sets, and show
that it allows us to address some interesting classes of problems. The results of this section will appear in
joint work with V. de Silva. We begin by listing the types of problems we wish to study.

Example: Suppose that we are given a large data set X, and we wish to study its homological invariants
by studying the corresponding invariants of subsamples from X. So, for example, if one wanted to estimate
the first Betti number of a putative space X underlying X, one might build a Vietoris-Rips complex with
a fixed ε for a collection of many samples, and if sufficiently many of them compute the first Betti number
to be n, then one might guess that the first Betti number for X is n. However, the picture below suggests
what might go wrong with such an approach. It is a schematic picture of two different data sets, colored in
yellow.

Note that in the leftmost data set, the dominant qualitative picture is that of a single loop, and one can expect
that with reasonable frequency samples many produce point clouds which capture the circular structure
through a barcode computation, in the way illustrated by the green and red loops. In the rightmost data
set, though, one sees many different smaller circles, and one can imagine that each of the different samples
might compute a first Betti number of one, but where each one corresponds to a different loop, as is again
indicated by the green and red loops. One can attempt to distinguish these by insisting that there be some
measurable notion of compatibility between the computations. Here is one such notion. Suppose we have a
family of samples Si ⊆ X, for i = 0, 1, . . . , N . For each i, with 0 ≤ i ≤ N − 1, we consider also the sample
Ti = Si ∪Si+1, and note that we have inclusions Si ↪→ Ti and Si+1 ↪→ Ti. This means that we actually have
a diagram of samples from X

T0 T1 · · · TN−1

S0 S1 · · · SN−1 SN
�
��3

i0

Q
QQk
j0

�
��3

i1

Q
QQk
j1

Q
QQk
jN−2

�
�3iN−1

Q
QQk

jN−1

The value of a diagram of this form is that if we are given elements x0 ∈ Hk(V R(S0)) and x1 ∈ Hk(V R(S1)),
we can obtain information relating the two classes by considering their images i0(x0) and j0(x1) in the group
Hk(V R(T0)). If we find that i0(x0) = j0(x1), then this acts as confirmation that the two elements correspond
to an element arising from the full data set X. Of course, there is no certainty arising from this, but it suggests
the likelihood that this occurs. Note that in the example above, we will find this kind of compatibility in
the left hand set, and not in the right. We would like to develop a systematic methodology which assesses
the frequency of these kind of compatibilities.

Remark: The idea of recovering information about a large data set by studying behavior of various statistics
on subsamples is an example of the bootstrap method due to B. Efron [26]. In that context, one studies means,
variances, and other quantities evaluated on samples, and then assesses how these statistics vary over the
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samples. This is regarded as more informative than simply evaluating those statistics directly on the full
data set. We can view the kind of analysis we are proposing above as a version of the bootstrap idea which
is adapted to structural information, such as presence of loops or cluster decompositions, rather than to
numerical values.

Example: Suppose that we are given a data set X equipped with a map τ to the real line R. For example,
if we have data containing a time component, then a choice of τ would be the time coordinate. For any
t0 ≤ t1, we let X[t0, t1] denote the set {x ∈ X|t0 ≤ ρ(x) ≤ t1}, and let Z(i) = X[i, i + 1] ∪X[i + 1, i + 2].
Then we have a diagram of point cloud data sets

· · · Z(i) Z(i+ 1) · · ·

X[i, i+ 1] X[i+ 1, i+ 2] X[i+ 2, i+ 3]
��

��*

HH
HH

HY

HH
HHY

��
��*

HH
HHY

��
��
�*

We note that the “shape” of this diagram is identical to the shape of the diagram in the previous example.
The description of the behavior of the diagram of vector spaces obtained by applying homology to the
individual terms should be a useful way of tracking how the data behaves dynamically, assuming one can
find a useful summary of the nature of the diagram of vector spaces.

Example: Density estimation is an important subject in statistics, and much of what one wants to do in
analyzing a data set is to describe in a useful way the behavior of functions which estimate density in some
way (see [58]). One way to do this is via kernel density estimators. Suppose that we are given a data set
X embedded in Euclidean space Rn. For any point v ∈ Rn, and positive number ε, we let γv,ε denote a
spherically symmetric Gaussian distribution with center at v and with variance ε. Then one can construct
the function

δε =
1

#(X)

∑
x∈X

γx,ε

as an estimate of the density of the distribution from which X arises by sampling. The resulting function
depends on the parameter ε. For large values of ε, one is estimating density in a way which assigns significant
weight to points which are far from the given point x, and for smaller values of ε, one is estimating density
where one weights much more heavily the points in a smaller neighborhood of x. If ε < ε′, then δε′ is a
smoothed out version of δε. For a given X, it is an interesting question to determine which choice of ε is
“correct”, and statisticians have developed useful heuristics along these lines. Another approach, though,
is to attempt to provide a summary of the behavior of invariants over the full range of values of ε at once.
Fixing a percentage threshhold T , we define the set X[T, ε] to be the set of points lying in the T% densest
points as measured by the estimator δε. If we now fix a sequence of values ε0 < ε1 < · · · < εk, and set
Zi = X[T, εi] ∪X[T, εi+1], we can now construct the following diagram of data sets.

· · · Zi Zi+1 · · ·

X[T, εi] X[T, εi+1] X[T, εi+2]
�
�
��3

Q
Q
QQk

Q
Q

QQk

�
��3

Q
QQk

�
�
��3

If we apply the Vietoris-Rips construction with a fixed parameter value to the diagram, and then apply Hj

for some j, we will obtain another diagram of vector spaces of the same shape as what we have been looking
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at in the earlier examples. It should then be helpful in tracking the qualitative behavior of the density
estimator with varying ε.

Example: We recall the witness complex construction introduced in Section 2.2. Recall that this was a
complex Ww(X,L, ε) constructed on the point cloud X, using a finite “landmark set” L and a positive
parameter ε. It would clearly be informative to understand the extent to which homology calculations
or clustering depends on the choice of landmark set L, but there is no apparent relationship between the
complexes Ww(X,L, ε), even if the one landmark set is contained in the other. One can, however, proceed
as follows. Given a point cloud X and two landmark sets L and L′, we construct a two-variable version of
the witness complexes, denoted Ww(X,L,L′, ε). Its vertex set is L × L′, and we declare that a collection
{(l0, l′0), . . . , (lk, l′k)} spans a k-simplex if and only if there exist ε weak witnesses x and x′ in X for the
collections {l0, . . . , lk} and {l′0, . . . , l′k}, respectively. It is roughly analogous to the Čech complex of the
covering by intersections of Voronoi cells in two different Voronoi decompositions of a metric space. We note
that we have projections

Ww(X,L,L′, ε)→Ww(X,L, ε) and Ww(X,L,L′, ε)→Ww(X,L′, ε)

induced by the vertex maps L×L′ → L and L×L′ → L′. Suppose now that we have a family of landmark
sets Li for X. We let Wi = Ww(X,L, ε) and Ui = Ww(X,Li,Li+1). Then we have a diagram

· · · Wi Wi+1 · · ·

Ui−1 Ui Ui+1

�
�
��

@
@
@I

@
@
@I

�
�
��

@
@
@I

�
�
��

Once again, one can apply homology to the diagram, and the compatibility of classes under the maps in
this diagram should be a useful indication that the classes are intrinsic to X and do not depend on the
choices of landmark points. This kind of compatibility information would, for example, be extremely useful
in interpreting the neuroscience results described in Section 2.5.

The question we now face is how to formalize the notion of compatibility in these diagrams. Here is how
one can proceed. We first define a partial ordering on the set of integers Z. We will declare that for every
integer k, we have 2k+ 1 > 2k and 2k+ 1 > 2k+ 2. Thus, every odd number is greater than its two adjacent
even numbers, and except for identities, there are no other comparabilities.

· · · 2k − 1 2k + 1 2k + 3 · · ·

2k − 2 2k 2k + 2 2k + 4

Q
Q
Qs

> �
��+
> Q

Q
Qs

> �
�
�+

> Q
QQs
> �

��+
> Q

QQs
> �

�
�+

>

We will denote this partially ordered set by Z, and we will denote by Z[m,n] the subset of all integers
i with m ≤ i ≤ n, where m and n are integers with m ≤ n. We note that all the examples above are
either Z-persistence sets or Z[m,n]-persistence sets, and when one applies a Vietoris-Rips construction one
obtains corresponding Z or M(m,n)-persistence simplicial complexes. Applying Hi for some i to each of
these diagrams then gives Z or Z[m,n]-persistence vector spaces. The key ingredient in ordinary persistence
is the observation that there is a classification of N-persistence vector spaces, and it turns out that there is a
classification of the isomorphism classes of Z[m,n]-persistence vector spaces, which is proved and discussed
in [29]. We will describe the structure of this classification.
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Fix m ≤ n. For any m0 ≤ n0, with m ≤ m0 ≤ n0 ≤ n, we will define an elementary object E(m0, n0) as
follows. In order to specify a Z[m,n]-persistence vector spaces, it is sufficient to specify (a) a vector space Vi
for all m ≤ i ≤ n and (b) linear transformations V2k+1 → V2k and V2k+1 → V2k+2 whenever the two vector
spaces Vi involved in the linear transformation are defined. To define E = E(m0, n0), we set Ei = k for
m0 ≤ i ≤ n0, and Ei = {0} otherwise, and we declare that all transformations are the identity if they can
be. If they cannot, then they involve a vector space which contains only the zero vector, and are therefore
of necessity equal to zero . See below for a picture of E(1, 4).

{0} {0} k k {0} {0}

· · · {0} k k · · ·

@
@@R

�
��	

@
@R

�
��	

@
@@R

id �
��	

id @
@@R

id �
��	

@
@@R

�
��	

The upper row consists of the vector spaces for the odd integers, and the lower row of the ones for the
even integers. The three dots indicate an array of zero vector spaces. Now, as in Section 2.3, we have a
notion of morphism of Z[m,n]-persistent vector spaces, and we can therefore ask for the classification up to
isomorphism of then. Here is the theorem, which can be extracted from [29].

Theorem 4.5 Let M denote any Z[m,n]-persistent vector space, so that every vector space Vi is finite
dimensional. Then there is an isomorphism

M ∼=
t⊕

j=1

E(mj , nj)

for some t and a family of pairs of integers (mj , nj), such that m ≤ mj ≤ nj ≤ n for all j. Moreover, this
decomposition is essentially unique, in the sense that t is the same for all such decompositions, and further
that the pairs (mj , nj) are also unique up to a reordering of elements.

One can use this result to obtain the following straightforward consequence.

Corollary 4.6 We say a Z-persistence vector space M is finite if each Mi is finite dimensional and there
exists an integer N such that Mi = {0} if |i| ≥ N . Any finite Z-persistence vector space M can be decomposed
as

M ∼=
t⊕

j=1

E(mj , nj)

for some t and a family of pairs of integers (mj , nj), such that mj ≤ nj. The decomposition is again
essentially unique.

Remark: Z[m,n]-persistence vector spaces are examples of quiver representations, a highly developed area
of algebra. See [29] for a complete description.

The families of intervals in each of these decompositions can be interpreted as barcodes with integer valued
endpoints. We argue that the analysis of these diagrams should be useful in the analysis of the kinds of
problems we have discussed above. We give intuitive illustrations of how this might work. We suspect that
there are theorems which could be proved in this direction, and we hope that that will be the subject of
future work.
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Example: In the context of clustering samples as above, supposing that one obtains a β0-barcode with two
long lines and a family of shorter lines. This outcome would suggest the possibility that one is really looking
at two essential clusters in the full data set, with others arising out of the sampling. We view this idea as a
potential contributor to the study of consistency or stability of clustering [4], [43].

Example: In the context of variable landmark sets as above, suppose one obtains a β1-barcode with one
long line. This would be confirming evidence toward the hypothesis that the original data set has a β1 of
one, and that what one is seeing in each of the witness complexes is a reflection of that qualitative feature.

Example: In considering dynamic data, the barcodes obtained should be useful in understanding the
topological transitions occurring in a changing data set. They should, for example, give a guide to the
behavior of clusters over time.

Remark: It is interesting to note that the problems mentioned here are interesting and difficult even in the
analysis of β0, so that the methods we propose should give interesting new information about the behavior
of clustering.

4.3 Tree based persistence

As we have seen above, algebraic topology is capable of producing signatures which indicate the presence
of topological features within a space. As it stands, however, it is not capable of describing the source of
the feature, i.e. where in the space the hole or other feature is located. By using persistence, one is able
to develop a systematic way of addressing such questions. That methodology has been described in [65]. In
this section, we describe what was done there, and also suggest another persistence framework into which it
might fit.

We suppose that we are given a simplicial complex Σ and a covering S = {Σα}α∈A of Σ by subcomplexes.
For example, if we suppose that we are given a set of point cloud data X and a covering U = {Uα}α∈A of
X, one could obtain a covering of V R(X, ε) by the full subcomplexes of V R(X, ε) on the vertex sets Uα.
The use of filters as described in Section 3 above can provide coverings of X, or one could cover using balls
with centers distributed through the space. One might also cover X by versions of Voronoi cells, as in the
discussion of witness complexes in Section 2.2.

Definition 4.7 Let x ∈ Hi(Σ). We say x is S-small if x ∈ im(iα : Hi(Σα)→ Hi(Σ)) for some α.

Once one determines that a class is S-small, and for which α the class x is in the image of iα, one has in
effect shown that the feature at least can be represented within the given subset of Σ, and so has information
about the source of the class. We recall the Mayer-Vietoris blowup constructionM(|Σ|,S) from Section 3.2.
This is a space equipped with projection maps π∆ :M(|Σ|,S)→ ∆[A], where A is the indexing set for the
covering S, and pΣ : M(|Σ|,S) → |Σ|. It can be shown that pΣ is a homotopy equivalence (see [65]). One
can consider the skeletal filtration {∆[A](k)} on ∆[A], where ∆[A](k) is the subspace consisting of the union
of all faces of dimension ≤ k, and the corresponding filtration π−1

∆ (∆[A](k)) on M(|Σ|,S). The following
propositions are now easy to verify.

Proposition 4.8 A homology class x ∈ Hi(|Σ|) is S-small if and only if x is in the image of the homomor-
phism Hi(π−1

∆ (∆[A](0)))→ Hi(M(|Σ|,S)).

Proposition 4.9 If a homology class x ∈ Hi(|Σ|) is in the image of

Hi(|Σα0 | ∪ |Σα1 | ∪ · · · ∪ |Σαk |)→ Hi(|Σ|)
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for some (k + 1)-fold collection of elements of S, then x is in the image of the homomorphism

Hi(π−1
∆ (∆[A](k)))→ Hi(M(|Σ|,S))

Note that this means that we have an {0, 1, . . . ,#(A) − 1}-persistence vector space {Hi((π−1
∆ (∆[A](j)))}j ,

which contains information about the where the homology classes in Σ arise from. If we are asking whether
the class arises from an individual set in S, then the persistence vector space gives us a complete answer to
this question. If the question is instead whether or not an element arises from a union of k elements of S,
then we do not obtain complete information this way, but we do obtain partial information in that we can
preclude the possibility that a class arises from such a union. Examples of the application of this approach
are given in [65].

We will also suggest the possibility of another approach to the question of determining the origin of homology
classes. Consider first any rooted tree (T, v0), where v0 is the root. The vertex set of T can now be given
a partial ordering ≤T defined by v1 ≤T v2 if and only if the shortest path from v1 to v0 contains v2. The
properties of trees guarantee that ≤T is a partial ordering. Next, suppose that we have a simplicial complex
Σ with a family of coverings Si = {Σα}α∈Ai by subcomplexes, equipped with functions θi : Ai → Ai+1 such
that for any simplex σ ∈ Σ and α ∈ Ai, we have that σ ∈ Σα implies that σ ∈ Σθi(α). We suppose that
there is an integer N so that AN consists of a single element, and that therefore the covering SN consists
only of Σ itself. This covering data gives rise to a rooted tree whose vertex set is

∐N
i=1Ai, and where the

edges are all of the form (α, θiα), for some α ∈ Ai. The single element in AN is a root for the tree. This
kind of family of coverings can arise in natural ways from certain coverings of complexes or spaces.

Example: Consider the unit interval I = [0, 1], and fix N . Let Si denote the covering of I given by the family
of intervals [ k

2N−i
, k+1

2N−i
], where 0 ≤ k ≤ 2N−i − 1 is an integer. Let Ai denote {k ∈ Z|0 ≤ k ≤ 2N−i − 1},

and define θi : Ai → Ai+1 to be the function k → bk2 c. We now have a family of coverings, which become
increasingly “coarse” as i increases. The associated tree is a binary tree with 2N−1 leaves.

Example: If our space is In instead, we may cover by products of the sets in the coverings Si.

Let Si = {Uα}α∈Ai be a family of coverings as above, and θi : Ai → Ai+1 be maps of coverings as above.
Let (T, v0) denote the associated rooted tree, and VT its vertex set equipped with the partial ordering ≤T .
Then we define an associated (VT ,≤T )-persistence vector space {Wt}t∈VT as follows. Given α ∈ Ai ⊆ VT , we
set Wα = Hi(Uα), and whenever α ≤T α′, then the associated linear transformation from H(Uα) to H(Uα′)
is the map induced from the inclusion Uα ↪→ Uα′ = Uθi(α). The idea of studying the source of homology
classes should now be rephrased in terms of invariants of (VT , v0)-persistent vector spaces. This situation
is a bit like the situation encountered in Section 4.1 in that the classification will involve points on positive
dimensional varieties over the ground field. Nevertheless, it appears plausible that one can construct useful
invariants, such as the rank invariant discussed there.

5 Reasoning about clustering

As we have noted above, clustering algorithms are methods which take as input a finite metric space (X, d)
and produce as output a partition Π(X, d) of the underlying set X. In [39], J. Kleinberg proves a non-
existence theorem for clustering algorithms satisfying certain properties, in a spirit similar to that of the
Arrow impossibility theorem. We will enumerate three properties which may be satisfied by clustering
algorithms.

1. Scale invariance: Given a finite metric space (X, d), the partitions of X associated to (X, d) and
(X, rd), where r > 0, are identical.
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2. Richness: Any partition of a finite set X can be realized as Π(X, d) for some metric d on X.

3. Consistency: Suppose that d and d′ are two metrics on a finite set X, and suppose that (a) for
any x, x′ contained in one of the clusters attached to d (i.e. blocks in the partition Π(X, d)) we have
d′(x, x′) ≤ d(x, x′) and (b) for any x, x′ which belong to distinct clusters attached to d, we have
d′(x, x′) ≥ d(x, x′). Then Π(X, d) = Π(X, d′).

Kleinberg’s theorem is now

Theorem 5.1 (Kleinberg, [39]) There are no clustering algorithms which satisfy scale invariance, rich-
ness, and consistency.

This interesting result is disappointing in that it does not give guidance concerning the choices of clustering
algorithms, but rather points out deficiencies from which all clustering algorithms must suffer. It is therefore
interesting to identify situations in which one can prove existence, and perhaps existence and uniqueness
given certain properties. As Kleinberg points out, it is possible to do so in a number of different ways by
specifying cost functions on particular clusterings, and prove a uniqueness results for optimal choices of
clusterings with respect to this cost function, but that this is perhaps less interesting in that cost functions
can often be defined which will isolate a particular algorithm. In [9], such a context is developed which is
not dependent on the choice of a cost function but is rather on “structural” criteria which have a great deal
in common with Kleinberg’s requirements. We now describe the main result of [9].

We begin with the informal observation that clustering for finite metric spaces can be thought of as the
statistical version of the geometric notion of forming the set π0(X) of connected components of a topological
space X. We note that the correspondence X → π0(X) can actually be viewed as a functor (see [44]) from
the category of topological spaces to the category of sets, in the sense that a continuous map f : X → Y
induces a map of sets π0(f) : π0(X)→ π0(Y ), satisfying certain obvious conditions on composite maps and
identity maps. This observation is much more than a curiosity. It is the basis for many comparison theorems
in topology, and in fact underlies the combinatorization of topology obtained via simplicial sets [45], [19].
It is also what underlies the theoretical constructions underlying the Mapper algorithm discussed in Section
3. Finally, it is also the basis for etale homotopy theory, which adapts topological methods to the study of
number theoretic problems. The naturality of this condition as well as its utility in many other mathematical
contexts suggests that it is very natural to formulate such a condition for clustering algorithms as well. We
will therefore attempt to describe clustering algorithms as functors between two categories, where the domain
category has as its objects the collection of finite metric spaces. One must therefore first define a notion of
morphism of finite metric spaces. We define several such notions.

1. Isometry: An isometry from a finite metric space (X, dX) to another finite metric space (Y, dY ) is a
bijective map of sets f : X → Y so that

dY (f(x), f(x′)) = dX(x, x′) for all x, x′ ∈ X

.

2. Embeddings: An embedding from a finite metric space (X, dX) to another finite metric space (Y, dY )
is a map of sets f : X → Y so that

dY (f(x), f(x′)) = dX(x, x′) for all x, x′ ∈ X

.

3. Monomorphisms: A monomorphism from a metric space X to another metric space Y is a monic
set map f : X → Y so that for all x, x′ ∈ X, we have dY (f(x), f(x′)) ≤ d(x, x′).
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4. Distance non increasing maps: A distance non increasing (dni) map from a finite metric space
(X, dX) to another finite metric space (Y, dY ) is a map of sets f : X → Y so that dY (f(x), f(x′)) ≤
dX(x, x′) for all x, x′ ∈ X.

Each of these notions creates the structure of a category whose set of objects are the finite metric spaces,
since one can readily observe that each of the classes of morphisms is closed under composition and contains
the identity. We denote each of these categories byMiso,Memb,Mmon, andMgen, respectively. One could
initially hope to study clustering algorithms as functors from each of these categories to sets. Thinking in
these terms, though, it is first clear that not every functor on one of these categories deserves the name
“clustering functor”. To see this, we return to the geometric notion of connected components. Not only
is the correspondence π0(−) a functor from spaces to sets, it is equipped with a natural surjective map of
sets ηX : X → π0(X). Further, these surjective maps have the property that for every continuous map
f : X → Y , the diagram of sets

X Y

π0(X) π0(Y )
?

ηX

-f

?

ηY

-π0(f)

commutes.

Remark: In formal terms, the maps ηX , as X runs over all topological spaces, form a natural transformation
from S to π0(X), where S denotes the “underlying set” functor from the category of topological spaces to
the category of sets.

By arguing with the analogy with the connected component construction, we will begin with a provisional
definition of a C-functorial clustering algorithm, where C is one of the above mentioned categories. It will be a
functor χ from C to the category of sets together with a family of surjective maps of sets η(X,d) : X → χ(X, d)
so that the diagrams

X Y

χ(X, dX) χ(Y, dY )
?

ηX

-f

?

ηY

-χ(f)

commute for every morphism f : (X, dX)→ (Y, dY ) in C.

It is clear that a C-functorial clustering algorithm is a clustering algorithm in the sense of Kleinberg, since
the surjective map of sets from X to χ(X, dX) yields a partition of X, namely the partition whose blocks
are the sets η−1

X (z), as z ranges over all elements of χ(X, dX). This means that Kleinberg’s conditions also
make sense in this context. We examine the possible clustering functors in two of these cases.

Example: Miso-functorial clustering algorithms are very simple to describe. Let I denote the collection
of isometry classes of finite metric spaces, and for each ι let (Xι, dι) denote an element of the isomorphism
class ι. Let Let Gι denote the automorphism group of (Xι, dι), and let Pι denote the set of all possible
partitions on Xi. Clearly the group Gι acts on the set Pι, and we let PGιι denote the fixed point set of that
action. A Miso-functorial clustering algorithm determines a choice pι ∈ PGιι for every ι, and conversely an
arbitrary choice of such pι’s determines a Miso-functorial clustering algorithm. If we impose Kleinberg’s
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scaling condition, we must instead decompose the set of all finite metric spaces into equivalence classes,
where two metric spaces are in the same equivalence class if and only if one is isometric to a rescaling of
the other. The classification is now determined exactly as above, except one needs only to make a choice for
each of these new equivalence classes.

Example: The study of general Mgen-functorial and Mmon clustering algorithms is more subtle, and we
do not yet have a general classification. We will instead give some examples.

• Fix a threshhold parameter ε, and for a finite metric space (X, dX), we let ∼ε denote the equivalence
relation generated by the relation Rε on X defined by xRεx

′ if and only if d(x, x′) ≤ ε. Then the
clustering algorithm which assigns to each (X, dX) the partition associated to ∼ε is clearly Mgen-
functorial. This example corresponds to single linkage clustering with a fixed parameter value ε.

• Consider the finite metric space ∆[n]ε whose elements are {1, 2, . . . , n}, and where d(i, j) = ε for all
pairs 1 ≤ i < j ≤ n. For any finite metric space (X, dX) we define a new relation Rε on X by the
requirement that xRεx′ if and only if there is a distance non-increasing inclusion j : ∆[n]ε ↪→ (X, dX)
such that j(1) = x and j(2) = x′. We then let Eε denote the equivalence relation generated by
Rε. The clustering algorithm which assigns to each (X, dX) the partition of X into the blocks of the
equivalence relation Eε is now clearly Mmon-functorial. This notion of clustering is closely related to
clique clustering algorithms in network clustering [53].

• More generally, for any family Φ of finite metric spaces, one can define clustering algorithms attached
to Φ by analogy with the previous example, where the relation involves injective maps from elements
of the family or possible arbitrary maps of finite metric spaces from the family.

• For any finite metric space (X, dX), define µ(X) to be the minimal non-zero distance between distinct
points of X. The clustering algorithm which assigns to each metric space (X, dX) the clustering
associated to the equivalence relation generated by R 1

µ(X)
is readily checked to be Mmon-functorial.

It is now easy to show that if one imposes the scale invariance condition of Kleinberg, one finds that there
are no non-trivial Mgen-functorial claustering algorithms, where the trivial ones are understood to mean
the discrete one (with one element clusters) and the indiscrete one (in which X forms the single cluster for
every (X, dX)).

Non-existence results are of course interesting, but more useful from the point of view of applying and
using clustering algorithms are situations where existence and uniqueness can be proved. The non-existence
result mentioned in the previous example suggests that one should look for a more relaxed framework. In
order to do this, we will change the target category for clustering algorithms from the category of sets
to the category of R+-persistent sets, where R+ denotes the non-negative real numbers. This is not an
unreasonable thing to do in view of the fact that hierarchical clustering algorithms do not report single
partitions but rather dendrograms, which are roughly speaking R+-persistent sets. We have already defined
the notion of morphisms of R+-persistent objects in any category. A morphism of persistent sets is said to
be surjective if each of the individual morphisms which make it up is surjective. For any finite metric space
(X, dX), we associate to it the R+-persistent set α(X) = {α(X)r}r for which α(X)r = X for all r ∈ R+,
and so that all the morphisms α(X)r → α(X)r′ , for r ≤ r′, are the identity morphisms on X. Then by a
persistent clustering algorithm we will mean an assignment to every finite metric space (X, dX) a persistent
set ξ(X, dX) and a surjective morphism α(X) → ξ(X, dX) of persistent sets for every finite metric space
(X, dX). Letting C be any of the category structures on the collection of finite metric spaces given above,
one can now define a corresponding notion of C-functorial persistent clustering algorithms as follows. Such
a clustering algorithm is a functor ξ from C to the category of persistent sets, equipped with a surjective
morphism of persistent sets ηX : α(X)→ ξ(X, dX) for every (X, dX), so that the diagrams
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α(X) α(Y )

ξ(X, dX) ξ(Y, dY )
?

ηX

-α(f)

?

ηY

-ξ(f)

commute for every morphism f in C. In this context, Kleinberg’s scale invariance condition takes a different
form. For any R+-persistent set U = {Ur} and any positive real number t, we define the persistent set tU
by tUr = U r

t
, and by requiring that for any r ≤ r′, the homomorphism tUr → tUr′ be identified with the

corresponding homomorphism U r
t
→ U r′

t
. The correspondence U → tU is clearly a functor from the category

of persistent sets to itself, which we will write as δr. We also have the rescaling functor ρr from the category
C to itself, which simply multiplies all distances by r. We now say that a persistent clustering algorithm ξ
is scale invariant if (a) χ(ρr(X, dX)) = δr(χ(X, dX)) and (b) ηρr(X,dX) = δr(η(X,dX)). In [9], the following
result is proved.

Theorem 5.2 Let E denote a metric space with two points, and so that the distance between those two
points is = 1. Let P denote the persistent set for which Pr consists of two points for r < 1, of one point
for r ≥ 1, and so that all the maps Pr → Pr′ are surjective for all r ≤ r′. There is a unique Mgen-
functorial persistent clustering algorithm Ξ which is scale invariant and which satisfies the requirement that
Ξ(E) = P . The algorithm Ξ is the algorithm which associates to a finite metric space (X, dX) the persistent
set {π0(V R(X, ε))}ε≥0.

The proof is not difficult. This result is in the spirit of Kleinberg’s result in that the requirements which
define it are structural rather than requiring the optimization of some cost function, but yields an existence
and uniqueness result. This theorem therefore precludes a number of interesting algorithms such as average
linkage and complete linkage clustering from being functorial. Users of clustering algorithms often assert
that average linkage and complete linkage clustering are to be favored over single linkage clustering because
the clusters tend to be more “compact” in an intuitive sense. We believe that their observation should
be interpreted as saying that in clustering one needs to take into account more than just the metric as a
geometric object, but in addition some notion of density. This suggests the possibility of including density
into notions of functoriality, which we will explore in a future paper.

6 What should the theorems be?

We have presented some examples of how topological methods can be applied to study data sets. The
methods provide signatures which yield information about the shape of the data sets being studied, and
can also provide useful methods for visualizing data sets. However, there are many outstanding questions
of a statistical nature. One situation which illustrates some of these questions was that which occurred
in the discussion of the neuroscience data in Section 2.5 above. In that case, one found that the data
exhibited barcodes which appeared to indicate the presence of non-zero β1 and β2 in the data sets. While
the observation is of course suggestive, to prove that it indicates structure in the data set one must show
that segments of the indicated length cannot occur in a random model associated to a null hypothesis. In
the paper [59], this was shown by simulation, which is of course always an option. However, it is clear that
if it were the case that such results could actually be proved, one would avoid the time and effort spent in
simulation, and it would also provide the basis for thinking more systematically about significance questions
for the barcodes arising out of persistent homology. We outline how one might begin formulating such results.

Suppose we are given a metric space X and a probability measure on X. Then we can consider an experiment
consisting of selecting n points {x1, x2, . . . , xn} i.i.d. from X. For each time this experiment is carried out, we
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can then form the R+-persistent simplicial complex {V R({x1, . . . , xn}, ε)}ε≥0, the corresponding homology
vector spaces {Hi(V R({x1, . . . , xn}, ε))}ε≥0, and finally therefore a barcode. We note that the barcode is
simply a family of intervals with endpoints in R+. Each such interval can be considered as a point in the
set D = {(x, y) ∈ R2|x ≤ y}, and the output is therefore a finite subset of the set D. As such, we now have
a finite spatial point process (see [20], [3]). Roughly, a finite spatial point process with values in a locally
compact second countable Hausdorff space S is a probability measure on a σ-algebra constructed on the
collection of finite counting measures on S. The σ-algebra is the minimal one which makes all the counting
maps ΦB measurable, where B is in the Borel σ-algebra associated to S, and ΦB evaluates the counting
measure on B. Point processes are a heavily studied area within statistics.

We believe that theorems which describe these point processes will be very useful in applying algebraic
topology to the qualitative analysis in many areas of science. Here are some suggestions which would be
interesting.

• Determine the distributions of various statistics, such as maximum and average distance to the diagonal,
on the point processes attached to the Vietoris-Rips complexes obtained by sampling sets of points
from various probability distributions on Euclidean space. Gaussian distributions are a good place to
start.

• Similarly, determine distributions of various statistics on point processes obtained by selecting sets
of landmark points using various strategies from probability distributions on Euclidean space and
computing the persistent witness complexes.

• Study consistency of clustering problems by studying the distributions of various statistics on the
zig-zag barcodes obtained by sampling from a larger data set.

• Develop a method for studying the output of multidimensional persistent homology probabilistically.

We point out that in the context of ordinary homology (i.e. not persistent homology), M. Penrose and others
have developed a theory of “geometric random graphs”, and have proved various results concerning the Betti
numbers of complexes attached to such graphs (see [54]). Also, results about barcodes under the general
heading have now begun to appear (see [15] and [16]). These results should be an excellent starting point
for the development of theorems of the type mentioned above.
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Graphics, ETH, Zürich, Switzerland, June 2-4, 2004.

[9] G. Carlsson and F. Memoli, Persistent Clustering and a Theorem of J. Kleinberg , Preprint, March
2008.

[10] G. Carlsson, A. Zomorodian, A. Collins, and L. Guibas, Persistence barcodes for shapes, International
Journal of Shape Modeling, 11 (2005), pp. 149-187.

[11] G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian, On the local behavior of spaces of natural
images, International Journal of Computer Vision, (76), 1, 2008, pp. 1-12.

[12] G. Carlsson and A. Zomorodian, The theory of multidimensional persistence, 23rd ACM Symposium on
Computational Geometry, Gyeongju, South Korea, June 6-7, 2007

[13] G. Carlsson and T. Ishkanov, Local structure of spaces of natural images, preprint, (2007), available at
http://comptop.stanford.edu/preprints/

[14] G. Carlsson, G. Singh, and A. Zomorodian, Computing multidimensional persistence, in preparation.

[15] D. Cohen-Steiner, H. Edelsbrunner and J.Harer, Stability of persistence diagrams Discrete Comput.
Geom., 37 (2007), 103–120.

[16] D. Cohen-Steiner, H. Edelsbrunner, J. Harer and Y. Mileyko, Lipschitz functions have Lp-stable persis-
tence, Found. Comput. Math., to appear.

[17] A. Collins, A. Zomorodian, G. Carlsson, and L. Guibas, A barcode shape descriptor for curve point cloud
data Computers and Graphics, Volume 28, 2004, pp.881–894.

[18] D. Cox, J. Little, and Donal O’Shea, Using Algebraic Geometry, Graduate Texts in Mathematics,
Springer Verlag, 1998, xii + 499 pages, ISBN 0-387-98492-5.

[19] E. Curtis, Simplicial homotopy theory, Advances in Math. 6 1971 107-209 (1971).

[20] D. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes, two volumes,
Second Edition, Springer Verlag, 2003, ISBN 0-387-95541-0

[21] B. Delaunay, Sur la sphere vide, Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestven-
nykh Nauk, 7:793-800, (1934)

[22] J.G. Dumas, F. Heckenbach, B.D. Saunders, and V. Welker, Computing simplicial homology based on
efficient Smith normal form algorithms, In Algebra, Geometry, and Software Systems (2003), 177-207.

[23] D. Dummit and R. Foote, Abstract Algebra. Third edition, John Wiley & Sons, Inc., Hoboken, NJ, 2004.
xii+932 pp. ISBN: 0-471-43334-9 00-01 (16-01 20-01)

[24] H. Edelsbrunner, D. Letscher, and A. Zomorodian, Topological persistence and simplification, Discrete
and Computational Geometry 28, 2002, 511-533

46



[25] H. Edelsbrunner and N.R. Shah, Triangulating topological spaces, Tenth Annual ACM Symposium on
Computational Geometry (Stony Brook, NY, 1994). Internat. J. Comput. Geom. Appl. 7 (1997), no. 4,
365–378.

[26] B. Efron, Bootstrap methods: another look at the jackknife, Ann. Statist. 7 (1979), no. 1, pp. 1–26.

[27] S. Eilenberg, Singular homology theory, Ann. of Math. (2) 45, (1944). 407–447.

[28] P. Frosini and C. Landi, Size theory as a topological tool for computer vision, Pattern Recognition And
Image Analysis, vol. 9 (4) (1999), pp. 596-603.

[29] P. Gabriel and A. Roiter, Representations of Finite-Dimensional Algebras. Translated from the
Russian. With a chapter by B. Keller. Reprint of the 1992 English translation. Springer-Verlag, Berlin,
1997. iv+177 pp. ISBN: 3-540-62990-4

[30] P.G. Goerss, and J.F. Jardine, Simplicial homotopy theory, Progress in Mathematics, 174. Birkhuser
Verlag, Basel, 1999. xvi+510 pp. ISBN: 3-7643-6064-X

[31] J. Hartigan, Clustering Algorithms, Wiley, New York.

[32] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, Springer, New
York, 2001, ISBN: 0-387-95284-5

[33] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002. xii+544 pp. ISBN:
0-521-79160-X; 0-521-79540-0

[34] J.H. van Hateren and A. van der Schaaf, 1998. Independent component filters of natural images compared
with simple cells in primary visual cortex, Proc. R. Soc. Lond.vol. B 265,(1998), pp. 359- 366.

[35] J. Headd, Y.-H. A. Ban, H. Edelsbrunner, M. Vaidya and J. Rudolph. Protein-protein interfaces: prop-
erties, preferences, and projections, Protein Research, to appear, 2007.

[36] D. Hubel, Eye, Brain, and Vision, Scientific American Library, W. H. Freeman, New York,
1995.viii+242pp. ISBN: 0-716-76009-6

[37] P.J. Huber, Projection pursuit, Ann. Statistics (13), 2, (1985), pp. 435-525, with discussion.

[38] T. Kenet, D. Bibitchkov, M. Tsodyks, A. Grinvald, and A. Arieli, Spontaneously emerging cortical
representations of visual attributes, Nature 425, 954 - 956 (2003)

[39] J.M. Kleinberg, An impossibility theorem for clustering, NIPS 2002: 446-453

[40] S. Lafon and A.B. Lee, Diffusion maps and coarse-graining: A unified framework for dimensionality
reduction, graph partitioning, and data set parametrization, IEEE Transactions on Pattern Analysis and
Machine Intelligence 28, 9 (2006), pp. 1393-1403.

[41] A.B. Lee, K.S. Pedersen, and D. Mumford, The nonlinear statistics of high-contrast patches in natural
images, International Journal of Computer Vision (54), No. 1-3, August 2003, pp. 83-103.

[42] R.Y.Liu, J.M. Parelius and K. Singh, Multivariate analysis by data depth: descriptive statistics, graphics
and inference, (with discussion and a rejoinder by Liu and Singh), Ann. Statist. Volume 27, Number 3
(1999), 783-858.

[43] U. von Luxburg, M. Belkin, and O. Bousquet., Consistency of spectral clustering, Annals of Statistics,
36 (2), 555-586, 2008

[44] S. Mac Lane, Categories for the Working Mathematician, Second edition. Graduate Texts in
Mathematics, 5. Springer-Verlag, New York, 1998. xii+314 pp. ISBN: 0-387-98403-8

47



[45] J.P. May, Simplicial objects in algebraic topology, Reprint of the 1967 original. Chicago Lectures
in Mathematics. University of Chicago Press, Chicago, IL, 1992. viii+161 pp. ISBN: 0-226-51181-2

[46] P. McCullagh, What is a statistical model? With comments and a rejoinder by the author. Ann. Statist.
30 (2002), no. 5, 1225–1310.

[47] Miller, E., and Sturmfels, B. Combinatorial Commutative Algebra Graduate Texts in Mathematics,
227. Springer-Verlag, New York, 2005. xiv+417 pp. ISBN: 0-387-22356-8

[48] R. Miller, Discussion - projection pursuit, Ann. Statistics 13,2, 1985, pp. 510-513. (With discussion)

[49] J. Milnor, Morse Theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics
Studies, No. 51 Princeton University Press, Princeton, N.J. 1963 vi+153 pp.

[50] D. Mumford,The dawning of the age of stochasticity, appears in Mathematics: Frontiers and Per-
spectives, Amer. Math. Soc., Providence, RI, 2000, 197–218.

[51] J. Munkres, Topology: a First Course, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975. xvi+413
pp.

[52] P. Niyogi, S. Smale, and S. Weinberger, Finding the homology of submanifolds with high confidence from
random samples, Discrete and Computational Geometry, vol. 39, nos. 1-3, (2008).
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