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Abstract

Knowledge transfer is computationally challenging, due in
part to the curse of dimensionality, compounded by source
and target domains expressed using different features (e.g.,
documents written in different languages). Recent work on
manifold learning has shown that data collected in real-world
settings often have high-dimensional representations, but lie
on low-dimensional manifolds. Furthermore, data sets col-
lected from similar generating processes often present dif-
ferent high-dimensional views, even though their underly-
ing manifolds are similar. The ability to align these data sets
and extract this common structure is critical for many trans-
fer learning tasks. In this paper, we present a novel frame-
work for aligning two sequentially-ordered data sets, taking
advantage of a shared low-dimensional manifold representa-
tion. Our approach combines traditional manifold alignment
and dynamic time warping algorithms using alternating pro-
jections. We also show that the previously-proposed canoni-
cal time warping algorithm is a special case of our approach.
We provide a theoretical formulation as well as experimental
results on synthetic and real-world data, comparing manifold
warping to other alignment methods.

Introduction
The advent of large, often high-dimensional, digital data sets
has made automated knowledge extraction a critical research
focus in the field of machine learning. Often, we find real-
world sequential data sets that encode the same information
with disparate surface feature representations, such as sensor
network data, activity and object recognition corpora, and
audio/video streams. In these cases, an automated technique
for discovering correlations between sets will allow easy
transfer of knowledge from one domain to another, avoid-
ing costly or infeasible re-learning. In this paper, we present
a framework that combines manifold alignment (Ham, Lee,
and Saul 2005; Wang and Mahadevan 2009) and dynamic
time warping (DTW) (Sakoe and Chiba 1978) for align-
ing two such sequential data sets. Temporal alignment of
time series is an important research topic in bioinformatics,
text analysis, computer vision, etc. Some specific applica-
tions include human motion recognition (Junejo et al. 2008),
temporal segmentation (Zhou, Torre, and Hodgins 2008), or
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Figure 1: An illustration of two sinusoidal curves before and
after applying CTW

Figure 2: Sinusoidal curves on a plane and on a Swiss roll

building view-invariant representations of activities (Junejo
et al. 2008). We also prove that the previously proposed
method of canonical time warping (CTW) (Zhou and De la
Torre 2009), which has been shown to outperform other
state-of-the-art techniques based on DTW such as deriva-
tive dynamic time warping (Keogh and Pazzani 2001) or it-
erative time warping (Hsu, Pulli, and Popović 2005), is a
special case of our approach. In addition, our approach per-
forms better than CTW when data lie on different nonlinear
manifolds.

Dynamic time warping has been used effectively for time-
series alignment, but it requires an inter-set distance func-
tion, which usually implies that both input data sets must
have the same dimensionality. DTW may also fail under ar-
bitrary affine transformations of one or both inputs.

CTW aims to solve these two problems by alternating



between canonical correlation analysis (CCA) (Anderson
2003) and DTW until convergence, as illustrated in Figure 1.
In the case where inputs are of different dimensions, CTW
first projects both data sets into a shared space using prin-
cipal component analysis (PCA) (Jolliffe 2002). The algo-
rithm does not always converge to a global optimum, but
CTW still improves the performance of the alignment when
compared to applying DTW directly. However, CTW fails
when the two related data sets require nonlinear transfor-
mations to uncover the shared manifold space. We illustrate
such a case in Figure 2, in which two sequential data sets are
two sin(x) curves; one lying on a plane and the other on a
Swiss roll. In this case, the CCA projection that CTW relies
on will fail to unroll the second curve, making a good DTW
alignment impossible.

We first provide a brief overview of manifold alignment
and dynamic time warping before combining the two to for-
mulate manifold warping.

Manifold Alignment
In manifold alignment (Wang and Mahadevan 2009), we are
given two data sets X ∈ RnX×dX and Y ∈ RnY ×dY where
Rm×n denotes a m by n real matrix. In X and Y , each row
is an instance. W (X) ∈ RnX×nX and W (Y ) ∈ RnY ×nY

are similarity matrices that provide the similarities between
instances in X and Y , respectively. These two matrices are
usually constructed as adjacency matrices of nearest neigh-
bor graphs, optionally applying a heat kernel function. In ad-
dition, we also have a warping matrix W (X,Y ) ∈ RnX×nY

that specifies the correspondences between instances in X
and Y. Typically,

W
(X,Y )
i,j =

{
1 if Xi corresponds to Yj
0 otherwise (1)

Suppose we have a mapping that maps X,Y to F (X) ∈
RnX×d, F (Y ) ∈ RnY ×d in a latent space with dimension
d ≤ min(dx, dy). Note that in terms of the underlying ma-
trix representation, any row i of X is mapped to row i of
F (X), and a similar relation holds for Y and F (Y ). We form
the following loss function for the mapping as follows. The
first term indicates that corresponding points across data sets
should remain close to each other in the embedding. The last
two terms specify that, within an input set, points close in the
original space should remain close in the embedding. The
factor µ controls how much we want to preserve inter-set
correspondences versus local geometry.
L1

(
F (X), F (Y )

)
= µ

∑
i∈X,j∈Y

||F (X)
i − F (Y )

j ||2W (X,Y )
i,j

+(1− µ)
∑
i,j∈X

||F (X)
i − F (X)

j ||2W (X)
i,j

+(1− µ)
∑
i,j∈Y

||F (Y )
i − F (Y )

j ||2W (Y )
i,j (2)

The notation i ∈ X simply means 1 ≤ i ≤ nX . We can
combine W (X),W (Y ), and W (X,Y ) into a joint similarity
matrix W :

W =

[
(1− µ)W (X) µW (X,Y )

µW (Y,X) (1− µ)W (Y )

]
(3)

Then, we combine F (X), F (Y ) into F where F =[
F (X)

F (Y )

]
. Let Fi,k denote the element (i, k) of F and F·,k

denote the kth column of F . Then the loss function can be
rewritten:

L1(F ) =
∑
i,j

||Fi − Fj ||2Wi,j

=
∑
k

∑
i,j

||Fi,k − Fj,k||2Wi,j

= 2
∑
k

FT·,kLF·,k = 2tr
(
FTLF

)
(4)

, where L is the graph Laplacian of F . LetD be the diagonal
matrix in which each diagonal element is the degree of the
corresponding vertex. The optimization problem becomes:

argmin
F

(L1) = argmin
F

(
tr
(
FTLF

))
(5)

This matches the optimization problem of Laplacian
Eigenmaps (Belkin and Niyogi 2001), except that in this
case the similarity matrix is a joint matrix produced from
two similarity matrices. As with Laplacian Eigenmaps, we
add a constraint FTDF = I in order to remove an arbi-
trary scaling factor as well as to avoid a collapse to a sub-
space with dimension less than d. For example, this con-
straint prevents the trivial mapping to a single point. The
solution F = [f1, f2, ..., fd] is given by d eigenvectors cor-
responding to the d smallest nonzero eigenvalues of the gen-
eral eigenvalue problem: Lfi = λDfi for i = 1, ..., d.

We can also restrict the mapping to be linear by instead
solving the optimization problem:
argmin

φ

(
tr
(
φTV TLV φ

))
subject to φTV TDV φ = I

(6)
, where V is the joint data set:

V =

(
X 0
0 Y

)
(7)

and φ =

[
φ(X)

φ(Y )

]
is the joint projection,L,D are the graph

Laplacian and degree matrix of V respectively. The resul-
tant linear embedding is then Xφ(X) and Y φ(Y ), instead
of F (X) and F (Y ). The solution for φ = [φ1, φ2, ..., φd]
is given by d eigenvectors corresponding to the d small-
est nonzero eigenvalues of the general eigenvalue problem
V TLV φi = λV TDV φi for i = 0, ..., d.

Dynamic Time Warping
We are given two sequential data setsX = [xT1 , . . . , x

T
n ]
T ∈

Rn×d, Y = [yT1 , . . . , y
T
m]T ∈ Rm×d in the same space

with a distance function dist : X × Y → R. Let P =
{p1, ..., ps} represent an alignment betweenX and Y , where
each pk = (i, j) is a pair of indices such that xi corresponds
with yj . Since the alignment is restricted to sequentially-
ordered data, we impose the additional constraints:

p1 = (1, 1) (8)
ps = (n,m) (9)

pk+1 − pk = (1, 0) or (0, 1) or (1, 1) (10)
That is, an alignment must match the first and last in-

stances and cannot skip any intermediate instance. This also



yields the property that no two sub-alignments cross each
other. Figure 3 is an example of a valid alignment. We can
also represent the alignment in matrix form W where:

Wi,j =

{
1 if (i, j) ∈ P
0 otherwise (11)

To ensure that W represents an alignment which satisfies
the constraints in Equations 8, 9, 10, W must be in the fol-
lowing form: W1,1 = 1,Wn,m = 1, none of the columns
or rows of W is a 0 vector, and there must not be any 0 be-
tween any two 1’s in a row or column of W . We call a W
which satifies these conditions a DTW matrix. An optimal
alignment is the one which minimizes the loss function with
respect to the DTW matrix W :

L2(W ) =
∑
i,j

dist (xi, yj)Wi,j (12)

A naı̈ve search over the space of all valid alignments
would take exponential time; however, dynamic program-
ming can produce an optimal alignment in O(nm).

Manifold Warping
One-step algorithm
We now present a novel framework for aligning two
sequentially-ordered data sets that share a common mani-
fold representation. In our approach, we use the warping ma-
trix produced by DTW as a heuristic correspondence matrix
for manifold alignment. The proposed algorithm uses alter-
nating projections, picking new correspondences with DTW
and reprojecting both inputs using manifold alignment until
the loss function is minimized. This presents an improve-
ment over CTW in cases where nonlinear transformations
are required to recover the underlying manifold structure of
one or both input data sets. We introduce the following loss
function for manifold warping:

L3

(
F (X), F (Y ),W (X,Y )

)
=

µ
∑

i∈X,j∈Y
‖F (X)

i − F (Y )
j ‖2W (X,Y )

i,j

+(1− µ)
∑
i,j∈X

‖F (X)
i − F (X)

j ‖2W (X)
i,j

+(1− µ)
∑
i,j∈Y

‖F (Y )
i − F (Y )

j ‖2W (Y )
i,j

(13)

The optimization becomes argmin
F (X),F (Y ),W (X,Y )

(L3) subject to

FTDF = I where F =

[
F (X)

F (Y )

]
and W (X,Y ) is a DTW

matrix. Note that unlike manifold alignment, the correspon-

Figure 3: A valid time-series alignment

dence matrix W (X,Y ) is now an argument in the optimiza-
tion problem. The intuition behind this loss function is sim-
ilar to that of manifold alignment: the last two error terms
ensure that the embedding preserves the local geometry of
the inputs, and the first term promotes a high quality DTW
alignment between two sequential data sets. Again, these
goals are controlled by the parameter µ. We now propose
an algorithm that minimizes L3:

Input: X,Y: two time-series data sets
d: latent space dimension
k: number of nearest neighbors used
µ: preserving correspondence vs local geometry factor
Output: F (X), F (Y ): the embeddings of X and Y in

the latent space
W (X,Y ): the result DTW matrix that provides the
alignment of X and Y
begin

W (X) ← KNNGraph(X, k)
W (Y ) ← KNNGraph(Y, k)
Set W (X,Y )

1,1 =W
(X,Y )
nX ,nY = 1, and 0 everywhere else

t← 0
repeat

W =

[
(1− µ)W (X) µW (X,Y ),t

µ(W (X,Y ),t)T (1− µ)W (Y )

]
F (X),t+1, F (Y ),t+1 ←
MA(F (X),t, F (Y ),t,W, d, µ)
W (X,Y ),t+1 ← DTW(F (X),t+1, F (Y ),t+1)
t← t+ 1

until convergence;
F (X) ← F (X),t; F (Y ) ← F (Y ),t;
W (X,Y ) ←W (X,Y ),t

end
Algorithm 1: One-Step Manifold Warping

In Algorithm 1, MA(X,Y,W,d,µ) is a function that re-
turns the embedding of X,Y in a d dimensional space us-
ing manifold alignment with the joint similarity matrix W
and parameter µ described in the manifold alignment sec-
tion. The function DTW(X,Y) returns a DTW matrix after
aligning two sequences X,Y using dynamic time warping.
The KNNGraph(X,k) function returns the k-nearest neigh-
bors graph of a data set X . In some cases, it is useful to
replace the k-nearest neighbor graph approach with an ε-
neighborhood graph (Belkin and Niyogi 2001).

Theorem 1. Let L3,t be the loss function L3 evaluated at
F (X),t, F (Y ),t,W (X,Y ),t of Algorithm 1. The sequence L3,t

converges to a mimimum as t→∞. Therefore, Algorithm 1
will terminate.

Proof. In every iteration t, two steps are performed:
using manifold alignment to solve for new projections
F (X),t+1, F (Y ),t+1, and using DTW to change the corre-
spondences to W (X,Y ),t+1.

Recall that the loss function L1 is just L3 with fixed
W (X,Y ). In the first step, with fixed W (X,Y ),t, Algorithm



1 solves for new projections F (X),t+1, F (Y ),t+1 using man-
ifold alignment. In manifold alignment section, we showed
that manifold alignment’s mappings minimize the loss func-
tion L3 when the correspondence matrix is fixed. Hence:

L3(F
(X),t+1, F (Y ),t+1,W (X,Y ),t)

≤ L3(F
(X),t, F (Y ),t,W (X,Y ),t)

(14)

In the second step, the projections are fixed as
F (X),t+1, F (Y ),t+1. Algorithm 1 changes the correspon-
dence matrix from W (X,Y ),t to W (X,Y ),t+1 which does not
affect last two terms in L3. If we replace dist(F (X)

i , F
(Y )
j )

by µ||F (X),t+1
i − F

(Y ),t+1
j ||2 in the loss function L2 of

DTW, we recover the first term in L3 of manifold warping.
Since W (X,Y ),t+1 is produced by DTW, it will minimize
the first term of L3. Therefore, we have:

µ
∑

i∈X,j∈Y
||F (X),t+1

i − F (Y ),t+1
j ||2W (X,Y ),t+1

i,j

≤ µ
∑

i∈X,j∈Y
||F (X),t+1

i − F (Y ),t+1
j ||2W (X,Y ),t

i,j

(15)

Changing the correspondence matrix does not affect the last
two terms of L3, so:

L3(F
(X),t+1, F (Y ),t+1,W (X,Y ),t+1)

≤ L3(F
(X),t+1, F (Y ),t+1,W (X,Y ),t)

≤ L3(F
(X),t, F (Y ),t,W (X,Y ),t) from inequality 14

⇔ L3,t+1 ≤ L3,t

(16)
Therefore, L3,t is a decreasing sequence. We also have
L3,t ≥ 0, so it is convergent. Therefore, Algorithm 1 will
eventually terminate.

Two-step algorithm

We now propose an algorithm that exploits the observation
that if the local geometries of the two data sets are roughly
the same, their similarity matrices will also be very simi-
lar to each other. (Wang and Mahadevan 2008) Thus, if we
first perform a nonlinear projection on each input set inde-
pendently, the embeddings are likely to be linearly alignable
using either manifold warping or CTW.

In Algorithm 2, DimReduction(X,W, d) is a dimension-
ality reduction function which maps X with similarity ma-
trix W to a lower dimensional space d. In this paper, we
will use Laplacian Eigenmaps to be consistent with man-
ifold alignment even though other methods such as LLE
(Roweis and Saul 2000), Isomap (Tenenbaum, De Silva, and
Langford 2000), etc. could be applied. LMA(X,Y,W,d,µ) is a
function that performs linear manifold alignment described
above on X and Y with the joint similarity matrix W , the
target dimension d and returns the projection matrices φ(X)

and φ(Y ). We can think of DimReduction as a preprocessing

Input: X,Y: two time-series data sets
d: latent space dimension
k: number of nearest neighbors used
µ: preserving correspondence/local geometry factor
Output: F (X), F (Y ): the embeddings of X and Y in

the latent space
W (X,Y ): the result DTW matrix that provides the
alignment of X and Y
begin

W (X) ← KNNGraph(X,k)
W (Y ) ← KNNGraph(Y,k)
t← 0
F (X),t ← DimReduction

(
F (X),W (X), d

)
F (Y ),t ← DimReduction

(
F (Y ),W (Y ), d

)
repeat

W =

[
(1− µ)W (X) µW (X,Y ),t

µ(W (X,Y ),t)T (1− µ)W (Y )

]
φ(Y ),t+1, φ(X),t+1

← LMA
(
F (X),t, F (Y ),t,W, d, µ

)
F (X),t+1 ← F (X),tφ(X),t+1

F (Y ),t+1 ← F (Y ),tφ(Y ),t+1

W (X,Y ),t+1 ← DTW
(
F (X),t+1, F (Y ),t+1

)
t← t+ 1

until convergence;
F (X) ← F (X),t; F (Y ) ← F (Y ),t;
W (X,Y ) ←W (X,Y ),t

end
Algorithm 2: Two-Step Manifold Warping

step, then reformulate the loss function as:
L4(φ

(X), φ(Y ),W (X,Y ))

= ((1− µ)
∑
i,j∈X

||F (X)
i φ(X) − F (X)

j φ(X)||2W (X)
i,j

+(1− µ)
∑
i,j∈Y

||F (Y )
i φ(Y ) − F (Y )

j φ(Y )||2W (Y )
i,j

+µ
∑

i∈X,j∈Y
||F (X)

i φ(X) − F (Y )
j φ(Y )||2W (X,Y )

i,j )

(17)
which is the same loss function as in linear manifold align-
ment except that W (X,Y ) is now a variable. The two con-
straints are the constraint in Equation 6 of linear manifold
alignment, and W (X,Y ) must be a DTW matrix.

Theorem 2. Let L4,t be the loss function L4 evaluated at∏t
i=1 φ

(X),i,
∏t
i=1 φ

(Y ),i,W (X,Y ),t of Algorithm 2. The se-
quence L4,t converges to a mimimum as t→∞. Therefore,
Algorithm 2 will terminate.

Proof. The proof is similar to that of theorem 1. At any it-
eration t, Algorithm 2 first fixes the correspondence matrix
at W (X,Y ),t. Now let L′4 be like L4 except that we replace
F

(X)
i , F

(Y )
i by F (X),t

i , F
(Y ),t
i and Algorithm 2 minimizes

L′4 over φ(X),t+1, φ(Y ),t+1 using linear manifold alignment.



Figure 4: Embedding of two sin(x2) curves illustrated in
Figure 2 onto 2D.

Thus,
L′4(φ

(X),t+1, φ(Y ),t+1,W (X,Y ),t)
≤ L′4(I, I,W (X,Y ),t)

= L4(
∏t
i=1 φ

(X),i,
∏t
i=1 φ

(Y ),i,W (X,Y ),t)
= L4,t

(18)

since F (X),t = F (X),0
∏t
i=1 φ

(X),i and F (Y ),t =

F (Y ),0
∏t
i=1 φ

(X),i. We also have:
L′4(φ

(X),t+1, φ(Y ),t+1,W (X,Y ),t)

= L4(
∏t+1
i=1 φ

(X),i,
∏t+1
i=1 φ

(Y ),i,W (X,Y ),t)
≤ L4,t

(19)

Algorithm 2 then performs DTW to change W (X,Y ),t to
W (X,Y ),t+1. Using the same argument as in the proof of
Theorem 1, we have:

L4(
∏t+1
i=1 φ

(X),i,
∏t+1
i=1 φ

(Y ),i,W (X,Y ),t+1)

≤ L4(
∏t+1
i=1 φ

(X),i,
∏t+1
i=1 φ

(Y ),i,W (X,Y ),t)
≤ L4,t

⇔ L4,t+1 ≤ L4,t.

(20)

So, the convergence follows.

Furthermore, when we set µ = 1, the loss function L4

will become similar to that of CTW. We can also substitute
CTW in place of the loop in the algorithm.

Experimental Results
Synthetic data sets
We compare the performance of CTW and manifold warp-
ing by trying to align two sin(x2) curves: one is on the flat
plane, the another is projected onto the Swiss roll as illus-
trated in Figure 2. Some duplicate points are added along the
curves to create many-to-one correspondences in the align-
ment.

As shown in Figure 4, manifold warping produced similar
embeddings for two curves based on their local geometry
while CTW linearly collapsed the Swiss roll curve onto the
plane.

As a result, the warping path (that is, the alignment path)
produced by manifold warping stays closer to the true warp-
ing path than that produced by CTW. The error is calculated
by the area between the result path and the ground truth path

Figure 5: Result warping path of each algorithm’s alignment
and the ground truth warping path for the two sine curves
illustrated in Figure 2

Figure 6: Samples from pairs of COIL-100 image series

as suggested in (Zhou and De la Torre 2009). We also nor-
malize the error by dividing by the whole plot area, nX×nY .

The warping paths and the calculated errors, shown in
Figure 5 and Table 1, show that manifold warping yields a
smaller error than CTW.

COIL-100 data set
We also test these algorithms on a real-world vision data
set from the Columbia Object Image Library (COIL100)
(S. A. Nene 1996). The corpus consists of different series
of images taken of different objects on a rotating platform.
Each series has 72 images, each 128 × 128 pixels. We try
to align two series of images of two different objects, with
differences in shape and brightness producing very different
high-dimensional representations. To demonstrate our algo-
rithm’s ability to work with data sets of different dimension-
ality, we compress one image series to a smaller resolution
(64 × 64 pixels). Additionally, some duplicate images are
added to each series, to ensure that the correct mapping is
not trivially one-to-one.

In both experiments, manifold warping methods achieve
alignments with a much smaller error than CTW. The depic-
tion in Figure 7 provides an intuitive picture of the manifold
warping algorithm. In the first projection to two dimensions,
both image series are mapped to circles. The next several it-
erations rotate these circles to match the first and last points,
then the points in between. For the case of one-step Mani-
fold Warping (where all mappings are nonlinear), we pick a
small µ to prioritize preserving local geometry of each se-
ries. This avoids over-fitting the embedding to a potentially
bad intermediate DTW correspondence.

We perform the experiment with two pairs of COIL image
series, illustrated in Figure 6.



Figure 7: 2D embedding of dog/cat toy image series (Figure
6).

Figure 8: Warping paths for dog/cat toy images

Kitchen data set
Our last experiment uses the kitchen data set (De la Torre et
al. 2008) from the CMU Quality of Life Grand Challenge,
which records human subjects cooking a variety of dishes.
Here, we attempt nonlinear alignments between the same
subject and task, across different sensors.

Our experiment considers two separate views of the
same moment in time, during which the subject prepares a
brownie and an egg. The two views are 9-dimensional iner-
tial measurement unit (IMU) readings and 87-dimensional
motion capture suit coordinates (MOCAP). Aligning two
views of the same task provides a straightforward eval-
uation metric, because the time stamps on each reading
yield ground-truth correspondence information. To make the
problem computationally feasible, we subsampled the origi-
nal data sets. Each manifold warping method performs better
than CTW, based on the results shown below in Figure 11,

Synthetic Dog Cups Kitchen Kitchen
+Cat Brownie Egg

1-step 0.0768 0.0447 0.0464 0.0257 0.0267
MW
2-step 0.0817 0.0282 0.0125 0.0396 0.0469
MW
2-step 0.0652 0.0298 0.0143 0.0772 0.0479
MW
CTW 0.2784 0.2656 0.1668 0.0966 0.0510
Table 1: Alignment error across algorithms and data sets

Figure 9: 2D embedding of cup image series (Figure 6).

Figure 10: Warping paths for cup images

Figure 12, and Table 1.

Discussion and Future Work
Due to the lack of a linearity constraint, manifold warping
consistently performs better than CTW when the inputs lie
on manifolds that are not accessible via linear transforma-
tions. Even in the linear case, the alignment quality of man-
ifold warping is at just as good as CTW.

Importantly, this improved alignment quality does not im-
pose significant runtime overhead. Both algorithms rely on
the same DTW step, and tuned implementations of manifold
alignment are comparable in runtime to the CCA step used

Figure 11: The embeddings of two sensors measurements
series IMU and MOCAP for a kitchen task involving
brownie.



Figure 12: Result warping path of each algorithm’s align-
ment for the kitchen data set - brownie experiment

in CTW. We found that while each manifold warping itera-
tion is marginally slower than a similar CTW iteration, man-
ifold warping tends to converge with fewer steps. Speedups
may be possible by using a relaxed variation of DTW for the
first few iterations, and parallelizing the initial alignments of
the two-step algorithm.

Both the one-step and two-step manifold warping algo-
rithms are natural extensions of canonical time warping on
manifolds, and the results presented in this paper indicate
that this added information has the potential to significantly
improve alignment quality.

Several variants of DTW and manifold alignment may
prove beneficial within the manifold warping framework.
Future work will explore multiscale and local alignment
strategies, enabling broader applications for manifold warp-
ing.
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