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Abstract

This paper provides test procedures to determine
whether the probability distribution underlying a
set of non-negative valued samples belongs to the
Increasing Failure Rate Average (IFRA) class or
the New Better than Used (NBU) class. Mem-
bership of a distribution to one of these classes
is known to have implications which are impor-
tant in reliability, queuing theory, game theory
and other disciplines. Our proposed test is based
on the Kolmogorov-Smirnov (K-S) distance be-
tween an empirical cumulative hazard function
and its best approximation from the class of dis-
tributions constituting the null hypothesis. It
turns out that the least favorable distribution,
which produces the largest probability of Type I
error of each of the tests, is the exponential distri-
bution. This fact is used to produce an appropri-
ate cut-off or p-value. Monte Carlo simulations
are conducted to check small sample size (i.e.,
significance) and power of the test. Usefulness
of the test is illustrated through the analysis of a
set of monthly family expenditure data collected
by the National Sample Survey Organization of
the Government of India.

1 Introduction

Reliability assessment of single-unit and multi-component
systems has been the subject of much research over the last
few decades. Probabilistic modeling of the lifetime of a
system is often a crucial aspect of reliability assessment
(Roused and Hoyland, 2004). Apart from parametric mod-
eling of lifetime distributions, non-parametric classes of
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life distributions exhibiting certain ageing properties have
also been used as frameworks for reliability analysis (Lai
and Xie, 2006). These aging properties include increasing
failure rate (IFR), increasing failure rate average (IFRA),
new better than used (NBU), among others (Pham, 2003;
Samaniego, 2007).

A distribution function F supported on [0,∞) is said to be
IFR if the corresponding failure rate λ, defined by the rela-
tion λ(t) = d

dt [− log F (t)], is a non-decreasing function.
As λ(t)dt may be regarded as the conditional probability
of failure in the age range [t, t + dt) given survival till age
t, the IFR property indicates a higher propensity of failure
at older age. On the other hand, F is said to be IFRA if the
failure rate λ has the property that its average value over
the range [0, t] is a non-decreasing function of t, i.e.,

d

dt

[∫ t

0
λ(u)du

t

]
≥ 0 for all t > 0. (1)

This property is implied by the IFR property, i.e., every
IFR distribution function is also IFRA. The IFR and IFRA
classes can also be described by the geometric shape of
the cumulative hazard function Λ, defined by the relation
Λ(t) =

∫ t

0
λ(u)du. A distribution is IFR if and only if

Λ is convex, and is IFRA if and only if Λ(t)/t is non-
decreasing. The latter property is described as the star-
shape, which means that the graph of the function is in-
tersected by any straight line through origin at most once,
and from above. If a cumulative hazard function is convex,
it is also star shaped, but the converse is not true.

The IFR and the IFRA properties of a life distribution
are notions of aging. Weaker Notions of aging can also
be found in the literature (see, e.g., Barlow and Proschan
(1981), Klefsjö (1983)). For example, a distribution F is
called NBU if [1 − F (t + x)]/[1 − F (x)] ≤ 1 − F (t) for
all t ≥ 0 and all x > 0, i.e., if the lifetime of a unit of
age x is stochastically smaller than that of a new unit, for
any x > 0. The geometric interpretation of this property
is that the function Λ is super-additive. Corresponding to
each type of aging, there is a corresponding notion of neg-
atively aging, that is obtained by reversing the direction of
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the defining inequality. The negatively aging property cor-
responding to IFR is decreasing failure rate (DFR). Like-
wise, the decreasing failure rate average (DFRA) and new
worse than used (NWU) properties are the negatively ag-
ing counterpart of IFRA and NBU, respectively. The expo-
nential distribution is found to lie at the intersection of all
positively and negatively aging classes (Pham, 2003).

Membership to the IFR, the IFRA or the NBU class of dis-
tributions brings several benefits. For example, the dis-
tribution function can be bounded from above and below
in terms of its mean or a quantile. Barlow and Proschan
(1981) provided several other useful properties of these
classes, relating to reliability of a single unit system, a co-
herent system, a system subject to cumulative shocks and
so on.

Apart from reliability, researchers from various fields, in-
cluding queuing theory, expert systems, game theory and
economics, have historically shown interest in the proba-
bilistic consequences of a distribution belonging to one of
these classes. As an example, consider an M/GI/1/n queue,
which is used in the analysis of operating systems of com-
puters as well as various expert systems. Explicit expres-
sions for the distribution of the number of losses during a
busy period is known when the service time distribution is
exponential. When this distribution is NBU, the number of
losses is known to be stochastically smaller than that in the
exponential case (Abramov, 2006). Before the queue starts
operating, it may be possible to obtain samples from the
service time distribution, and thus determine whether it is
NBU. If so, the results in the exponential case can be used
as a worst-case scenario.

In a game theoretic context, membership of some size
distributions to such classes can ensure the existence of
a Nash equilibrium, and this fact has applications in de-
signing expert systems (see Agah et al., 2004; Zhao and
Atkins, 2009). Economists and econometricians have also
worked with size distributions with aging properties (see,
e.g., Ohn et al., 2004; Moldovanu et al., 2007; Hoppe et al.,
2011). Further, aging properties of an income/expenditure
distribution have been linked with certain characteristics of
the corresponding Lorenz curve, used for studying income
inequalities (Chandra and Singpurwala, 1981; Klefsjö,
1984). All these results are contingent on membership of
the underlying distribution to the class. Therefore, ascer-
taining this membership is an important task.

Several tests of hypotheses have been proposed for this pur-
pose. Typically the exponential distribution is regarded
as the null hypothesis, while membership to the IFR, the
IFRA or the NBU class of distributions is posed as the
alternative (Klefsjö, 1983; Kumazawa, 1987; Bandyopad-
hyay and Basu, 1989; Link, 1989; Jammalamadaka et al.,
1990; Tiwari and Zalkikar, 1992; Ahmad, 1994). The ap-
plicability of these tests is somewhat limited by the fact that

non-membership to the intended class of distributions is not
considered. For instance, a distribution with non-monotone
aging property is classified by the above test either as the
exponential distribution or as belonging to an aging class.
A test for membership would be ideally suited as a comple-
ment to the above tests. In such a test, the null hypothesis
is membership to a proposed class (e.g., IFR, IFRA, NBU),
while the alternative hypothesis is non-membership to that
class. Tenga and Santner (1984) and Santner and Tenga
(1984) proposed a test of membership to the class of IFR
distributions. However, tests of membership to other aging
classes have not been considered.

In this paper, we propose a test of membership to the IFRA
class of distributions, and another test of membership to the
NBU class of distributions.

The inequalities, which are applicable for the members
of the IFRA or the NBU classes of distributions, become
useful when the aging hypothesis is established through
(i) a conventional test of exponentiality against IFRA or
NBU, and (ii) a test of membership to the IFRA/NBU class
against non-membership, proposed here. Since the targeted
hypothesis happens to be the null hypothesis of the pro-
posed test, one might wonder whether any non-rejection
could be due to shortage of samples. The small sample
power of the proposed test is demonstrated through Monte
Carlo simulations, and also through the analysis of a data
set, for which the plot of the estimated cumulative hazard
function appears to largely conform to the general shape
implied by the null hypothesis.

2 Main Results

2.1 Testing for membership to the IFRA class

Let F be the class of all distributions supported on [0,∞).
Let I be the class of IFRA distributions. Consider testing
of the hypotheses,

H0 : F ∈ I,
H1 : F ∈ F− I. (2)

As mentioned in Section 1, the cumulative hazard function,
Λ(t), of F ∈ I is star-shaped. We build the test statistic
using this geometric property of an IFRA distribution.

Given that F ∈ I, Wang (1987) gave an estimator of Λ
which is star-shaped and studied its property. We describe
the estimator below and construct a test based on it.

Definition 1. The greatest star-shaped minorant (GSM) of
a nondecreasing function g over [0,∞) is

g̃(t) = sup{h(t) : h(t) ≤ g(t) for 0 ≤ t < ∞,

where h(t) is star-shaped on [0,∞)}.
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The GSM of g is essentially a star-shaped approximation
of g that has the smallest supremum norm of the approxi-
mation error. Let T = {T1 T2 · · · Tn} be an n-vector of
ordered failure times. The empirical distribution function
computed from the data vector T is given by

Fn(t) =
1
n

n∑

i=1

I(Ti < t),

where I is the indicator function. The empirical cumulative
hazard function is defined as

Λn(t) =

{
− log(1− Fn(t)) if t < Tn,
∞ if t ≥ Tn.

(3)

The function Λn(t) is a non-decreasing step function with
value − log

(
1− i

n

)
at Ti for i = 1, . . . , n − 1. Wang’s

(1987) estimator of Λ(t) is the GSM of Λn(t), given by

Λ̃n(t) =

{
λit if Ti−1 ≤ t < Ti, i = 1, . . . , n,

∞ if t ≥ Tn,

where λi = min
i≤k≤n

Λn(Tk−1)
Tk

and T0 = 0.

A natural test statistic for (2) can be based on the
Kolmogorov-Smirnov (K-S) distance between Λn(t) and
Λ̃n(t), i.e.,

sup
0<t<Tn

|Λn(t)− Λ̃n(t)| = max
1≤i<n

|Λn(Ti)− Λ̃n(Ti)|.

It may be observed that the estimates of Λ(t) for larger
values of t are based on fewer number of observations
and hence have larger variance (Gill and Schumacher,
1987). The difference between Λn(t) and Λ̃n(t) at the
right tail may thus have unduly large influence on the supre-
mum. This imbalance may be corrected by considering a
weighted Kolmogorov-Smirnov statistic, given by

KSIn(T) = max
1≤i<n

wi,n|Λn(Ti)− Λ̃n(Ti)|, (4)

where wi,n ≥ 0 for 1 ≤ i < n and n ≥ 1.

Now, we give the universal least favorable distribution for
KSIn(T) when F ∈ I.

Theorem 1. Let T be an n-vector of order statistics from
the distribution F ∈ I. Then

P [KSIn(T) ≥ t] ≤ P [KSIn(X) ≥ t] for all t ≥ 0,
(5)

where X is an n-vector of order statistics from the unit ex-
ponential distribution.

It follows from Theorem 1 that a size α (i.e., a significance
level α) test (2)of H0 vs H1 is given by

φI(T ) =

{
1 if KSIn(T) ≥ kα,

0 otherwise,
(6)

where the cut-off level, kα, is chosen as the solution of
P [KSIn(X) ≥ kα] = α, X being an n-vector of order
statistics from the unit exponential distribution. The cut-
off level kα is difficult to obtain analytically. However, it
can be easily computed through Monte Carlo simulations.

We now present a result on the consistency of the proposed
test.

Theorem 2. If the weights wi,n for i = 1, . . . , n and n ≥
1, used in (4), are such that 0 < m < wi,n < M < ∞, then
the test φI given in (6) is consistent against any F ∈ F− I
having finite mean.

The test (6) can easily be shown to be unbiased against
DFRA alternatives.

We end this subsection by outlining an analogous test for
the DFRA class. Let D be the class of DFRA distributions,
and consider the hypotheses

H0 : F ∈ D,

H1 : F ∈ F− D. (7)

A formal test for this problem may be devised along the
lines of the test proposed above. It is known that F is
DFRA if and only if Λ(t)/t is a decreasing function (Bar-
low and Proschan, 1981). We refer to this property as the
inverse star-shaped property. We define least inverse star-
shaped majorant (LISM) of a function g, analogous to the
greatest star-shaped minorant, as

ĝ(t) = inf{h(t) : h(t) ≥ g(t) for 0 ≤ t < ∞,

where h(t) is inverse star-shaped on [0,∞)}.
A size α test of H0 vs. H1 based on a weighted K-S statis-
tics is given by

φD(T ) =

{
1 if KSDn(T) ≥ kα,

0 otherwise,
(8)

where

KSDn(T) = max
1≤i<n

wi,n|Λn(Ti)− Λ̂n(Ti)| (9)

for 1 ≤ i < n and n ≥ 1, and kα is chosen as the solution
to P [KSDn(X) ≥ kα] = α, X being an n-vector of order
statistics from the unit exponential distribution. This test
can be shown to be consistent against any F ∈ F− D, and
it is also unbiased against any F ∈ I.

2.2 Testing for membership to the NBU class

LetN be the class of NBU distributions. Consider the prob-
lem of testing the hypotheses

H0 : F ∈ N,

H1 : F ∈ F− N. (10)
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As mentioned in Section 1, the distribution function F ∈ N
is characterized by the super-additive property of the corre-
sponding Λ function, i.e.,

Λ(t1 + t2) ≥ Λ(t1) + Λ(t2), for t1, t2 ≥ 0.

Given F ∈ N, we estimate Λ(t) by

Λ̆n(t) =

{
inf

0≤s≤t+s<Tn

[Λn(t + s)− Λn(s)] if t < Tn,

∞ if t ≥ Tn.
(11)

Note that Λ̆n is a super-additive step function which has
the smallest supremum norm between Λn and any super-
additive function g such that g(t) ≤ Λn(t) for t ∈ [0,∞)
(Boyles and Samaniego, 1984). The function Λ̆n is a right
continuous step function with jumps at Tr − Ts for some r
and s, where 0 ≤ s < r ≤ r with T0 = 0.

As in the case of testing for the IFRA class, we consider
the weighted K-S statistics for testing (10), given as

KSNn(T) = sup
0<t<Tn

wn(t)|Λn(t)− Λ̆n(t)|, (12)

where wn(t) is a positive weight function. Let A = {t :
t is jump point of Λn(t) or Λ̆n(t)}. Note that the cardi-
nality of A is finite. The test statistics (12) can be viewed
as

KSNn(T) = max
ti∈A

wn(ti)|Λn(ti)− Λ̆n(ti)|.

As before, the least favorable distribution for (12) turns out
to be the exponential distribution.

Theorem 3. Let T be an n-vector of order statistics from
the distribution F ∈ N. Then

P [KSNn(T) ≥ t] ≤ P [KSNn(X) ≥ t] for all t ≥ 0,
(13)

where X is an n-vector of order statistics from the unit ex-
ponential distribution.

A size α test for (10) is given by

φN (T ) =

{
1 if KSNn(T) ≥ kα,

0 otherwise,
(14)

where kα is chosen as the solution of P [KSNn(X) ≥
kα] = α, X being an n-vector of order statistics from the
unit exponential distribution.

Theorem 4. If the weights wn(t), used in (12), are such
that 0 < m < wn(t) < M < ∞, then the test φN given
in (14) is consistent against any F ∈ F − N having finite
mean.

The test (14) can be shown to be unbiased against NWU
alternatives.

A test of membership to the NWU class may be developed
in a similar manner.

3 The Case of Censored Data

We begin by extending the results of Section 2 to the case of
type I and type II right-censored data. In the case of type I
right-censoring, observation takes place from age 0 to a
pre-determined point of time. Thus, apart from the times
of observed failure, one also records the time till which the
remaining samples did not have any failure. In the case
of type II right-censoring, observation begins with all sam-
ples at age 0 and is continued till a pre-determined number
of failures is observed. This implies that the exact times of
the earliest few failures are observed, and it is also known
that the remaining failures occur later than the last observed
failure.

We first consider type II censored data. Let T1 < T2 <
· · · < Tn be order statistics from F ∈ F. We observe
T′, the vector of r smallest failure times, T ′i = Ti for
i = 1, . . . , r. The function Fn will have essentially r jump
points. We do not attempt to define it over (Tr,∞). The
empirical cumulative hazard function Λn defined by (3) is
modified as follows:

Λn(t) = − log(1− Fn(t)) if t ≤ Tr. (15)

Let Λ̃n(t) be the GSM of (15). Consider the K-S statistic
KSIn(T′) defined as in (4), in terms of the Type II cen-
sored data vector T′. A size α test for membership to the
IFRA class, based on T′, is given as

φI2(T′) =

{
1 if KSIn(T′) ≥ kα,

0 otherwise,
(16)

where kα is chosen as the solution of P [KSIn(X′) ≥
kα] = α, X′ is the vector of the smallest r out of n or-
dered samples from the unit exponential distribution.

It can be shown, along the lines of the proof of Theorem 2,
that the test (16) is consistent under the assumption of The-
orem 2 (see also Santner and Tenga, 1984). It is also an
unbiased test against DFRA alternatives.

We now consider Type I censored data for testing (2). Let
T1, T2, . . . , Tn be n iid samples from distribution function
F ∈ F. We observe the times T ∗i = min(Ti, C) for i =
1, 2, . . . , n, where C is a common right-censoring time for
all the observations. We also observe the indicators of the
events Ti ≤ C for i = 1, 2, . . . , n. Let R be the number of
observed failures. Note that R is a random variable. Let T∗

be the ordered set of the observed failure times. As in case
of Type II censored data, we modify the empirical hazard
function by replacing r with R in (15). Again consider the
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K-S statistic KSIn(T∗) defined as in (4), in terms of the
Type I censored data vector T∗. A size α test for the IFRA
class, based on T∗, is given by

φI1(T ∗) =

{
1 if KSIn(T∗) ≥ kα,

0 otherwise,
(17)

where kα is chosen as the solution of P [KSIn(X∗) ≥
kα] = α, X∗ being a vector of samples smaller than C, out
of a total of n samples from the unit exponential distribu-
tion. The test (17) is a consistent test under the assumptions
of Theorem 2.

It is important to note that, under both the censoring
schemes, the least favorable distribution is based on n or-
der statistics of the unit exponential distribution. The test
based on censored data has less power in comparison to that
based on complete data. It can be seen that the test (17) is
unbiased against DFRA alternatives.

The tests for membership to the NBU class of distributions
can be similarly extended to the cases of Type I and Type
II censored data.

4 Simulation of Performance

In order to study performance of the test φI given in Sec-
tion 2 through Monte Carlo simulations, we generate data
from the Weibull distribution having cumulative hazard
function

Λ(t) = (λt)a,

where λ > 0 is a scale parameter and a > 0 is a shape pa-
rameter. This distribution is IFRA for a ≥ 1 and DFRA for
a ≤ 1. The case of a = 1 corresponds to the exponential
distribution. We choose two types of weights:

1. Inverse hazard weight i.e., w
(1)
i,n = 1

Λn(Ti)
,

2. Constant weight i.e., w
(2)
i,n = 1.

We simulate Weibull failure times for the parameter values
λ = 1 and a = 1.1, 1.4 and 1.6 to study the empirical
size (i.e., the empirical significance level) of the test (6),
for sample sizes n = 10, 100 and 1000. Table 1 shows the
empirical size based on 105 simulation runs for the nomi-
nal 5% level of significance.

The empirical size is found to be less than the nominal level
(0.05), even for sample size n = 10. The test becomes
more conservative for larger values of a, as the underlying
distribution departs further from the worst case null distri-
bution, which corresponds to a = 1.

In order to study the empirical power (i.e., the complement
of the empirical probability of Type II error) of the test (6),
we simulate Weibull failure times for the parameter values

Table 1: Empirical size (significance level) of Test φI

Parameters n = 10 n = 100 n = 1000
a = 1.1, w(1) 0.0228 0.0199 0.0212
a = 1.1, w(2) 0.0316 0.0298 0.0294
a = 1.4, w(1) 0.0029 0.0030 0.0034
a = 1.4, w(2) 0.0072 0.0059 0.0061
a = 1.6, w(1) 0.0007 0.0010 0.0012
a = 1.6, w(2) 0.0024 0.0018 0.0023

λ = 1 and a = 0.4, 0.6 and 0.9, for sample sizes n = 10,
100 and 1000. Table 2 shows the empirical power based
on 105 simulation runs for the nominal 5% level of signifi-
cance.

Table 2: Empirical power of Test φI

Parameters n = 10 n = 100 n = 1000
a = 0.9, w(1) 0.1043 0.1690 0.2663
a = 0.9, w(2) 0.0775 0.0840 0.0856
a = 0.6, w(1) 0.5693 0.9972 1
a = 0.6, w(2) 0.2558 0.3631 0.4439
a = 0.4, w(1) 0.9229 1 1
a = 0.4, w(2) 0.5219 0.7933 0.9594

It is found that the power of the test increases as the sample
size increases from 10 to 1000. As expected, the power
also increases as the underlying distribution moves away
from the worst case null distribution, which corresponds
to a = 1. Table 2 shows that the weighted Kolmogorov-
Smirnov test has much larger power than the unweighted
Kolmogorov-Smirnov test.

5 A Data Analytic Example

We consider the monthly household expenditure (in Indian
Rupees) distribution in the State of West Bengal of India,
based on the response from 7877 households canvassed
during the 61st round of nationwide survey conducted by
the National Sample Survey Organization (NSSO) of the
Government of India (NSSO, 2007). The graph of the em-
pirical cumulative hazard function computed from these
data, shown in Figure 1, exhibits the opposite of the star-
shaped pattern, in the sense that straight lines through ori-
gin would generally intersect it from below. Thus, it would
be of interest to check whether the NSSO expenditure data
set could have originated from a distribution belonging to
the DFRA class.

If we test for the hypotheses

H0 : F is exponential,
H1 : F ∈ D,
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by using the test based on the scaled Total Time on Test
transform (Ahmad, 1994), the null hypothesis is rejected
with a very small one-sided p-value (less than 0.0001). We
can complement this finding by testing the hypotheses

H0 : F ∈ D,

H1 : F ∈ F− D.

Figure 1 shows the overlaid plots of the estimated cumula-
tive hazard function Λn(t) and its LISM, computed for the
NSSO expenditure data. Even though the two graphs are
visually somewhat close, the formal test statistics, corre-
sponding to the inverse hazard weight function, is 1276.14
whereas the 5% cut-off level turns out to be 4.474. Thus,
we have to reject the hypothesis that the data had originated
from a DFRA distribution.

This conclusion is quite the opposite of what one can infer
only from a test of exponentiality against the DFRA alter-
native. This fact underscores the utility of the procedure
developed in this paper.
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Figure 1: Empirical cumulative hazard function Λn (blue
solid line) and least inverse star-shaped majorant (LISM)
of Λn (red dashed curve) of the monthly house hold expen-
diture data.

The rejection of the DFRA hypothesis gives rise to the
question: could the same conclusion be reached through
the proposed test if the sample size had been smaller? In
order to answer this question, we considered a random sub-
sample of size 100 from the expenditure data. Figure 2
shows the plot of the cumulative hazard function Λn(t) es-
timated from the sub-sample, and the corresponding LISM.
The plot shows some degree of non-conformity between
the two graphs. The formal test statistics is 42.78 corre-
sponding to the inverse hazard weight function. The corre-
sponding 5% cut-off level are 4.766, indicating rejection of
the null hypothesis even at the smaller sample size.

6 Concluding Remarks

The test procedures developed in this paper, together with
the standard tests of exponentiality, should provide a firm
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Figure 2: Empirical cumulative hazard function Λn (blue
solid line) and least inverse star-shaped majorant (LISM)
of Λn (red dashed curve) based on a random sample of size
100 of the monthly house hold expenditure data.

basis for making use of the inequalities known to hold for
the IFRA, NBU, DFRA and NWU classes of life distribu-
tions.

Instead of using the supremum of the difference between
the estimated cumulative hazard function and its shape-
restricted approximation, one could also use the integral
of this difference. Use of the TTT (total time-on-test trans-
formation) plot (as attempted by Tenga and Santner, 1984)
as a basis for the test may not be possible, as there is no
characterization of the IFRA and the NBU classes in terms
of the shape of the TTT plot. Extension of the proposed
tests to the case of randomly right censored data can be an
area of useful future work.
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7 Appendix: Proofs

To proceed with the proof of Theorem 1, we first prove a
lemma.

Lemma 1. Let a = t1 < t2 < · · · < tn = b and 0 <
η1 < η2 < . . . < ηn < A, for some real number a, b and
A. Let g be a nondecreasing, right continuous step function
defined over [a, b], as

g(t) =

{
ηi if ti ≤ t < ti+1 for j = 1, 2, ..., n− 1,

ηn if t = tn.
.

Let h be a strictly increasing function defined over [a, b]
such that h(t)

t is decreasing. Let G be a nondecreasing,
right continuous step function defined over [h(a), h(b)]



Radhendushka Srivastava, Ping Li, Debasis Sengupta

with values η1, η2, . . . , ηn at successive jump points
h(t1), h(t2), . . . , h(tn) respectively. Then the GSM’s g̃
and G̃ of g and G, respectively, satisfy

G̃(h(t)) ≥ g̃(t).

Proof. The GSM of the function g(·) is given by

g̃(t) =





min
i≤k≤n

ηk−1

tk
· t if ti ≤ t < ti+1;

for i = 1, . . . , n− 1,

ηn if t = tn,

where η0 = η1. Note that g̃(·) is a piecewise linear func-
tion. Since h(·) is an increasing function, to establish

G̃(h(t)) ≥ g̃(t),

it would suffice to show that G̃(h(ti)) ≥ g̃(ti) for i =
1, . . . , n. Thus, we have to show that

(
min

i≤k≤n

ηk−1

h(tk)

)
h(ti) ≥

(
min

i≤k≤n

ηk−1

tk

)
ti,

for i = 1, . . . , n. The proof is completed by observing that
for k ≥ i,

ηk−1

h(tk)
h(ti) ≥ ηk−1

tk
ti,

since h(t)
t is a decreasing function. ¤

Proof of Theorem 1. For ordered failure times
T1, T2, . . . , Tn sampled from the distribution F , define the
transformed variable Xi = h(Ti), where

h(t) = F−1(1− e−t).

Thus, the transformed variables X1, X2, . . . , Xn have the
unit exponential distribution. Observe that the transforma-
tion h is the inverse of the cumulative hazard function Λ.
Consequently

h(t)
t

=
h(t)

Λ[h(t)]
.

As F ∈ I, Λ(t)/t is increasing in t and h(t)
t is decreasing

in t. According to Lemma 1, the GSM of the empirical
cumulative hazard function based on X is greater than that
based on T, i.e.,

Λ̃n(Xi) ≥ Λ̃n(Ti).

Thus, we have

KSIn(T) = max
1≤i≤n

wi,n|Λn(Ti)− Λ̃n(Ti)|

≥ max
1≤i≤n

wi,n|Λn(Xi)− Λ̃n(Xi)|
= KSIn(X).

It follows that

P [KSIn(T) ≥ t] ≤ P [KSIn(X) ≥ t] for all t ≥ 0.

This completes the proof. ¤

Proof of Theorem 2. In order to show that the test (6)
is consistent, we need to show that the power of the test
converges to 1 as the sample size n tends to infinity. Note
that for any fixed α, the cut-off level kα depends on the
sample size n. We now denote it by kα,n and show that
it converges to zero as n tends to infinity for any fixed α.
Observe that kα,n is obtained by solving

P [KSIn(X) ≥ kα] = α,

where X is an n-vector of order statistics from the unit ex-
ponential distribution. We have

KSIn(X) = max
1≤i≤n

wi,n|Λn(Xi)− Λ̃n(Xi)|

≤ M sup
0<t<Xn

|Λn(t)− Λ̃n(t)|

If the underlying hazard function is star-shaped, K∗ =
sup

0<t<Xn

|Λn(t) − Λ̃n(t)| converges to 0 in probability

(Wang, 1984; 1987). This implies that for any fixed α, the
cut-off level kα,n tends to zero.

To complete the proof, we now show that the power of the
test converges to 1, i.e.,

lim
n→∞

P [KSIn(T) ≥ kα,n|F ∈ F− I] = 1.

Thus we have to show, for some δ > 0, as n →∞

P

[
sup

0<t<Xn

|Λn(t)− Λ̃n(t)| ≥ δ
∣∣∣ F ∈ F− I

]
→ 1.

For this purpose, it is enough to show that

P
[
|Λn(t)− Λ̃n(t)| ≥ δ for some t > 0

∣∣ F ∈ F−I
]
→1.

(18)
Note that Λn(t) → Λ(t) and Λ̃n(t) → Λ̃(t) as n tends to
infinity, where Λ̃ is the GSM of Λ (Wang, 1984). If F is
not IFRA, we have |Λ(t) − Λ̃(t)| > 0 for some t, say t∗.
The proof is completed by observing that the probability
statement (18) holds for this t∗. ¤
We now present another lemma before proving Theorem 3.

Lemma 2. Let a = t1 < t2 < · · · < tn = b and 0 <
η1 < η2 < . . . < ηn < A, for some real number a, b and
A. Let g be a nondecreasing, right continuous step function
defined over [a, b], as

g(t) =

{
ηi if ti ≤ t < ti+1 for j = 1, 2, . . . , n− 1,

ηn if t = tn.
.
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Let h be a strictly increasing function defined
over [a, b], such that h(t) is sub-additive, i.e.,
h(t1 + t2) ≤ h(t1) + h(t2). Let G be a nonde-
creasing, right continuous step function defined over
[h(a), h(b)] with values η1, η2, . . . , ηn at successive jump
points h(t1), h(t2), . . . , h(tn) respectively. Then ğ and Ğ,
defined as in (11) for g and G, respectively, satisfy

Ğ(h(t)) ≥ ğ(t).

Proof. The proof is similar to that of Lemma 1. ¤

Proof of Theorem 3. Since F ∈ N, the inverse hazard
function h as defined in the proof of Theorem 1 is sub-
additive. The proof proceeds along the lines of that of The-
orem 1, by using Lemma 2. ¤

Proof of Theorem 4. The proof is similar to that of Theo-
rem 2. ¤
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