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Abstract

A recent challenge in data analysis for science and
engineering is that data are often represented in a
structured way. In particular, many data mining
tasks have to deal with group-structured prior infor-
mation, where features or data items are organized
into groups. In this paper, we develop group sparsity
regularization methods for nonnegative matrix fac-
torization (NMF). NMF is an effective data mining
tool that has been widely adopted in text mining,
bioinformatics, and clustering, but a principled ap-
proach to incorporating group information into NMF
has been lacking in the literature. Motivated by an
observation that features or data items within a group
are expected to share the same sparsity pattern in
their latent factor representation, we propose mixed-
norm regularization to promote group sparsity in the
factor matrices of NMF. Group sparsity improves the
interpretation of latent factors. Efficient convex op-
timization methods for dealing with the mixed-norm
term are presented along with computational com-
parisons between them. Application examples of the
proposed method in factor recovery, semi-supervised
clustering, and multilingual text analysis are demon-
strated.

1 Introduction

Factorizations and low-rank approximations of ma-
trices have been one of the most fundamental tools
in machine learning and data mining. Singular
value decomposition (SVD) and principal component
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analysis (PCA), for example, played a pivotal role
in dimension reduction and noise removal. Con-
strained low-rank factorizations have also been widely
used; among them, nonnegative matrix factoriza-
tion (NMF) imposes nonnegativity constraints on the
low-rank factor matrices, and the nonnegativity con-
straints enable natural interpretation of discovered
latent factors [20]. Algorithms and applications of
NMF have received much attention due to numerous
successes in text mining, bioinformatics, blind source
separation, and computer vision.

In this paper, we propose an extension of NMF
that incorporates group structure as prior informa-
tion. Many matrix-represented data sets are inher-
ently structured as groups. For example, a set of doc-
uments that are labeled with the same topic forms a
group. In drug discovery, various treatment methods
are typically applied to a large number of subjects,
and subjects that received the same treatment are
naturally viewed as a group. In addition to these
groups of data items, a set of features forms a group
as well. In computer vision, different types of features
such as pixel values, gradient features, and 3D pose
features can be viewed as groups. Similarly in bioin-
formatics, features from microarray and metabolic
profiling become different groups.

The motivation of our work is that there are sim-
ilarities among data items or features belonging to
the same group in that their low-rank representations
share the same sparsity pattern. However, such sim-
ilarities have not been previously utilized in NMF.
In order to exploit the shared sparsity pattern, we
propose to incorporate mixed-norm regularization in
NMF. Our approach is based on l1,q-norm regular-
ization (See Section 3 for the definition of l1,q-norm).
Regularization by l1-norm is well-known to promote
a sparse representation [31]. When this approach is
extended to groups of parameters, l1,q-norm has been
shown to induce a sparse representation at the level of
groups [35]. By employing l1,q-norm regularization,
the latent factors obtained by NMF can be improved
with an additional property of shared sparsity.

The adoption of mixed-norm regularization in-
troduces a new challenge to the optimization algo-



rithm for NMF. Since the mixed-norm term is not a
smooth function, conventional methods such as the
steepest gradient descent cannot be applied. To ad-
dress the difficulty, we present two algorithms based
on recent developments in convex optimization. Both
algorithms are developed using the block coordinate
descent (BCD) method [4]. The first approach is
a matrix-block BCD method, in which one of the
two factor matrices is updated at each step fixing
the other. The second approach is a vector-block
BCD method, in which one column of a factor ma-
trix is updated at each step fixing all other values. A
strength of the two algorithms we propose is that they
generally handle l1,q-norm regularization for common
cases: q = ∞ and q = 2. We also provide computa-
tional comparisons of the two methods.

We show the effectiveness of mixed-norm regular-
ization for factor recovery using a synthetic data set.
In addition, we demonstrate application examples in
semi-supervised clustering and multilingual text min-
ing. Our application examples are novel in that the
use of group sparsity regularization for these appli-
cations has not been shown before. In the applica-
tions, the benefits of nonnegativity constraints and
group sparsity regularization are successfully com-
bined demonstrating that the mixed-norm regular-
ized NMF can be effectively used for real-world data
mining applications.

The rest of this paper is organized as follows. We
begin with discussion on related work in Section 2.
We then introduce the concept of group sparsity and
lead to a problem formulation of NMF with mixed-
norm regularization in Section 3. We describe op-
timization algorithms in Section 4. We provide the
demonstration of recovery example, application ex-
amples, and computational comparisons in Section 5.
We finalize the paper with discussion in Section 6.

Notations Notations used in this paper are as
follows. A lowercase or an uppercase letter, such as
x or X , denotes a scalar. Boldface lowercase and
uppercase letters, such as x and X, denote a vector
and a matrix, respectively. Indices typically grow
from 1 to an uppercase letter, e.g., n ∈ {1, · · · , N}.
Elements of a sequence are denoted by superscripts
within parentheses, e.g., X(1), · · · ,X(N), and the
entire sequence is denoted by

{

X(n)
}

. For a matrix
X, x·i or xi denotes its ith column, xi· denotes its
ith row, and xij denotes its (i, j)th element. The set
of nonnegative real numbers is denoted by R+, and
X ≥ 0 indicates that the elements of X are non-
negative.

2 Related Work

Incorporating group information using mixed-norm
regularization has been previously discussed in statis-
tics and machine learning. Earlier, regularization
for sparse representation was popularized with the
l1-norm penalized linear regression called Lasso [31].
L1-norm penalization is known to promote a sparse
solution and improve generalization. Techniques for
promoting group sparsity using l1,2-norm regulariza-
tion have been investigated by Yuan and Lin and
others [35, 19, 26] under the name of group Lasso.
Approaches that adopt l1,∞-norm regularization have
been subsequently proposed by Liu et al. and others
[23, 29, 7] for multi-task learning problems. Regu-
larization methods for more sophisticated structure
have also been proposed recently [18, 24].

In matrix factorization, Bengio et al. [3] and Je-
natton et al. [12] considered l1,2-norm regularization
in sparse coding and principal component analysis,
respectively. Jenatton et al. [11] further considered
hierarchical regularization with tree structure. Jia
et al. [13] recently applied l1,∞-norm regularization
to sparse coding with a focus on a computer vision
application. Masaeli et al. [25] used the idea of l1,∞-
norm regularization for feature selection in PCA. The
group structure studied in our work is close to those
of [3, 12, 13] since they also considered group spar-
sity shared across data items or features. On the
other hand, the hierarchical regularization in [11] is
different from ours because their regularization was
imposed on parameters within each data item. In ad-
dition, we focus on nonnegative factorization in algo-
rithm development as well as in applications whereas
[3, 12, 13] focused on sparse coding or PCA.

In NMF literature, efforts to incorporate group
structure have been fairly limited. Badea [2] pre-
sented a simultaneous factorization of two gene ex-
pression data sets by extending NMF with an offset
vector, as in the affine NMF [9]. Li et al. [21] and
Singh and Gordon [30] demonstrated how simultane-
ous factorization of multiple matrices can be used for
knowledge transfer. Jenatton et al. [11] mentioned
NMF as a special case in their work on sparse cod-
ing, but they only dealt with a particular example
without further developments. In addition, the hier-
archical structure considered in [11] is different from
ours as explained in the previous paragraph. To our
knowledge, algorithms and applications of applying
group sparsity regularization to NMF have not been
fully investigated before our work in this paper.

Efficient optimization methods presented in this
paper are built upon recent developments in con-



vex optimization and NMF algorithms. The block
coordinate descent (BCD) method forms the basis
of our algorithms. In our first algorithm, which is
a matrix-block BCD method, we adopt an efficient
convex optimization method in [32]. The motiva-
tion of our second algorithm, which is a vector-block
BCD method, is from the hierarchical alternating
least squares (HALS) method [8] for standard NMF.
Convex optimization theory, in particular the Fenchel
duality [5, 1], plays an important role in both of the
proposed algorithms.

3 Problem Statement

Let us begin our main discussion with a matrix
X ∈ R

m×n
+ . Without loss of generality, we assume

that the rows ofX represent features and the columns
of X represent data items. In standard NMF, we are
interested in discovering two low-rank factor matrices
W ∈ R

m×k
+ and H ∈ R

k×n
+ such that X ≈ WH.

This is typically achieved by minimizing an objective
function defined as

f(W,H) =
1

2
‖X−WH‖2F .(3.1)

with constraints W ≥ 0 and H ≥ 0. In this
section, we show how we can take group structure
into account by adding a mixed-norm regularization
term into (3.1).

3.1 Group structure and group sparsity Let
us first describe the group structure using motivating
examples. Diagrams in Figure 1 show group structure
considered in our work. In Figure 1-(a), the columns
(that is, data items) are divided into three groups.
This group structure is prevalent in clustered data,
where data items belonging to each cluster define a
group. In text mining, a group can represent doc-
uments having the same topic assignment. Another
example can be seen from bioinformatics. For the
purpose of drug discovery, one typically applies vari-
ous treatment options to different groups of subjects.
In this case, it is important to analyze the difference
at the level of groups and discover fundamental un-
derstanding of the treatments. Subjects to which the
same treatment is applied can be naturally viewed as
a group.

On the other hand, groups can be formed from
the rows (that is, features) as shown in Figure 1-(b).
This structure can be seen from multi-view learning
problems. In computer vision, as Jia et al. [13]
discussed, a few different feature types such as pixel
values, gradient-based features, and 3D pose features
can be simultaneously used to build a recognition
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Figure 1: (a) Matrix with column groups and its
factorization with group sparsity (b) Matrix with row
groups and its factorization with group sparsity. The
bright rows of H(i) in (a) and the bright columns of
W(i) in (b) (i = 1, 2, 3) represent zero subvectors.

system. In text mining, a parallel multilingual corpus
can be seen as a multi-view data set, where the term-
document frequency features in each language form a
group.

Our motivation is that the feature or data in-
stances that belong to a group are expected to share
the same sparsity pattern in low-rank factors. In
Figure 1-(a), the gray and white rows in H(1), H(2)

and H(3) represent nonzero and zero values, respec-
tively. For example, columns in H(1) share the same
sparsity pattern that their second components are all
zero. Such group sparsity improves the interpreta-
tion of the factorization model: For the reconstruc-
tion of data items in X(1), only the first, the third,
and the fourth latent components are used whereas
the second component is irrelevant. Similar explana-
tion holds for X(2) and X(3) as well. That is, the
association of latent components to data items can
be understood at the level of groups instead of each
data item.

In Figure 1-(b), group sparsity is shown for latent
component matrices W(1), W(2), and W(3). A com-
mon interpretation of multi-view matrix factorization
is that the ith columns of W(1), W(2), and W(3) are
associated with each other in a sense that they play
the same role in explaining data. With group spar-
sity, missing associations can be discovered as fol-



lows. In Figure 1-(b), the second columns of W(1)

and W(2) are associated with each other, but there is
no corresponding column in the third view since the
second column of W(3) appeared as zero.

Examples and interpretations provided here are
not exhaustive, and we believe the group structure
can be found in many other data mining problems.
With these motivations in mind, now we proceed
to discuss how group sparsity can be promoted by
employing mixed-norm regularization.

3.2 Formulation with mixed-norm regular-

ization We discuss using the case of Figure 1-(a),
where the columns are divided into groups. By con-
sidering the factorization of XT , however, all the for-
mulations can be applied to the case of row groups.

Suppose the columns of X ∈ R
m×n are divided

into B groups as X =
(

X(1), · · · ,X(B)
)

, where

X(b) ∈ R
m×nb and

∑B
b=1 nb = n. Accordingly, the

coefficient matrix is divided into B groups as H =
(

H(1), · · · ,H(B)
)

whereH(b) ∈ R
k×nb . The objective

function in (3.1) is now written as a sum:

f(W,H) =
1

2

B
∑

b=1

∥

∥

∥
X(b) −WH(b)

∥

∥

∥

2

F
.

To promote group sparsity, we add a mixed-norm reg-
ularization term for coefficient matrices

{

H(b)
}

using
l1,q-norm and consider the optimization problem
(3.2)

min
W≥0,H≥0

f(W,H) + α ‖W‖2F + β

B
∑

b=1

∥

∥

∥
H(b)

∥

∥

∥

1,q
.

We show the definition of ‖·‖1,q below. The Frobe-
nius norm regularization on W is used to prevent the
elements of W from growing arbitrarily large. Pa-
rameters α and β control the strength of each regu-
larization term.

Now let us discuss the role of l1,q-norm regular-
ization. The l1,q-norm of Y ∈ R

a×c is defined by

‖Y‖1,q =

a
∑

j=1

‖yj·‖q = ‖y1·‖q + · · ·+ ‖ya·‖q .

That is, the l1,q-norm of a matrix is the sum of vector
lq-norms of its rows. Penalization with l1,q-norm
promotes as many number of zero rows as possible
to appear in Y. In (3.2), the penalty term on H(b)

promotes that coefficient matrices H(1), · · · ,H(B)

contain as many zero rows as possible, and the
zero-rows correspond to group sparsity described in
Section 3.1. Any scalar q, 1 < q ≤ ∞, can

be potentially used, but for the development of
algorithms, we focus on the two cases of q = 2
and q = ∞, which are common in related literature
discussed in Section 2. In the following, we describe
efficient optimization strategies for solving (3.2).

4 Optimization Algorithms

With mixed-norm regularization, the minimization
problem (3.2) becomes more difficult than the stan-
dard NMF problem. We here propose two strategies
based on the block coordinate descent (BCD) method
in non-linear optimization [4]. The first method is a
BCD method with matrix blocks; that is, a matrix
variable is minimized at each step fixing all other en-
tries. The second method is a BCD method with
vector blocks; that is, a vector variable is minimized
at each step fixing all other entries. In both algo-
rithms, the l1,q-norm term is handled via Fenchel du-
ality [1, 5].

4.1 Matrix-block BCD method The matrix-
block BCD method minimizes the objective function
of (3.2) with one (sub)matrix at a time fixing all other
variables. The overall procedure is summarized in
Algorithm 1.

Algorithm 1 Matrix-block BCD method for (3.2)

Input: X =
(

X(1), · · · ,X(B)
)

∈ R
m×n ,α, β ∈ R+

Output: W ∈ R
m×k
+ , H =

(

H(1), · · · ,H(B)
)

∈ R
k×n
+

1: Initialize W and H(1), · · · ,H(B), e.g., with ran-
dom entries.

2: repeat

3: Update W as
(4.3)

W← arg min
W≥0

1

2
‖X−WH‖2F + α ‖W‖2F .

4: For each b = 1, · · · , B, update H(b) as

H(b) ← arg min
H(b)≥0

1

2

∥

∥

∥
X(b) −WH(b)

∥

∥

∥

2

F
(4.4)

+ β
∥

∥

∥
H(b)

∥

∥

∥

1,q
.

5: until convergence

Subproblem (4.3) for W is easy to solve as it can
be transformed to
(4.5)

W← arg min
W≥0

1

2

∥

∥

∥

∥

(

HT

√
2αIk

)

WT −
(

XT

0k×m

)
∥

∥

∥

∥

2

F

,

which is the nonnegativity-constrained least squares



Algorithm 2 A convex optimization method for
(4.7)

Input: B ∈ R
p×r, C ∈ R

p×t, β ∈ R+

Output: Z ∈ R
r×t
+

1: Choose Z(0),Z̃(0) and let τ (0) = 1 and L =
σmax

(

BTB
)

.
2: for k = 0, 1, 2, · · · , until convergence do
3: Y(k) ← τ (k)Z(k) + (1− τ (k))Z̃(k)

4: Update
(4.6)

Z(k+1) ← argmin
Z≥0

∥

∥

∥
Z−U(k)

∥

∥

∥

2

F
+

2β

τ (k)L
‖Z‖1,q ,

where U(k) = Z(k)− 1
τ (k)L

(

BTBY(k) −BTC
)

.

5: Z̃(k+1) ← τ (k)Z(k+1) + (1 − τ (k))Z̃(k)

6: Find τ (k+1) > 0 such that

(

τ (k+1)
)−2

−
(

τ (k+1)
)−1

=
(

τ (k)
)−2

.

7: end for

8: Return Z̃(k).

(NNLS) problem. An efficient algorithm for the
NNLS problem, such as in [22, 14, 16, 17], can be used
to solve (4.5). Solving subproblem (4.4) for H(b) is a
more involved task, and an algorithm for this problem
is discussed in the following.

Subproblem (4.4) can be written as the following
general form. Given two matrices B ∈ R

p×r
+ and

C ∈ R
p×t
+ , we would like to solve

(4.7) min
Z≥0

1

2
‖BZ−C‖2F + β ‖Z‖1,q .

Observe that the objective function of (4.7) is com-

posed of two terms: g(Z) = 1
2 ‖BZ−C‖2F and

h(Z) = β ‖Z‖1,q. Both g(Z) and h(Z) are convex
functions, the first term g(Z) is differentiable, and
∇g(Z) is Lipschitz continuous. Hence, an efficient
convex optimization method can be adopted.

Algorithm 2 presents a variant of Nesterov’s
first order method, suitable for solving (4.7). The
Nesterov’s method and its variants have been widely
used due to its simplicity, theoretical strength, and
empirical efficiency (See, for example, [27, 32]). An
important requirement in Algorithm 2 is the ability
to efficiently solve subproblem (4.6). Observe that
the problem can be separated with respect to each
row of Z. Focusing on the ith row of Z, it suffices to
solve a problem in the following form:

(4.8) min
z≥0

1

2
‖z− v‖22 + η ‖z‖q

where z, v, and η replace zi·,
(

U(k)
)

i·
, and β

τ (k)L
,

respectively.
It is important to observe that this problem can

be handled without the nonnegativity constraints.
The following proposition summarizes this observa-
tion. Jenatton et al. [11] briefly mentioned the state-
ment but did not provide the proof. Let [·]+ denote
the element-wise projection operator to nonnegative
numbers.

Proposition 1. Consider minimization problem

(4.8) and the following minimization problem:

(4.9) min
z

1

2

∥

∥z− [v]+
∥

∥

2

2
+ η ‖z‖q .

If z∗ is the minimizer of (4.9), then z∗ is element-

wise nonnegative, and it also attains the global mini-

mum of (4.8).

Proof. The nonnegativity of z∗ can be seen by the
fact that any negative element can be set as zero
decreasing the objective function of (4.9). The
remaining relationship can be seen by considering an
intermediate problem

(4.10) min
z≥0

1

2

∥

∥z− [v]+
∥

∥

2

2
+ η ‖z‖q .

Comparing (4.9) and (4.10), since the minimizer z∗ of
the unconstrained problem in (4.9) satisfies nonneg-
ativity, it is clearly a minimizer of the constrained
problem in (4.10). Now, let the minimizer of (4.8) be
z̃∗, and consider the set of indices N = {i : vi ≤ 0}.
Then, it is easy to check (z̃∗)i = (z∗)i = 0 for all
i ∈ N . Moreover, ignoring the variables correspond-
ing to N , problems (4.8) and (4.10) are equivalent.
Therefore, z∗ is the minimizer of (4.8).

Proposition 1 transforms (4.8) into (4.9), where
the nonnegativity constraints are dropped. This
transformation is important since (4.9) can now be
solved via Fenchel duality as follows. According to
Fenchel duality [5, 1], the following problem is dual
to (4.9):

(4.11) min
s

1

2

∥

∥s− [v]+
∥

∥

2

2
such that ‖s‖q∗ ≤ η,

where ‖·‖q∗ is the dual norm of ‖·‖q. Problem (4.11)
is a projection problem to a lq∗ -norm ball of size
η. We refer readers to [1, 5] and references therein
for more details of dual norm. In our discussion, it
suffices to note that the dual norm of ‖·‖2 is itself, and
the dual norm of ‖·‖∞ is ‖·‖1. Therefore, problem
(4.11) with q = 2 becomes

(4.12) min
s

1

2

∥

∥s− [v]+
∥

∥

2

2
such that ‖s‖2 ≤ η,



which can be solved simply by normalization. With
q =∞, (4.11) is written as

(4.13) min
s

1

2

∥

∥s− [v]+
∥

∥

2

2
such that ‖s‖1 ≤ η,

which can be solved as described in [28, 10]. Once
the minimizer s∗ of (4.11) is computed, the optimal
solution for (4.8) is found as z∗ = [v]+ − s∗.

4.2 Vector-block BCD Method The matrix-
block BCD algorithm has been shown to be quite
successful for NMF and its variations. However, re-
cent observations [17] indicate that the vector-block
BCD method [8] is also very efficient, often outper-
forming the matrix-block BCD method. Accordingly,
we develop the vector-block BCD method for (3.2) as
follows.

In the vector-block BCD method, optimal solu-
tions to subproblems with respect to each column of
W and each rows of H(1), · · · ,H(b) are sought. The
overall procedure is shown in Algorithm 3.

Algorithm 3 Vector-block BCD method for (3.2)

Input: X =
(

X(1), · · · ,X(B)
)

∈ R
m×n ,α, β ∈ R+

Output: W ∈ R+m×k , H =
(

H(1), · · · ,H(B)
)

∈ R
k×n
+

1: Initialize W and H(1), · · · ,H(B), e.g., with ran-
dom entries.

2: repeat

3: For each i = 1, · · · , k, update wi(∈ R
m×1) as

(4.14)

wi ← argmin
w≥0

1

2
‖Ri −whi·‖2F + α ‖w‖22 ,

where Ri = X−∑k

j=1,j 6=i wjhj·.

4: For each b = 1, · · · , B and then for each i =

1, · · · , k, update h
(b)
i· (∈ R

1×nb) as
(4.15)

h
(b)
i· ← argmin

h≥0

1

2

∥

∥

∥
R

(b)
i −wih

∥

∥

∥

2

F
+ β ‖h‖q ,

where R
(b)
i = X(b) −∑k

j=1,j 6=i wjh
(b)
j· .

5: until convergence

The solution of (4.14) is given as a closed form:

wi ←
[

Rih
T
i·

2α+ ‖hi·‖2

]

+

.

Subproblem (4.15) is easily seen to be equivalent to

(4.16) min
h≥0

1

2

∥

∥

∥

∥

∥

∥

∥

h−

(

R
(b)
i

)T

wi

‖wi‖22

∥

∥

∥

∥

∥

∥

∥

2

2

+
β

‖wi‖2
‖h‖q ,

which is a special case of (4.8). Therefore, (4.16) can
be solved via Proposition 1 and the dual problem
(4.11).

Remark. It is worth emphasizing the characteris-
tics of the matrix-block and the vector-block BCD
methods. The optimization variables of (3.2) are
(W,H(1), · · · ,H(B)), and the BCD method divides
these variables into a set of blocks. The matrix-block
BCD method in Algorithm 1 divides the variables
into (B+1) blocks represented byW,H(1), · · · ,H(B).
The vector-block BCDmethod in Algorithm 3 divides
the variables into k(B+1) blocks represented by the
columns of W,H(1), · · · ,H(B). Both methods even-
tually rely on Proposition 1 and the dual problem
(4.11). Although both methods share the same con-
vergence property that every limit point is stationary
[4], but their actual efficiency may be different as we
show in Section 5.4.

5 Implementation Results

Our implementation section is composed of four
subsections. We first demonstrate the effectiveness
of group sparsity regularization with a synthetically
generated example. We then show an application
of the column grouping (Figure (1)-(a)) in semi-
supervised clustering and an application of the row
grouping (Figure 1-(b)) in multilingual text analysis.
Finally, we present computational comparisons of the
matrix-block and the vector-block BCD methods.

5.1 Factor recovery Our first demonstration is
the comparison of several regularization methods
using a synthetically created data set. Figure 2
shows the original data and recovery results. The
five original images in the top of Figure 2-(a) are
of 32 × 32 pixels, and each of them are vectorized
to construct a 1, 024 × 5 latent component matrix
W. Five coefficient matrices H(1), · · · ,H(5) of size
5 × 30 each are constructed by setting the ith row
of H(i) as zero for i = 1, 2, 3, 4, 5 and then filling
all other entries by taking random numbers from
the uniform distribution on [0, 1]. The top image of
Figure 2-(b) shows the zero and nonzero pattern of
H =

(

H(1), · · · ,H(5)
)

∈ 5 × 120, where dark entries
represent nonzeros and bright entries represent zeros.



The zero rows of each block are clearly shown as
bright rows.

We multiplied W with H to generate a matrix
with five blocks and added Gaussian noise so that the
signal-to-noise ratio is 0.3. Under this high noise con-
dition, we tested the ability of various regularization
methods in terms of recovering the group structure
of the original matrices. Strong noise is common in
applications such as video surveillance or Electroen-
cephalography (EEG) analysis in neuroscience. Two
alternative regularization methods are considered as
competitors:

(5.17) min
W≥0,H≥0

f(W,H) + α ‖W‖2F + β ‖H‖2F ,

and

(5.18) min
W≥0,H≥0

f(W,H)+α ‖W‖2F +β

n
∑

j=1

‖h·j‖21 .

Problems (5.17) and (5.18) impose the Frobenius
norm and l1-norm regularization on H, respectively,
and neither of them take the group structure into ac-
count. Algorithms for solving (5.17) and (5.18) are
described in [17]. For the group sparsity regulariza-
tion method, we considered (3.2) with q = ∞ and
q = 2. For all cases, parameters α and β need to be
provided as input, and we determined them by cross
validation: We iterated all possible combinations of
α, β ∈

[

1, 10−1, · · · , 10−7
]

and chose a pair for which
the reconstruction error is the minimum for another
data matrix constructed in the same way. For each
case of α and β pair, ten random initializations are
tried, and the best is chosen.

In Figure 2-(a), it can be seen that the recovered
images from the four different regularization methods
are visually similar to each other. However, in the co-
efficient matrices shown in Figure 2-(b), the drawback
of conventional regularization methods stands out. In
the coefficient matrices recovered by the Frobenius
norm or the l1-norm regularization, the group struc-
ture was lost because nonzero (dark) elements ap-
peared in the rows of zero (bright) values that present
in the original matrix. In contrast, in the coefficient
matrices recovered by the l1,∞-norm or the l1,2-norm
regularization, the group structure was preserved be-
cause the zero (bright) rows remained the same as
the original matrix.

The failure to recover the group structure leads to
a misinterpretation about the role of latent factors. In
original matrices, the first group is constructed only
with latent components {2, 3, 4, 5}, and the second
group is constructed with only latent components

original

fro

l1

l1,∞

l1,2

(a)

original

fro

l1

l1,∞

l1,2

(b)

Figure 2: (a) Original latent factor images and recov-
ered factor images with various regularization meth-
ods (b) Original coefficient matrix and recovered coef-
ficient matrices with various regularization methods.
In each of (a) and (b), first row: original factors, sec-
ond row: recovered by (5.17), third row: recovered by
(5.18), fourth row: recovered by (3.2) with q = ∞,
fifth row; recovered by (3.2) with q = 2. See text for
more details.
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Figure 3: Accuracy of semi-supervised clustering with group sparsity regularization. The x-axis shows the
values of α, and the y-axis shows clustering accuracy. Baseline represents the result of no regularization
(α = β = 0). Top: q = ∞, bottom: q = 2, left: TDT2 data set with k = 5, center: TDT2 data set with
k = 10, right: 20 newsgroups data set with k = 5.

{1, 3, 4, 5}, and so on. However, the coefficient
matrices recovered by the Frobenius norm or l1-
norm regularization suggest that all the five factors
participate in all the groups, which is an incorrect
understanding.

5.2 Semi-supervised clustering Our next
demonstration is an application example of the
group sparsity regularization with the column groups
as shown in Figure 1-(a). One of successful applica-
tions of NMF is document clustering, and here we
show that the group sparsity regularization can be
used to incorporate side-information in clustering.

When NMF is used for clustering (see [34, 15]),
after normalizing the columns of W and rescaling
the rows ofH correspondingly, the maximum element
from each column of H is chosen to determine clus-
tering assignments. That is, for a group of documents
belonging to the same cluster, their representations
in matrix H are similar to each other in a sense that
the positions of elements having the maximum value
in each column are the same. In particular, if a group
of columns in H share the same sparsity pattern, it is
likely that their clustering assignments are the same.
Motivated by this observation, we propose to impose
group sparsity regularization for the documents that

are supervised to be in the same cluster (i.e., ‘must-

link’ constraints). In this way, the documents will be
promoted to have the same clustering assignments,
and latent factor matrix W will be accordingly ad-
justed. As a result, the accuracy of clustering assign-
ments for the unsupervised part can be improved.

We tested this task with two text data sets as
follows. The Topic Detection and Tracking corpus 21

(TDT2) is a collection of English news articles from
various sources such as NYT, CNN, and VOA in 1998.
The 20 Newsgroups data set2 is a collection of news-
group documents in 20 different topics. From term-
document matrices constructed from these data sets3

[6], we randomly selected k = 5 (and k = 10) topics
that contain at least 60 documents each and extracted
random subsamples of 60 documents from each topic.
Then, 10 documents from each topic were used as a
supervised set, and the rest 50 were used an unsuper-
vised (i.e., test) set. That is, we constructed a matrix
X =

(

X(1), · · · ,X(k),X(k+1)
)

where X(1), · · · ,X(k)

represent the supervised parts from each topic and
X(k+1) represents the unsupervised part from all the
topics. For the first k groups each having 10 super-

1http://projects.ldc.upenn.edu/TDT2/
2http://people.csail.mit.edu/jrennie/20Newsgroups/
3http://www.zjucadcg.cn/dengcai/Data/TextData.html



vised documents, group sparsity regularization is ap-
plied, whereas the last group having total 50×k unsu-
pervised documents was given no regularization. As
a result, we used the following formulation
(5.19)

min
W≥0,H≥0

f(W,H) + α ‖W‖2F + β

k
∑

b=1

∥

∥

∥
H(b)

∥

∥

∥

1,q
,

where H =
(

H(1), · · · ,H(k),H(k+1)
)

. Observe that
no regularization is imposed for the last group
H(k+1). The goal is to solve (5.19) and accurately
assign clustering labels to the unsupervised part from
the final solution ofH(k+1). We selected the most fre-
quent 10,000 terms to reduce the matrix size. We re-
peated with 10 different random subsamples and eval-
uated average clustering accuracy with the Hugarian
method4.

The execution results are shown in Figure 3. In
semi-supervised clustering, choosing a good param-
eter setting is difficult because a standard method
such as cross validation is not straightforward to ap-
ply. Therefore, instead of showing results for specific
choices of α and β, we present how the performance
of the suggested approach depends on α and β. The
results shown in the figures demonstrate a reasonable
trend. The group sparsity regularization does boost
the clustering performance, but too strong regular-
ization such as α ≥ 10−3 is often harmful. It can be
seen that a wide selection of the parameter values,
α ∈ [10−8, 10−5] and β ∈

[

10−8, 10−2
]

, can be used
to improve the clustering accuracy.

Note that the goal of our demonstration is not
to argue that the group sparsity regularization is the
best semi-supervised clustering approach. Such an in-
vestigation requires in-depth consideration on other
semi-supervised clustering methods, and it is beyond
the scope of this paper. In fact, the group sparsity
regularization can be potentially combined with other
matrix factorization-based semi-supervised clustering
methods [33], and the combination would be an in-
teresting future work. In addition, the group spar-
sity regularization takes into account only ‘must-link ’
constraints, and combining with another approach
for handling ‘cannot-link ’ constraints would also be a
promising avenue for further study.

5.3 Multilingual text analysis Now, we turn to
an application of the group sparsity regularization
with the row groups (as apposed to the column
groups in the previous subsection). We consider

4http://en.wikipedia.org/wiki/Hungarian_method

the task of analyzing multilingual text corpus, which
is becoming important under the trend of rapidly
increasing amount of web text information. Demand
for a multilingual text analysis system is particularly
high in a nation or a community, such as EU, where
multiple official languages are used. An effective
approach in multilingual modeling is to make use of
parallel (i.e., translated) corpus to discover aligned
latent topics. Aligned latent topics can then be
used for topic visualization, cross-lingual retrieval, or
classification. In this subsection, we show how group-
sparsity regularization can be used to improve the
interpretation of aligned latent topics.

We have used the DGT Multilingual Transla-
tion Memory (DGT-TM)5 in our analysis. This cor-
pus contains the body of EU law, which is par-
tially translated into 22 languages. We used docu-
ments in English, French, German, and Dutch, which
will be denoted by EN, FR, DE, and NL, respec-
tively. Applying stop-words and stemmer for each
language, we selected the most frequent 10,000 terms
in each language to construct term-document ma-
trices. Matrix factorization problem was set up as
in Figure 1-(b). As we deal with four languages,
the source matrix X consists of four row blocks:
XT =

(

(

X(1)
)T

, · · · ,
(

X(4)
)T

)

. Columns of these

matrices contain the term-document representation
of the same document in four different languages.
Not all documents are translated into all languages,
so the source matrix X is not fully observed in this
case. Missing parts were ignored by treating them
with zero weights. Once a low-rank factorization is
obtained, the columns of W(1), · · · ,W(4) with the
same column index are interpreted as aligned latent
topics that convey the same meaning but in different
natural languages.

The expected benefit of group sparsity regular-
ization is removing noisy alignments of the latent
factors. That is, if a certain topic component ap-
pear in documents only in a subset of languages, we
would like to detect a zero column in the latent fac-
tor for the language where the topic is missing. To
test this task, we used a partial corpora from DGT-
TM as follows. We collected pairwise translation cor-
pora for EN-FR, EN-DE, and EN-NL (of sizes 1,273,
1,295, and 632, respectively), and appended single
language documents in EN, FR, DE, and NL (of sizes
1,300, 930, 610, and 699, respectively). Using q =∞,
k = 500, α = 10−3, and β = 5 × 10−3, the algo-
rithm described in Section 4 was applied to XT . The

5http://langtech.jrc.it/DGT-TM.html



Table 1: Summary of topics analyzed by group sparsity regularized NMF.

Id Keywords

2

EN member,state,institut,benefit,person,legisl,resid,employ,regul,compet,insur,pension

FR procédur,march,de,passat,membr,adjud,recour,d’un,consider,une,aux,concili

DE akt,gemeinschaft,rechtsakt,bestimm,europa,leitlini,organ,abfass,dies,sollt,erklar,artikel

NL regel,bevoegd,artikel,grondgebied,stat,organ,lid-stat,tijdvak,wettelijk,uitker,werknemer,krachten

14

EN test,substanc,de,use,en,toxic,prepar,soil,concentr,effect,may,method

DE artikel,nr,verordn,flach,eg,absatz,mitgliedstaat,flachenzahl,gemass,erzeug,anhang,wirtschaftsjahr

NL word,and,effect,stoff,test,preparat,teststof,stof,la,per,om,kunn

231
EN brake,shall,vehicl,test,system,point,trailer,control,line,annex,requir,type

NL de,moet,voertuig,punt,bijlag,aanhangwag,op,remm,wordt,niet,dor,mag

302

EN statist,will,develop,polici,european,communiti,programm,inform,data,need,work,requir

FR statist,européen,une,polit,programm,un,développ,don,aux,communautair,l’union,mis

DE statist,europa,dat,entwickl,programm,information,erford,bereich,neu,dies,gemeinschaft,arbeit

NL vor,statistisch,statistiek,europes,word,ontwikkel,over,zull,om,gebied,communautair,programma

392
EN shall,requir,provid,class,system,space,door,deck,fire,bulkhead,ship,regul

DE so,schiff,raum,muss,klass,tur,absatz,vorhand,deck,stell,maschinenraum,regel

452
EN must,machineri,design,use,oper,safeti,manufactur,risk,requir,construct,direct,person

NL moet,machin,zijn,de,dor,om,fabrikant,niet,lidstat,overeenstemm,eis,elk

488
EN clinic,case,detect,antibodi,isol,compat,diseas,demonstr,specimen,fever,pictur,specif

FR détect,cliniqu,une,cas,mis,évident,malad,isol,part,échantillon

DE nachweis,klinisch,prob,isolier,bild,vereinbar,fall,spezif,fieb,krankheit,akut,ohn

NL klinisch,geval,dor,ziekt,aanton,isolatie,beeld,detectie,monster,bevestigd,niet,teg

494

EN european,council,schengen,union,treati,visa,decis,articl,provis,nation,protocol,common

FR européen,conseil,l’union,vis,décis,présent,trait,schengen,commun,état,communaut,protocol

DE europa,rat,union,beschluss,vertrag,gemeinsam,ubereinkomm,artikel,dies,schengen-besitzstand

NL de,europes,rad,besluit,overeenkomst,verdrag,protocol,bepal,betreff,lidstat,unie,gemeenschap

columns in W are sorted in decreasing amounts of
explained variance, and keywords in each topic are
listed in a decreasing order of the weights given to
each term. The results are summarized in Table 1.

Out of k = 500 columns, six of them resulted
empty, making the 494th topic the last one in Table
1. Two aspects of the results can be noted as a
summary. First, the keywords in each language of
the same topic appeared quite well-aligned in general.
Second, zero columns indeed were detected in some of
the discovered topics. For example, the 231th topic,
which is regarding vehicles and trailers, appeared
only in English and Dutch documents. Similarly, the
452th topic, which is regarding ships, appeared only
in English and German documents. When we tried
without group sparsity regularization, however, all
the columns of W appeared as nonzero.

5.4 Timing comparison Our last experiments
are comparisons of Algorithm 1 and Algorithm 3 in
terms of computational efficiency. Using data sets
from the three previous demonstrations, we executed

the two methods and compared time-vs-objective
value graphs. In NMF, it is typical to try several
initializations, and the execution of one initial value
appears as a piecewise-linear decreasing function.
We averaged the functions from 10 initializations to
generate the plots shown in Figure 4.

From the figure, it can be seen that the vector-
block BCD method in Algorithm 3 converges to a
minimum faster than the matrix-block BCD method
in Algorithm 1. The trend is consistent in both
dense (synthetic data set) and sparse (text data sets)
matrices. In a non-convex optimization problem such
as NMF, each execution may converge to a different
local minimum, but the converged minima found by
the two methods were in general close to each other.

6 Conclusions and Discussion

In this paper, we proposed mixed-norm regularization
methods for promoting group sparsity in NMF. Reg-
ularization by l1,q-norm successfully promotes that
sparsity pattern is shared among data items or fea-
tures within a group. Efficient convex optimiza-
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Figure 4: Computational comparisons of the matrix-
block and the vector-block BCD methods. The x-
axis shows execution time, and the y-axis shows the
value of the objective function of (3.1) divided by
its evaluation with initial random inputs. All graphs
show average results from 10 random initializations.
Left: q = ∞, right: q = 2, first row: synthetic data
set used in Section 5.1, second row: TDT2 data set
with k = 5, third row: TDT2 data set with k = 10,
fourth row: 20 newsgroup data set with k = 5, fifth
row: 20 newsgroup data set with k = 10.

tion methods based on the block coordinate descent
(BCD) method are presented, and the comparisons of
them are also provided. Effectiveness of group spar-
sity regularization is demonstrated with application
examples for factor recovery, semi-supervised cluster-
ing, and multilingual analysis.

A few interesting directions of future investiga-
tion has been learned. First, our study addressed
only non-overlapping group structure, and further ex-
tending our work to algorithms and applications with
overlapping and hierarchical groups will be interest-
ing. In addition, although l1,q-norm regularization
has been applied to many supervised and unsuper-
vised learning tasks, how its effect depends on q re-
mains to be studied further.
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