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Abstract – Raman spectroscopy is a powerful and
effective technique for analyzing and identifying the
chemical composition of a substance. In this paper, we
focus on supervised methods for estimating Raman spec-
tra and present a supervised method that can handle
rank deficiency for estimating the Raman spectra. Ear-
lier work has mostly assumed that the reference spec-
tra matrix whose columns consist of the library of ref-
erence spectra are of full rank. However in practice,
methods that can handle rank deficient cases, and the
special case of an over complete library, are needed.
We present our theoretical discovery that the active
set method with a proper starting vector can actually
solve the rank deficient nonnegativity-constrained least
squares problems without ever running into rank defi-
cient least squares problems during iterations. Experi-
mental results illustrate the effectiveness of the proposed
approaches.
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troscopy, Machine Learning, Classification, Con-
strained Parameter Estimation, Weighted Least
Squares, Nonnegative Weighted Least Square, Rank
Deficient Least Squares with Nonnegativity Con-
straint, Active-set Methods, Generalized Likelihood
Ratio Test, Measures of Performance.

1 Introduction
The Raman effect or Raman scattering represents the

inelastic quantum scattering of a photon by molecules
in liquids, gases, or solids [2]. When light is incident on
a molecule, most photons are scattered elastically so
that the energy or frequency of the scattered photon is
the same as that of the incident photon. This is known
as Rayleigh scattering. A small fraction, about one in a
million, is scattered inelastically, causing the frequency
of the scattered photon to be different from (usually
lower than) the frequency of the incident photon. This
is known as Raman scattering. The frequency change
is due to the change in energy levels of the vibrational

or rotational energy of the molecule. Therefore, Ra-
man spectroscopy is a powerful tool for analyzing the
chemical composition of liquids, gases, or solids using
a laser [2, 13, 14, 15, 16]. A Raman spectrum is a
plot of the intensity of the scattered photon as a func-
tion of frequency shift. The measured Raman spec-
trum can be used as a fingerprint to uniquely identify
the chemical composition of a substance. Application
of Raman spectroscopy to analyze chemical composi-
tions of various substances has seen rapid growth in
recent years [2, 13, 14, 15, 16]. This is primarily due
to the development of inexpensive and effective lasers
and charge-coupled device (CCD) detectors [2]. Raman
spectroscopy is also popular because measurement col-
lection is fast and does not require contact with the
chemical substance.
Suppose we have the measured Raman spectrum of

a substance and we are interested in determining the
chemical composition of the substance. The measured
spectrum contains various error sources. Therefore, it is
necessary to use a statistical measurement model that
expresses the measurement as a function of the true
spectrum and dominant error sources.

Raman spectrum estimation algorithms can be
grouped into two types: supervised and unsupervised
algorithms [12]. In the supervised approach, a library
of reference Raman spectra are used and the true tar-
get spectrum is expressed as a linear combination of the
reference spectra. Each reference spectrum is assumed
to be error-free. In practice, this is not feasible. If the
errors in a measured reference spectrum are very small
compared with the signal values, then it is a good ap-
proximation to treat the measured reference spectrum
as error-free. Otherwise, one must model the errors in
the reference spectra. Supervised algorithms assume
that the library contains all reference spectra that may
be encountered in data collection. A supervised algo-
rithm estimates the nonnegative expansion coefficients
or mixing coefficients using the reference spectra and a
statistical measurement model. The unsupervised ap-
proach estimates the spectra and mixing coefficients di-



rectly from measurements.
This paper examines estimation of Raman spectra

using the supervised approach. In particular, we ad-
dress the cases where the reference spectra matrix is
rank deficient due to some columns being linearly de-
pendent on other columns. A special case of rank de-
ficient problem occurs when the reference spectra ma-
trix is over complete, i.e., when there are more refer-
ence spectra (columns) than the number of the CCD
array bins. This current work studies rank deficiency of
the underdetermined problem, which is relevant to the
application area considered. Our theoretical discovery
explains that the active set method for nonnegativity
constrained least squares with a proper starting vector
can actually handle these rank deficient cases.
We discuss algorithms, present test results and a

comparative analysis of the following supervised Ra-
man spectra estimation methods

1. Least squares (LS)

2. Nonnegative least squares with active set method
(NLS)

3. Generalized likelihood ratio test (GLRT)

4. Nonnegative generalized likelihood ratio test
(NGLRT)

We use simulated data and performMonte Carlo sim-
ulations to compare the performance of the algorithms
we discuss. The measure of performance used in this
study is the root mean square error (RMSE) for the
mixing coefficients, i.e., the estimated solution vector of
the minimization problem. We also present visual rep-
resentations of the computed mixing coefficients that il-
lustrate clearly the theoretical results developed in this
paper.
The outline of the paper is as follows. In Sections 2

and 3, we describe the measurement model and mea-
surement function for Raman spectra, respectively. We
then present various algorithms that were used for Ra-
man spectra estimation, and present the properties
of the active set method as a method for rank defi-
cient nonnegativity constrained least squares problems
in Section 4. Finally, Sections 5 and 6 present numerical
test results and discussions.

2 Measurement Model for Ra-
man Spectrum

The Raman spectroscopy sensor system transmits a
laser pulse and produces a measured Raman spectrum
from the energy scattered by the chemical substance.
The spectrum is spread across the bins of a CCD de-
tector. The response on each bin corresponds to the
amount of energy scattered at a particular frequency
or wave number. The measurement model for the mea-
sured Raman spectrum is based on [17, 18] and is de-
scribed in detail in [10, 12]. For the sake of complete-
ness, we summarize the model here.
Let y ∈ ℝ

M denote a measured spectrum with values
at M bins

y = [ y1 y2 ⋅ ⋅ ⋅ yM ]
T
. (1)

The measurement model [10, 12, 17, 18] for the itℎ el-
ement of y is described by

yi = ns
i + nb

i + gi, i = 1, 2, ⋅ ⋅ ⋅ ,M, (2)

where ns
i and nb

i represent the number of photoelec-
trons generated by the signal and background noise,
respectively, and gi is the Gaussian readout noise from
the amplifier. The random variables (RVs) ns

i and nb
i

have Poisson distribution with parameters �s
i and �b

i ,
respectively. The Gaussian RV gi has mean m and vari-
ance �2, which are assumed to be known. We assume
that the RVs ns

i , n
b
i , and gi are independent and also

independnet of similar RVs at other bins.
Based on our assumptions, we have

ns
i ∼ pPoisson(n

s
i ;�

s
i ), (3)

nb
i ∼ pPoisson(n

b
i ;�

b
i ), (4)

pPoisson(x;�) =
e−��x

x!
, x = 0, 1, 2, ⋅ ⋅ ⋅ (5)

gi ∼ N(gi;m,�2), (6)

E{(gi −m)(gj −m)} = �ij�
2, (7)

where �s
i and �b

i represent the expected numbers of
counts for the signal and background noise, respec-
tively. We note that the mean and variance of a Poisson
distributed RV x with parameter � are equal to �.
If �s

i +�b
i is large (e.g. greater than 50), then ns

i +nb
i

is well approximated by a Gaussian distribution

ns
i + nb

i ∼ N(ns
i + nb

i ;�
s
i + �b

i , �
s
i + �b

i ). (8)

This approximation is called the large signal approxi-
mation. We can show that under the large signal ap-
proximation [10]

y = �
s + �

b +m+ v, (9)

where

m = m [ 1 1 ⋅ ⋅ ⋅ 1 ]T , (10)

�
s = [ �s

1 �s
2 ⋅ ⋅ ⋅ �s

M ]
T
,

�
b =

[

�b
1

�b
2

⋅ ⋅ ⋅ �b
M

]T
,

v ∼ N(v;0M×1,R),

R = diag(�s
1 + �b

1 + �2, ⋅ ⋅ ⋅ , �s
M + �b

M + �2).

3 Measurement Function for Ra-
man Spectra

Suppose we have N reference spectra {sj ∈ ℝ
M}Nj=1

in our library corresponding to N chemical substances.
Then the true target spectrum s can be expressed as a
linear combination of the reference spectra by

s = ΣN
j=1xjsj . (11)



We can write (11) in the matrix form

s = Ax, (12)

where

A = [ s1 s2 ⋅ ⋅ ⋅ sN ] ,

x = [ x1 x2 ⋅ ⋅ ⋅ xN ]
T ≥ 0. (13)

The parameter vector �
s and the true specrum s are

ralated by

�
s = Ps, (14)

where P is the M × M point spread function matrix
of the diffraction grating used to spread the spectral
energy across the CCD bins. Substitution of (12) in
(14) gives

�
s = Φx, where Φ = PA.

Not all photons that hit the CCD array are converted
to photoelectrons. The quantum efficiency or flat-field
response varies along the CCD array. This non-uniform
detector efficiency is modeled by

�s
i = �i(Φx)i, (15)

where �i is known from calibration measurements. We
can write (15) in the matrix form

�
s = Cx, (16)

where

C = BΦ = BPA, B = diag(�1, �2, ⋅ ⋅ ⋅ , �M ). (17)

Under the large signal approximation, substitution of
(16) in (9) gives

y = Cx+ �
b +m+ v.

Define the new measurement vector z

z = y − �
b −m.

Then
z = Cx+ v. (18)

Thus, under the large signal approximation, the mea-
surement model is linear with additive Gaussian mea-
surement noise. An estimate x̂ of x can be obtained
using the maximum likelihood estimator (MLE) [11, 4]
or weighted least squares (WLS) [11, 4] with nonneg-
ativity constraints (13). Thus, the estimation problem
is a constrained estimation problem due to (13), and
the use of classical MLE or WLS would yield approx-
imate results. In this paper, we address estimation of
Raman spectra under the large signal assumption. Fu-
ture work will address the more general case where the
large signal assumption is not valid.

4 Raman Spectra Estimation Al-
gorithms

Since the measurement model in (18) is linear with
additive Gaussian noise, the estimates from the MLE
and WLS are the same provided that the weight matrix
W in WLS has a certain form, see [4, 11]. Then using
(11),

W = UTU = diag(w1, w2, ⋅ ⋅ ⋅ , wM ), (19)

where

wi = 1/(�s
i + �b

i + �2), i = 1, 2, ⋅ ⋅ ⋅ ,M,

U = diag(
√
w1,

√
w2, ⋅ ⋅ ⋅ ,

√
wM ).

The cost function for parameter estimation is

J(x) = (z−Cx)TW(z−Cx) (20)

= ∥U(Cx− z)∥22 = ∥Hx− g∥22, (21)

where the weighted measurement vector g ∈ ℝ
M and

the weighted measurement matrix H ∈ ℝ
M×N are de-

fined by
gi =

√
wizi, i = 1, 2, ⋅ ⋅ ⋅ ,M,

dij =
√
wicij , i = 1, 2, ⋅ ⋅ ⋅ ,M, j = 1, 2, ⋅ ⋅ ⋅ , N.

As shown in the above equation, the WLS cost function
in (20) is equivalent to the LS cost function in (21).
Thus, in the following algorithm development, for sim-
plicity of discussion, we will not differentiate between
the unweighted and the weighted least squares prob-
lems. In addition, although these algorithms assume
the same measurement variances for all measurements,
i.e., W = �

2
vI, they can be easily modified to handle

non-uniform weights, which is application dependent,
e.g., the application discussed in this paper.

4.1 Least Squares (LS) and the Gen-
eralized Likelihood Ratio Test
(GLRT)

Unconstrained least squares (LS) [4, 11] solves the
following problem:

min
x

J(x). (22)

Since LS does not enforce the nonnegativity constraints,
the estimate obtained by LS might contain negative val-
ues. The algorithms for solving (22) can be divided into
two groups depending on the rank of matrix H: When
H is of full column-rank, then the QR decomposition
method is recommended although the method of the
normal equations is commonly used as well. When H
is rank deficient, then algorithms that reveal the rank
of the matrix are needed. The best algorithm in terms
of numerical stability would be based on the singu-
lar value decomposition (SVD) of the matrix H. As
a faster approximation, several methods that approxi-
mates the SVD can be used which include those based
on the complete orthogonal decompositions and rank-
revealing URV and ULV decompositions [19].
We describe briefly the subspace version of the GLRT

[5]. The likelihood function is p(z; x̂,R, H1) for the



measurement model (18), with hypothesis H1, where
all of the reference spectra are the columns of C and x̂
is the estimate of the mixing coefficients. A leave-one-
out strategy is used to leave the itℎ column out of C
and the likelihood function p(z; x̂0,R0, H0) is formed
for the alternative or null hypothesis. x̂0 is estimated
and the log of the ratio is tested against a threshold �

ln p(z; x̂,R, H1)− ln p(z; x̂0,R0, H0) > � (23)

If this is satisfied, then the itℎ chemical is assumed to
be present and that spectra is used to form one of the
columns of the measurement matrix C. If the test is
satisfied p times then Cp is formed and the estimate
x̂p is determined. The estimation algorithm can be any
of the usual techniques. Here we choose least squares
(GLRT) and nonnegative least squares (NGLRT) for
comparison.

4.2 Nonnegative Least Squares (NLS)
for Full Rank Problems

For the measurement model (18), the nonnegativity-
constrained least squares (NLS) or nonnegative MLE
(NMLE) solves the problem

x∗ = argmin
x≥0

J(x). (24)

Due to the nonnegativity constraints, algorithms for
(24) are more complicated than those for unconstrained
problems. In this section, we describe algorithms for
solving (24) for both cases where H is of full column
rank and H is rank deficient.
A standard algorithm for (24) is the active-set

method described in Lawson and Hanson [9], and its
implementation is included in MATLAB R⃝ as function
lsqnonneg. We summarize the algorithm in Algorithm
1 and will refer to it when we discuss the rank deficient
case.
A key objective of Algorithm 1 is to identify what

variables are zero or non-zero in the solution. For the
solution x∗ in (24), the index set

ℰ∗ = {j∣x∗
j = 0, j = 1, 2, ⋅ ⋅ ⋅ , N} (25)

is called the active set since the nonnegativity con-
straints are actively satisfied in those indices. Similarly,
the index set

S∗ = {j∣x∗
j ∕= 0, j = 1, 2, ⋅ ⋅ ⋅ , N} (26)

is called the passive set. In the algorithm, we main-
tain working sets (ℰ ,S) as candidates for (ℰ∗,S∗) and
iteratively exchange variables between ℰ and S until
(ℰ∗,S∗) is found. We typically start from the all zero
solution, i.e., S = ∅.
The algorithm is composed of two nested loops: the

inner loop (Steps 7 to 11) and the outer loop (Steps
3 to 14). In the inner loop, the unconstrained least
squares solution with respect to the current passive set
S is computed (Step 11). If the unconstrained solu-
tion is feasible, the inner loop is terminated (Step 13);
otherwise, a step length is chosen so that at least one
passive variable becomes active (Step 8), and the loop
is repeated. In the outer loop, a check is made to de-
termine if the current solution obtained from the inner

loop is the desired solution (Step 2). If it is not the de-
sired solution, then one index is chosen from the active
set and moved to the passive set (Steps 3-4).
For the case that the matrix H is full column rank,

the correctness of Algorithm 1 is proved in [9]. We
briefly discuss the key ideas of the proof. These results
will be essential in establishing the fact that Algorithm
1 is also valid for rank deficient cases with no modifi-
cation. As the first step, we verify that all the steps
in Algorithm 1 are well defined when the matrix H has
full rank. In particular, the following lemma plays a
key role. For the full proof, see [9] Chapter 23.

Lemma 1. In Algorithm 1, the solution z obtained in
Step 5 satisfies zt > 0 where t is the index chosen in
Step 3.

To understand the important implication of Lemma
1, let us assme that the statement is not true, i.e., zt ≤
0. In this case, the step length � in Step 8 is zero,
and therefore the current solution candidate x is not
updated in Step 9 making further updates impossible.
Therefore, Lemma 1 shows that � can be positive and
the steps are well defined.
In addition, the following statements show that Al-

gorithm 1 terminates in a finite number of iterations.
For the inner loop, observe that at least one index is
removed from S at each iteration. Hence, the inner
loop terminates in at most ∣S∣ steps. The finiteness of
the outer loop can be shown by considering the value
of the cost function J(x). Because the value of J(x) is
strictly reduced after each iteration, set S at Step 4 is
different from all the previous instances of itself. Since
only a finite number of cases are possible for set S, the
outer loop terminates in a finite number of iterations.
In practice, the number of iterations of the outer loop
is usually the same or slightly bigger than the size of
the passive set, ∣S∗∣.
4.3 Rank Deficient NLS
When H in (21) is rank deficient, Algorithm 1 is ap-

plicable without modification. We now prove this by
asserting and proving a lemma regarding the state of
the inner-loop subproblem in the presence of the over-
all rank deficiency of H.
A key issus is whether HS ever becomes rank defi-

cient during the execution of Algorithm 1. If this hap-
pens, a problem arises because the solutions in Steps 5
and 11 are not uniquely determined, and then Lemma 1
might not hold. If Lemma 1 does not hold, it is difficult
to show the finite termination property. In the follow-
ing, however, we show that the columns in HS indeed
remain linearly independent throughout all iterations.

Lemma 2. In Algorithm 1, the column corresponding
to the index t chosen in Step 3 is linearly independent
of the columns indexed by the current S.
Proof. Assume that k /∈ S and denote the correspond-
ing column of H by hk. We will show that if hk is
lineary dependent on the columns in HS , then k is not
selected in Step 3.
Note that, at the end of the previous iteration of the

inner loop, x is feasible (x ≥ 0) and is the optimal
solution with respect to the current passive set S. We
therefore have that

∂∥HSxS − g∥2
2

∂x
= HT

SHSxS −HT
Sg = 0. (27)



Algorithm 1 NLS : This algorithm [9] solves
minx≥0 ∥Hx− g∥

2
where H ∈ ℝ

M×N , g ∈ ℝ
M

1: x := 0, ℰ := {1, 2, ⋅ ⋅ ⋅ , N}, S := ∅, w := HT (g −
Hx).

2: while ℰ ∕= ∅ and ∃j ∈ ℰ such that wj > 0 do

3: Find t ∈ ℰ such that wt = max {wj : j ∈ ℰ}.
4: Move the index t from ℰ to S.
5: Let HS denote the M × ∣S∣ submatrix of H con-

taining only the columns indexed by S. For
z ∈ ℝ

N , let zS be the subvector of z in-
dexed by S. Define zℰ similarly. Then, solve
minzS ∥HSzS − g∥

2
and set zℰ := 0.

6: while zj ≤ 0 for any j ∈ ℰ do

7: Find q ∈ S such that xq/(xq − zq) =
min {xj/(xj − zj) : zj ≤ 0, j ∈ S} .

8: � := xq/(xq − zq).
9: x := x+ �(z − x).

10: Move from S to ℰ all indices j ∈ S for which
xj = 0.

11: Solve minzS ∥HSzS − g∥
2
and set zℰ := 0.

12: end while
13: x := z.
14: w := HT (g −Hx).
15: end while

Now, if hk is lineary dependent on the columns in HS ,
then hk = HSc with some vector c. Then, the ktℎ

element of w in Step 14 is

wk = (hk)
T (HTx− g)

= (HSc)
T (HT

SxS − g)

= cTHT
S (H

T
SxS − g) = 0,

using (27). Therefore, k is not selected in Step 3.

Lemma 2 shows that HS does not become rank defi-
cient after Step 3. Because the inner loop only reduces
the passive set S, HS does not become rank deficient
during the inner loop. Hence, Lemma 2 is enough to
show that HS remains full-column rank throughout the
iterations. The remaining argument of the finite termi-
nation property of Algorithm 1 for the rank deficient
case is the same as that of the full rank case described
above.
Our proof provides further understanding regarding

the initialization of the active-set method. Although
x is initialized with a zero vector in Algorithm 1, it is
possible to use prior information and initialize x by a
non-zero vector. When H is rank deficient, however,
care must be taken if x is initialized with a non-zero
vector. If x is set to be a zero vector initially, then S
is initially empty and the column rank of HS remains
full as we have shown above. If x is initialized with a
non-zero vector for which the corresponding HS is rank
deficient, then the steps of Algorithm 1 might not be
well defined. Therefore, unless we have other informa-
tion that an initial value of x can be set to non-zero
and the corresponding HS has full column rank ini-
tially, Algorithm 1 needs to be started from x = 0, i.e.,
with S = ∅. For this case, the algorithm will correctly
find a solution even when the matrix is rank deficient
without ever running into rank deficient subproblems.

Figure 1: Variation of measurement error variance with
bin index.

5 Numerical Simulation and Re-
sults

We implemented several algorithms discussed in this
paper in MATLAB R⃝ 7.9 (R2009b) and compared them
for several datasets for supervised Raman spectra es-
timation. All experiments were conducted on an Intel
Core 2 Quad processor with the Windows XP operating
system and 4GB of RAM. One thousand Monte Carlo
trials were used to calculate measures of performance
for each spectral estimation algorithm.

5.1 Data Sets and Experimental Set-
tings

We used 67 reference Raman spectra, {sj ∈ ℝ
M}Nj=1

,
N = 67. Each spectrum has values at M = 1024 bins.
In the Monte Carlo simulations, the mean and variance
of the Gaussian measurement noise are 10 and 225, re-
spectively. We used a constant value of 256 for the
Poisson parameter �b

i for all bin values. We then calcu-
lated �s by selecting and substituting a true x vector
into (16)-(17) and (13).
In previous work we studied various cases with mul-

tiple chemicals present. After discussions with field ex-
perts, in this present work we focus on the case with 3
chemicals present, which turns out to be the scenario
often encountered in the field. These will be referred to
as chemicals spec3, spec5, and spec30. The concentra-
tions were set at 0.3 g/m2 with a uniform distribution
for each chemical species.
Two sets of reference spectra have been generated:

one from laboratory samples and another derived from
the first with a perturbation to force the resulting ref-
erence spectra matrix to be rank deficient. The former
will be referred to as refFR (Full Rank); the latter as re-
fRD (Rank Deficient). The perturbation was performed
by modifying the singular value decomposition of refFR
so that reconstruction of the new reference spectra ma-
trix resulted in a reduced rank reference spectra matrix.
All of this can be summarized in the following equa-

tions: as in the above sections, let H be full column
rank (refFR) and Hr be the rank reduced matrix of
reference spectra (refRD). Consider the singular value



Algorithm Estimation RMSE

refFR refRD
LS 0.0908 0.1894

GLRT 0.2197 0.4064
NGLRT 0.0162 0.0154
NNLS 0.0024 0.0051

Table 1: Overall errors for unweighted versions of the
algorithms.

decomposition (SVD) of H . Then H and Hr are re-
lated by

H = USVT

Hr = U(S +E)VT (28)

where S = diag(�1, ..., �n−2, �n−1, �n), E =
diag(01, ..., 0n−2, �+ �− �n−1,−�n), � is machine pre-
cision, and � is a small constant determined to make
the matrix just on the ”edge” of rank deficiency in the
second to last singular value.
Finally, we characterize the variation in quantum ef-

ficiency of the CCD array in Figure 1, which shows the
variation of the measurement error variance with bin
index for the current scenario. We observe that the
measurement error variance changes significantly with
the bin index - this shows that the weighted algorithm
methods model the physics more realistically than un-
weighted methods [10].

5.2 Performance Evaluation Measures
Let Ms be the total number of Monte Carlo simula-

tions and x̂m the estimate of x in the mth Monte Carlo
simulation. The estimation error in the jth component
of x in the mth Monte Carlo simulation is defined by

x̃m,j := xj − x̂m,j , j = 1, 2, ..., N. (29)

The root mean square error (RMSE) for the jth co-
efficient and the overall RMSE for the coefficients are
defined, respectively, by

RMSEx,j :=

[

1

Ms

Ms
∑

m=1

x̃2

m,j

]1/2

, j = 1, 2, ..., N, (30)

RMSEx :=

⎡

⎣

1

NMs

N
∑

j=1

Ms
∑

m=1

x̃2

m,j

⎤

⎦

1/2

. (31)

5.3 Experimental Results
Table 1 summarizes overall RMSE results for the pa-

rameter estimation, i.e. the estimation of the mixing
coefficients for each algorithm averaged over all Monte
Carlo runs. The algorithms are listed on the left and
estimation RMSE results are listed for each algorithm
in the two columns to the right. Note that there is
a slight increase for the NGLRT algorithm going from
the full rank to rank deficient cases. More Monte Carlo
simulations would probably show that this is not sig-
nificant.
In Figure 2, we observe that, for the full rank case

(refFR), the least squares algorithm performs fairly well
at determining the correct mixing coefficients for spec3,
spect5, and spec30 and their concentrations. This can

Figure 2: Least squares solution vectors for the full rank
(blue) and rank deficient (red) cases.
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Figure 3: Generalized likelihood ratio test solution vec-
tors for the full rank (blue) and rank deficient (red)
cases.
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be seen by the blue spikes at chemical numbers 3, 5,
and 30 on the abscissa. However, for refRD, the least
squares algorithm completely misses spec30 and finds
additional chemicals at spec7 and spec55.
Figure 3 shows the results for the generalized likeli-

hood ratio test. The results for the full rank matrix of
spectra are similar to the least squares results except
that the concentrations are not determined correctly
(blue curve). When the matrix is rank deficient, GLRT
completely fails to estimate the mixing coefficients (red
curve).
In Figures 4 and 5 we see that both the NGLRT

and the NLS algorithms were unaffected by rank defi-
ciency. However, the NLS was able to both determine
the chemical species present and their concentrations.
In these two figures the plots were so close that a color
scheme was used to show the results with the full rank
case in thick green and the rank deficient results in red
and ”inside” the green curve.
Figures 6 and 7 are surface plots of the solution

vectors for all 1000 Monte Carlo runs as viewed from



Figure 4: Nonnegative generalized likelihood ratio test
solution vectors for the full rank (blue) and rank defi-
cient (red) cases.
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Figure 5: Nonnegative least squares solution vectors for
the full rank (blue) and rank deficient (red) cases.
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the x,z-plane (chemical number, concentration). These
plots are for the least squares algorithm operating on
the full rank (Fig. 6) and rank deficient (Fig. 7) cases.
Superimposed in black are the same plots of the NLS
Monte Carlo runs for the corresponding cases. This
demonstrates the large variation over Monte Carlo runs
when rank deficiency is introduced when using the least
squares algorithm. In contrast the NLS algorithm ex-
hibits very little variation and is unaffected by the rank
deficiency, as anticipated by the theoretical results in
the previous sections.

6 Conclusions and Discussions
In this paper we presented theoretical and experi-

mental results for estimating the mixing coefficients of
chemical species sampled using a Raman spectroscopy
instrument. We reviewed the measurement model as
implemented in our simulation. The mixing coef-
ficients were estimated using four algorithms: least
squares, generalized likelihood ratio test, nonnegative

Figure 6: Least squares solutions for the full rank case
for all 1000 Monte Carlo runs (green) and the same for
NLS (black).

Figure 7: Least squares solutions for the rank deficient
case for all 1000 Monte Carlo runs (green) and the
same for NLS (black).

least squares, and nonegative generalized likelihood ra-
tio test.
The theoretical results show that the NLS-based al-

gorithms should be robust in the presense of a rank
deficient coefficient matrix. For the applicatoin under
study, this is the reference Raman spectra matrix used
to find the mixing coefficients that allow matching a
sample to chemical species in the reference Raman spec-
tra ”library”.
Experimental results verify the theoretical results by

demonstrating a reduction of the overall RMSE for
the NLS-based methods over the LS and GLRT algo-
rithms. The experiments were conducted using 1000
Monte Carlo simulations for each algorithm with a sce-
nario that is similar to those found in practice. Also
presented were visual confirmation of the results us-
ing graphs of the computed mixing coefficients averaged
over the 1000 Monte Carlo simulations and surface plots
of all 1000 MC runs.



The results demonstrate that for supervised learn-
ing of the mixing coefficients NLS using the active set
method should be preferred due to its robustness in the
presence of rank degeneracy.
Future research will focus on imposing sparsity con-

straints on the nonnegativity constrained least squares
problems. This is a better model for the problem, which
is expected to improve the solution, especially in the
presence of multiple chemicals.
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