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Abstract In this paper we consider the general cone programming problem, and
propose primal-dual convex (smooth and/or nonsmooth) minimization reformulations
for it. We then discuss first-order methods suitable for solving these reformulations,
namely, Nesterov’s optimal method (Nesterov in Doklady AN SSSR 269:543–547,
1983; Math Program 103:127–152, 2005), Nesterov’s smooth approximation scheme
(Nesterov in Math Program 103:127–152, 2005), and Nemirovski’s prox-method
(Nemirovski in SIAM J Opt 15:229–251, 2005), and propose a variant of Neste-
rov’s optimal method which has outperformed the latter one in our computational
experiments. We also derive iteration-complexity bounds for these first-order meth-
ods applied to the proposed primal-dual reformulations of the cone programming
problem. The performance of these methods is then compared using a set of ran-
domly generated linear programming and semidefinite programming instances. We
also compare the approach based on the variant of Nesterov’s optimal method with the
low-rank method proposed by Burer and Monteiro (Math Program Ser B 95:329–357,
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2003; Math Program 103:427–444, 2005) for solving a set of randomly generated SDP
instances.

Keywords Cone programming · Primal-dual first-order methods · Smooth optimal
method · Nonsmooth method · Prox-method · Linear programming ·
Semidefinite programming

Mathematics Subject Classification (2000) 65K05 · 65K10 · 90C05 · 90C22 ·
90C25

1 Introduction

In [10,11], Nesterov proposed an optimal algorithm for solving convex programming
(CP) problems of the form

f̄ ≡ inf{f(u) : u ∈ U}, (1)

where f is a convex function with Lipschitz continuous derivative and U is a suffi-
ciently simple closed convex set. It is shown that his method has O(ε−1/2) iteration-
complexity bound, where ε > 0 is the absolute precision of the final objective function
value. A proximal-point-type algorithm for (1) having the same complexity above has
also been proposed more recently by Auslender and Teboulle [1].

For general minimization problems of the above form, where f is Lipschitz continu-
ous, the classical subgradient method is known to be optimal with iteration-complexity
bounded by O(1/ε2). In a more recent and very relevant work, Nesterov [11] presents
a first-order method to solve CP problems of the form (1) for an important and broad
class of nonsmooth convex objective functions with iteration-complexity bounded by
O(1/ε). Nesterov’s approach consists of approximating an arbitrary function f from
the class by a sufficiently close smooth one with Lipschitz continuous derivative and
applying the optimal smooth method in [10,11] to the resulting CP problem with f
replaced by its smooth approximation. In a subsequent paper, Nemirovski [9] proposed
a proximal-point-type first-order method for solving a slightly more general class of
CP problems than the one considered by Nesterov [11] and also established an O(1/ε)
iteration-complexity bound for his method.

These first-order methods due to Nesterov [10,11] and Nemirovski [9] have recently
been applied to certain semidefinite programming (SDP) problems with some special
structures (see [4,8,12]). More recently, Hoda et al. [6] have used Nesterov’s smooth
method [10,11] to successfully solve a special class of large-scale linear programming
(LP) problems. However, the authors are not aware of any paper which use the first-
order methods presented in [9–11] to solve the general cone programming problem.

In this paper we consider the general cone programming problem, and propose
primal-dual convex (smooth and/or nonsmooth) minimization reformulations for it
of the form (1). We then discuss the three first-order methods mentioned above,
namely, Nesterov’s optimal method [10,11], Nesterov’s smooth approximation scheme
[11], and Nemirovski’s prox-method [9], and propose a variant of Nesterov’s optimal
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Primal-dual first-order methods for cone programming 3

method which has outperformed the latter one in our computational experiments. We
also establish the iteration-complexity bounds of these first-order methods for solv-
ing the proposed primal-dual reformulations of the cone programming problem. The
performance of these methods is then compared using a set of randomly generated
LP and SDP instances. The main conclusion of our comparison is that the approach
based on the variant of Nesterov’s optimal method outperforms all the others. We also
compare the approach based on the variant of Nesterov’s optimal method with the
low-rank method proposed by Burer and Monteiro [2,3] for solving a set of randomly
generated SDP instances. The main conclusion of this last comparison is that while
the approach based on the variant of Nesterov’s optimal method is comparable to the
low-rank method to obtain solutions with low accuracies, the latter one substantially
outperforms the first one when the goal is to compute highly accurate solutions.

The paper is organized as follows. In Sect. 2, we propose primal-dual convex
minimization reformulations of the cone programming problem. In Sect. 2.1, we dis-
cuss reformulations with smooth objective functions which are suitable for Nesterov’s
optimal method or its variant and, in Sect. 2.2, we discuss those with nonsmooth
objective functions and Nemirovski’s prox-method. In Sect. 3, we discuss Nesterov’s
optimal method and also propose a variant of his method. We also derive the iteration-
complexity bound of both methods applied to a class of smooth reformulations of the
cone programming problem. In Sect. 4, we discuss Nesterov’s smooth approximation
scheme (Sect. 4.1) and Nemirovski’s prox-method (Sect. 4.2), and derive their corre-
sponding iteration-complexity bound for solving a class of nonsmooth reformulations
of the cone programming problem. In Sect. 5, the performance of the first-order meth-
ods discussed in this paper and the low-rank method is compared on a set of randomly
generated LP and SDP instances. Finally, we present some concluding remarks in
Sect. 6.

1.1 Notation

In this paper, all vector spaces are assumed to be finite dimensional. Let U be a normed
vector space whose norm is denoted by ‖ · ‖U . The dual space of U , denoted by U∗, is
the normed vector space consisting of all linear functionals of u∗ : U → �, endowed
with the dual norm ‖ · ‖∗U defined as

‖u∗‖∗U = max
u
{〈u∗,u〉 : ‖u‖U ≤ 1}, ∀u∗ ∈U∗, (2)

where 〈u∗,u〉 := u∗(u) is the value of the linear functional u∗ at u.
If V denotes another normed vector space with norm ‖ · ‖V , and E : U → V ∗ is a

linear operator, the adjoint of E is the linear operator E∗ : V → U∗ defined by

〈E∗v,u〉 = 〈Eu, v〉, ∀u ∈ U, v ∈ V .

Moreover, the operator norm of E is defined as

‖E‖U,V = max
u
{‖Eu‖∗V : ‖u‖U ≤ 1}. (3)
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4 G. Lan et al.

It can be easily seen that

‖E‖U,V = ‖E∗‖V,U (4)

and

‖Eu‖∗V ≤ ‖E‖U,V ‖u‖U and ‖E∗v‖∗U ≤ ‖E‖U,V ‖v‖V , ∀u ∈ U, v ∈ V . (5)

Given u∗ ∈ U∗ and v∗ ∈ V ∗, let (u∗, v∗) : U × V → � denote the linear functional
defined by

(u∗, v∗)(u, v) := 〈u∗,u〉 + 〈v∗, v〉, ∀u ∈ U, v ∈ V .

A function f : Ω ⊆ U → � is said to have L-Lipschitz-continuous gradient with
respect to ‖ · ‖U if it is differentiable and

‖f ′(u)− f ′(ũ)‖∗U ≤ L‖u− ũ‖U ∀u, ũ ∈ Ω. (6)

Given a closed convex set C ⊆ U and an arbitrary norm ‖ · ‖ on U , let distC : U → �
denote the distance function to C measured in terms of ‖ · ‖, i.e.

distC(u) := inf
ũ∈C
‖u− ũ‖, ∀u ∈ U. (7)

2 The reformulations for cone programming

In this section, we propose primal-dual convex minimization reformulations for cone
programming. In particular, we present the convex smooth and nonsmooth minimiza-
tion reformulations in Sects.2.1 and 2.2, respectively.

Assume that X and Y are two normed vector spaces. Given a linear operator
A : X → Y ∗, vectors c∗ ∈ X∗ and b∗ ∈ Y ∗ and a closed convex cone L ⊆ X ,
consider the cone programming problem

min
x
〈c∗,x〉

s.t. Ax = b∗, x ∈ L, (8)

and its associated dual problem

max
(y,s∗)

〈b∗, y〉
s.t. A∗y + s∗ = c∗, s∗ ∈ L∗,

(9)

where L∗ := {s∗ ∈ X∗ : 〈s∗,x〉 ≥ 0, ∀x ∈ L} is the dual cone of L. We make the
following assumption throughout the paper.

Assumption 1 The pair of cone programming problems (8) and (9) have optimal
solutions and their associated duality gap is zero.
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Primal-dual first-order methods for cone programming 5

In view of the above assumption, a primal-dual optimal solution of (8) and (9) can
be found by solving the following constrained system of linear equations:

A∗y + s∗ − c∗ = 0

Ax− b∗ = 0, (x, y, s∗) ∈ L× Y × L∗. (10)

〈c∗,x〉 − 〈b∗, y〉 = 0

Alternatively, eliminating the variable s∗ and using the weak duality lemma, the above
system is equivalent to system:

−A∗y + c∗ ∈ L∗
Ax− b∗ = 0, (x, y) ∈ L× Y. (11)

〈c∗,x〉 − 〈b∗, y〉 ≤ 0

In fact, there are numerous ways in which one can characterize a primal-dual solution
of (8) and (9). For example, let B+ and B− be closed convex cones in Y ∗ such that
B+ ∩ B− = {0}. Then, (10) and (11) are both equivalent to

−A∗y + c∗ ∈ L∗
Ax− b∗ ∈ B+
Ax− b∗ ∈ B−

〈c∗,x〉 − 〈b∗, y〉 ≤ 0

, (x, y) ∈ L× Y. (12)

Note that in the latter formulation we might choose B+ to be a pointed closed convex
cone and set B− := −B+.

The primal-dual systems (10), (11) and (12) are all special cases of the constrained
cone linear system (CCLS) described as follows. Let U and V denote two vector
spaces. Given a linear operator E : U → V ∗, a closed convex set U ⊆ U , and a vector
e ∈ V ∗, and a closed convex cone K ⊆ V , the general CCLS consists of finding a
vector u ∈ U such that

Eu− e ∈ K∗, u ∈ U , (13)

where K∗ denotes the dual cone of K. For example (10), can be viewed as a special
case of (13) by letting U ≡ X × Y × X∗ , V ≡ X × Y × �, U ≡ L × Y × L∗,
K∗ = {0} ⊂ V ∗,

E ≡
⎛
⎜⎝

0 A∗ I

A 0 0

c∗ −b∗ 0

⎞
⎟⎠ , u ≡

⎡
⎣

x
y
s∗

⎤
⎦ , and e ≡

⎡
⎣

c∗
b∗
0

⎤
⎦ .

Henceforth, we will consider the more general problem (13), for which we assume
a solution exists. Our approach to solve this problem will be to reformulate it as

f̄ ≡ min{f(u) := ψ(Eu− e) : u ∈ U} (14)
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where ψ : V ∗ → � is a convex function such that

K∗ = Argmin{ψ(v∗) : v∗ ∈ V ∗}. (15)

Note that finding an optimal solution of (14) is equivalent to solving (13) and that the
optimal value f̄ of (14) is known, namely, f̄ = ψ(v∗) for any v∗ ∈ K∗. Note also that,
to obtain a concrete formulation (14), it is necessary to specify the function ψ . Also,
the structure of the resulting formulation clearly depends on the properties assumed of
ψ . In the next two subsections, we discuss two classes of functions ψ for which (14)
can be solved by one of the smooth and/or nonsmooth first-order methods proposed
by Nesterov [11] and Nemirovski [9], provided that U is a “simple enough” set.

2.1 Smooth formulation

For a given norm ‖ · ‖U on the space U , Nesterov [10] proposed a smooth first-order
optimal method to minimize a convex function with Lipschitz-continuous gradient
with respect to ‖ · ‖U over a simple closed convex set in U . The following simple
result gives a condition on ψ so that (14) becomes a natural candidate for Nesterov’s
smooth first-order optimal method.

Proposition 1 If ψ : V ∗ → � has L-Lipschitz-continuous gradient with respect to
‖ · ‖∗V , where ‖ · ‖V is a norm on V , then f : U → � defined in (14) has L‖E‖2U,V -
Lipschitz-continuous gradient with respect to ‖ · ‖U .

Proof Using (14), we see that f ′(u) = ψ ′(Eu− e) ◦ E . The remaining proof immedi-
ately follows from the assumption thatψ(·) has L-Lipschitz-continuous gradient with
respect to ‖ · ‖∗V , and relations (2), (4) and (5). ��

Throughout our presentation, we will say that (14) is a smooth formulation whenever
ψ is a convex function with Lipschitz-continuous gradient with respect to ‖·‖∗V , where
‖ · ‖V is a norm on V .

A natural example of a convex function with Lipschitz-continuous gradient for
which the set of global minima is K∗ is the square of the distance function to K∗
measured in terms of a scalar product norm. For the sake of future reference, we list
this case as follows.

Example 1 Let ‖ · ‖∗ denote a scalar product norm on the vector space V ∗. By
Proposition 5 of the Appendix, the function ψ ≡ (distK∗)2, where distK∗ is the
distance function to K∗ measured in terms of the norm ‖ · ‖∗, is a convex function
with 2-Lipschitz-continuous gradient with respect to ‖ · ‖∗. In this case, formulation
(14) becomes

min
{
f(u) := (distK∗(Eu− e))2 : u ∈ U

}
(16)

and its objective function f has 2‖E‖2-Lipschitz-continuous gradient with respect to
‖ · ‖U , where ‖E‖ denotes the operator norm of E with respect to the pair of norms
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Primal-dual first-order methods for cone programming 7

‖ · ‖U and ‖ · ‖∗, i.e.:

‖E‖ := max{‖Eu‖∗ : ‖u‖U ≤ 1}. (17)

In particular, note that when K∗ = {0}, (16) reduces to

min{f(u) := (‖Eu− e‖∗)2 : u ∈ U}. (18)

It shall be mentioned that the above smooth formulations can be solved by
Nesterov’s optimal method and its variant (see Sect. 3).

2.2 Nonsmooth formulation

In his more recent paper [11], Nesterov proposed a way to approximate a class of
nonsmooth objective functions by sufficiently close ones with Lipschitz-continuous
gradient. By applying the smooth first-order method in [10] to the resulting smooth
formulation, he developed an efficient numerical scheme for obtaining a near optimal
solution for the original minimization problem whose objective function belongs to
the forementioned class of nonsmooth functions. In this subsection, we describe a
class of functions ψ for which formulation (14) can be solved by the above scheme
proposed by Nesterov [11].

More specifically, in this subsection, we consider functions ψ which can be exp-
ressed in the form:

ψ(v∗) ≡ max{〈v∗, v〉 − ψ̃(v) : v ∈ V}, ∀v∗ ∈ V ∗, (19)

where V ⊆ V is a compact convex set and ψ̃ : V → (−∞,∞] is a proper closed
convex function such that V ∩ dom ψ̃ �= ∅. Using the notation of conjugate functions,
this means that ψ = (ψ̃ + IV )∗, where IV denotes the indicator function of V .

The following proposition gives a necessary and sufficient condition for ψ to be a
suitable objective function for (14).

Proposition 2 Assume that ri V∩ri (dom ψ̃) �= ∅. Then, K∗ is the set of global minima
of ψ if and only if ∂ψ̃(0)+ NV (0) = K∗.
Proof Note that v ∈ V ∗ is a global minimizer ofψ if and only if 0 ∈ ∂ψ(v) = ∂(ψ̃+
IV )∗(v), which in turn is equivalent to v ∈ ∂(ψ̃+ IV )(0) = ∂ψ̃(0)+NV (0). Hence, we
conclude that K∗ is the set of global minima ofψ if and only if ∂ψ̃(0)+NV (0) = K∗.

��
The most natural example of a function ψ which has a representation of the form

(19) satisfying the conditions of Proposition 2 is the distance function to the cone K∗
measured in terms of the dual norm ‖ · ‖∗ associated with some norm ‖ · ‖ on V . We
record this specific example below for future reference.

Example 2 Let ‖ · ‖ be an arbitrary norm on V and set ψ̃ ≡ 0 and V = {v ∈ V :
‖v‖ ≤ 1} ∩ (−K). In this case, it is easy to verify that the function ψ given by (19) is
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8 G. Lan et al.

equal to the distance function distK∗ measured in terms of ‖ · ‖∗ and hence satisfies
(15). Note that the equivalent conditions of Proposition 2 holds too since ∂ψ̃(0) = 0
and NV (0) = K∗. Note also that formulation (14) becomes

min
u∈U

max
‖v‖≤1, v∈−K

〈Eu− e, v〉 = min
u∈U
{f(u) := distK∗(Eu− e)}. (20)

In particular, if K∗ = {0}, then the function ψ given by (19) is identical to ‖ · ‖∗ and
the above formulation reduces to min{f(u) := ‖Eu− e‖∗ : u ∈ U}.

It is interesting to observe that the representation (19) can also yield functions with
Lipschitz-continuous gradient. Indeed, it can be shown as in Theorem 1 of [11] that,
if ψ̃ is strongly convex over V with modulus σ̃ > 0 with respect to ‖ · ‖, then, ψ has
(1/σ̃ )-Lipschitz-continuous gradient with respect to ‖ · ‖∗. In fact, under the situation
described in Example 1, the function ψ = (distK∗)2 used in (16) can be expressed as
in (19) by letting ψ̃ ≡ (‖ · ‖∗)2/4 = 〈·, ·〉∗/4 and V = −K.

Throughout the paper, we will say that (14) is a nonsmooth formulation whenever
ψ is given in the form (19) and ψ̃ is not strongly convex over V . (We observe that
this definition does not imply that the objective function of a nonsmooth formulation
is necessarily nonsmooth.) Two first-order algorithms for solving nonsmooth formu-
lations will be briefly reviewed in Sect. 4. More specifically, we describe Nesterov’s
smooth approximation scheme in Sect. 4.1 and Nemirovski’s prox-method in Sect. 4.2.

3 First-order methods for the smooth formulation

In this section, we discuss Nesterov’s smooth first-order method for solving a class
of smooth CP problems. We also present and analyze a variant that has consistently
outperformed Nesterov’s method in our computational experiments. The convergence
behavior of these methods applied to the smooth formulation (16) is also discussed.

Let U be a normed vector space with norm denoted by ‖ · ‖U and let U ⊆ U be a
closed convex set. Assume that f : U → � is a differentiable convex function such
that for some L ≥ 0:

‖f ′(u)− f ′(ũ)‖∗U ≤ L‖u− ũ‖U , ∀u, ũ ∈ U . (21)

Our problem of interest in this section is the CP problem (1).
We assume throughout our discussion that the optimal value f̄ of problem (1) is

finite and that its set of optimal solutions is nonempty. Let hU : U → � be a continuous
strongly convex function with modulus σU > 0 with respect to ‖ · ‖U , i.e.,

hU (u) ≥ hU (ũ)+ 〈hU
′(ũ),u− ũ〉 + σU

2
‖u− ũ‖2U , ∀u, ũ ∈ U . (22)

The Bregman distance dhU : U × U → � associated with hU is defined as

dU (u; ũ) ≡ hU (u)− lhU (u; ũ), ∀u, ũ ∈ U , (23)
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Primal-dual first-order methods for cone programming 9

where lhU : U × U → � is the “linear approximation” of hU defined as

lhU (u; ũ) = hU (ũ)+ 〈hU
′(ũ),u− ũ〉, ∀(u, ũ) ∈ U × U .

We are now ready to state Nesterov’s smooth first-order method for solving (1). We
use the subscript ‘sd’ in the sequence obtained by taking a steepest descent step and
the subscript ‘ag’ (which stands for ‘aggregated gradient’) in the sequence obtained
by using all past gradients.

Nesterov’s Algorithm:

(0) Let usd
0 = u

ag
0 ∈ U be given and set k = 0

(1) Set uk = 2
k+2u

ag
k + k

k+2usd
k and compute f(uk) and f ′(uk).

(2) Compute (usd
k+1,u

ag
k+1) ∈ U × U as

usd
k+1 ∈ Argmin

{
lf (u;uk)+ L

2
‖u− uk‖2U : u ∈ U

}
, (24)

u
ag
k+1 ≡ argmin

{
L

σU
dU (u;u0)+

k∑
i=0

i+ 1

2
[lf (u;ui)] : u ∈ U

}
. (25)

(3) Set k← k + 1 and go to step 1.

end

Observe that the above algorithm is stated slightly differently than the way pre-
sented in Nesterov’s paper [11]. More specifically, the indices of the sequences {usd

k }
and {uag

k } are shifted by plus one in the above formulation. Moreover, the algorithm is
stated in a different order (and with a different notation) to clearly point out its close
connection to the variant discussed later in this section.

The main convergence result established by Nesterov [11] regarding the above
algorithm is summarized in the following theorem.

Theorem 1 The sequence {usd
k } generated by Nesterov’s optimal method satisfies

f(usd
k )− f(u) ≤ 4L dU (u;usd

0 )

σU k(k + 1)
, ∀u ∈ U , k ≥ 1.

In particular, if ū denotes an optimal solution of (1), then

f(usd
k )− f̄ ≤ 4L dU (ū;usd

0 )

σU k(k + 1)
, ∀k ≥ 1. (26)

In this section, we explore the application of the above result to the situation where
f̄ is known (see Sect. 2). When such a priori knowledge is not available, in order to
monitor the progress made by the algorithm, it becomes necessary to algorithmically
estimate f̄ or to directly estimate the right hand side of (26). However, to the best
of our knowledge, these two options have been shown to be possible only under the
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10 G. Lan et al.

condition that the set U is compact. Note that formulation (14) does not assume the
latter condition but it has the property that f̄ is known.

The following result is an immediate consequence of Theorem 1 regarding the
behavior of Nesterov’s optimal method applied to formulation (16).

Corollary 1 Let {usd
k } be the sequence generated by Nesterov’s optimal method

applied to problem (16). Given any ε > 0, an iterate usd
k ∈ U satisfying distK∗(Eusd

k −
e) ≤ ε can be found in no more than

⎡
⎢⎢⎢

2
√

2‖E‖
ε

√
dU (ū;usd

0 )

σU

⎤
⎥⎥⎥

(27)

iterations, where ū is an optimal solution of (16) and ‖E‖ is defined in (17).

Proof Noting that f(u) = [distK∗(Eu−e)]2 for all u ∈ U , f̄ = 0 and the fact that this
function f has 2‖E‖2-Lipschitz-continuous gradient with respect to ‖ · ‖U , it follows
from Theorem 1 that

[
distK∗(Eusd

k − e)
]2 ≤ 8‖E‖2 dU (ū;usd

0 )

σU k(k + 1)
, ∀k ≥ 1.

The corollary then follows immediately from the above relation. ��
We next state and analyze a variant of Nesterov’s optimal method which has con-

sistently outperformed the latter one in our computational experiments.

Variant of Nesterov’s algorithm:

(0) Let usd
0 = u

ag
0 ∈ U be given and set k = 0.

(1) Set uk = 2
k+2u

ag
k + k

k+2usd
k and compute f(uk) and f ′(uk).

(2) Compute (usd
k+1,u

ag
k+1) ∈ U × U as

usd
k+1 ∈ Argmin

{
lf (u;uk)+ L

2
‖u− uk‖2U : u ∈ U

}
, (28)

u
ag
k+1 ≡ argmin

{
k + 2

2
lf (u;uk)+ L

σU
dU (u;uag

k ) : u ∈ U
}
. (29)

(3) Set k← k + 1 and go to step 1.

end

Note that the above variant differs from Nesterov’s method only in the way the
sequence {uag

k } is defined. In the remaining part of this section, we will establish the
following convergence result for the above variant.

Theorem 2 The sequence {usd
k } generated by the above variant satisfies

f(usd
k )− f̄ ≤ 4LdU (ū;usd

0 )

σU k(k + 2)
, ∀k ≥ 1, (30)

where ū is an optimal solution of (1).
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Primal-dual first-order methods for cone programming 11

Before proving the above result, we establish two technical results from which
Theorem 2 immediately follows.

Let τ(u) be a convex function over a convex set U ∈ U . Assume that û is an optimal
solution of the problem min{τη(u) := τ(u) + η ‖u − ũ‖2U : u ∈ U} for some ũ ∈ U
and η > 0. Due to the well-known fact that the sum of a convex and a strongly convex
function is also strongly convex, one can easily see that

τη(u) ≥ min{τη(ǔ) : ǔ ∈ U} + η‖u− û‖2U .

The next lemma generalizes this result to the case where the function ‖ · −ũ‖2U in the
definition of τη(·) is replaced with the Bregman distance dU (·; û) associated with a
convex function hU . It is worth noting that the result described below does not assume
the strong-convexity of the function hU .

Lemma 1 Let U be a convex set of a normed vector space U and τ, hU : U → � be
differentiable convex functions. Assume that û is an optimal solution of min{τ(u) +
η dU (u; ũ) : u ∈ U} for some ũ ∈ U and η > 0. Then,

τ(u)+ η dU (u; ũ) ≥ min{τ(ǔ)+ η dU (ǔ; ũ) : ǔ ∈ U} + η dU (u; û), ∀u ∈ U .

Proof The definition of û and the fact that τ(·)+η dU (·; ũ) is a differentiable convex
function imply that

〈τ ′(û)+ η d ′U (û; ũ),u− û〉 ≥ 0, ∀u ∈ U ,

where d ′U (û; ũ) denotes the gradient of dU (·; ũ) at û. Using the definition of the
Bregman distance (23), it is easy to verify that

dU (u; ũ) = dU (û; ũ)+ 〈d ′U (û; ũ),u− û〉 + dU (u; û), ∀u ∈ U .

Using the above two relations and the assumption that τ is convex, we then conclude
that

τ(u)+ η dU (u; ũ) = τ(u)+ η [dU (û; ũ)+ 〈d ′U (û; ũ),u− û〉 + dU (u; û)]
≥ τ(û)+η dU (û; ũ)+〈τ ′(û)+ η d ′U (û; ũ),u− û〉 + η dU (u; û)
≥ τ(û)+ η dU (û; ũ)+ η dU (u; û),

and hence that the lemma holds. ��

Before stating the next lemma, we mention a few facts that will be used in its proof.
It follows from the convexity of f and assumptions (21) and (22) that

lf (u, ũ) ≤ f(u) ≤ lf (u, ũ)+ L

2
‖u− ũ‖2U , ∀u, ũ ∈ U , (31)
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12 G. Lan et al.

and

dU (u; ũ) ≥ σU

2
‖u− ũ‖2U , ∀u, ũ ∈ U . (32)

Moreover, it can be easily verified that

lf (αu+ α′u′; ũ) = αlf (u; ũ)+ α′lf (u′; ũ) (33)

for any u,u′ ∈ U , ũ ∈ U and α, α′ ∈ � such that α + α′ = 1.

Lemma 2 Let (usd
k ,u

ag
k ) ∈ U×U and αk ≥ 1 be given and set uk ≡ (1−α−1

k )usd
k +

α−1
k u

ag
k . Let (usd

k+1,u
ag
k+1) ∈ U × U be a pair computed according to (28) and (29).

Then, for every u ∈ U :

α2
k(f(u

sd
k+1)− f(u))+ L

σU
dU (u;uag

k+1)

≤ (α2
k − αk)(f(u

sd
k )− f(u))+ L

σU
dU (u;uag

k ).

Proof By the definition (28) and the second inequality in (31), it follows that

f(usd
k+1) ≤ min

ũ∈U

{
lf (ũ;uk)+ L

2
‖ũ− uk‖2U

}

≤ min
u∈U

{
lf

((
1− α−1

k

)
usd

k + α−1
k u;uk

)

+ L

2

∥∥∥
(

1− α−1
k

)
usd

k + α−1
k u− uk

∥∥∥2

U

}
,

where the last inequality follows from the fact that every point of the form ũ =
(1−α−1

k )usd
k +α−1

k u with u ∈ U is in U due to the convexity of U and the assumption
that αk ≥ 1. The above inequality together with the definition of uk, and relations
(33), (31) and (32) then imply that

α2
kf(u

sd
k+1) ≤ α2

k min
u∈U

{(
1−α−1

k

)
lf (u

sd
k ;uk)+ α−1

k lf (u;uk)+ L

2
α−2

k ‖u− u
ag
k ‖2U

}

= (α2
k − αk)lf (u

sd
k ;uk)+min

u∈U

{
αklf (u;uk)+ L

2
‖u− u

ag
k ‖2U

}

≤ (α2
k − αk)f(u

sd
k )+min

u∈U

{
αklf (u;uk)+ L

σU
dU (u;uag

k )

}
.

It then follows from this inequality, relation (29), Lemma 1 with ũ = u
ag
k , û = u

ag
k+1,

η = L/σU , τ(·) ≡ αklf (·;uk) and the first inequality in (31) that for every u ∈ U :
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α2
kf(u

sd
k+1)− (α2

k − αk)f(u
sd
k )+

L

σU
dU (u;uag

k+1)

≤ min
u∈U

{
αklf (u;uk)+ L

σU
dU (u;uag

k )

}
+ L

σU
dU (u;uag

k+1)

≤ αklf (u;uk)+ L

σU
dU (u;uag

k ) ≤ αkf(u)+ L

σU
dU (u;uag

k ).

The conclusion of the lemma now follows by subtracting α2
kf(u) from both sides of

the above relation and rearranging the resulting inequality. ��

We are now ready to prove Theorem 2.

Proof of Theorem 2 Let ū be an optimal solution of (1). Noting that the iterate uk in
our variant of Nesterov’s algorithm can be written as uk ≡ (1−α−1

k )usd
k +α−1

k u
ag
k with

αk = (k + 2)/2 and that the sequence {αk} satisfies αk ≥ 1 and α2
k ≥ α2

k+1 − αk+1,
it follows from Lemma 2 with u = ū that, for any k ≥ 0,

(α2
k+1 − αk+1)(f(u

sd
k+1)− f(ū))+ L

σU
dU (ū;uag

k+1)

≤ α2
k(f(u

sd
k+1)− f(ū))+ L

σU
dU (ū;uag

k+1)

≤ (α2
k − αk)(f(u

sd
k )− f(ū))+ L

σU
dU (ū;uag

k ),

from which it follows inductively that

(α2
k − αk)(f(u

sd
k )− f(ū))+ L

σU
dU (ū;uag

k )

≤ (α2
0 − α0)(f(u

sd
0 )− f(ū))+ L

σU
dU (ū;uag

0 )

= L

σU
dU (ū;usd

0 ), ∀k ≥ 1,

where the equality follows from the fact that α0 = 1 and u
ag
0 = usd

0 . Relation (30) now
follows from the above inequality and the facts that dU (ū;uag

k ) ≥ 0 and α2
k − αk =

k(k + 2)/4.
We observe that in the above proof the only property we used about the sequence

{αk} was that it satisfies α0 = 1 ≤ αk and α2
k ≥ (α2

k+1− αk+1) for all k ≥ 0. Clearly,
one such sequence is given by αk = (k+ 2)/2, which yields the variant of Nesterov’s
algorithm considered above. However, a more aggressive choice for the sequence {αk}
would be to compute it recursively using the identity α2

k = α2
k+1−αk+1 and the initial

condition α0 = 1. We note that the latter choice was first suggested in the context of
Nesterov’s optimal method [10]. ��
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14 G. Lan et al.

4 First-order methods for the nonsmooth formulation

In this section, we discuss Nesterov’s smooth approximation scheme (see Sect. 4.1)
and Nemirovski’s prox-method (see Sect. 4.2) for solving an important class of non-
smooth CP problems which admit special smooth convex-concave saddle point (i.e.,
min–max) reformulations. We also analyze the convergence behavior of each method
in the particular context of the nonsmooth formulation (20).

4.1 Nesterov’s smooth approximation scheme

Assume that U and V are normed vector spaces. Our problem of interest in this sub-
section is still problem (1) with the same assumption that U ⊆ U is a closed convex
set. But now we assume that its objective function f : U → � is a convex function
given by

f(u) := f̂(u)+ sup{〈Eu, v〉 − φ(v) : v ∈ V}, ∀u ∈ U , (34)

where f̂ : U → � is a convex function with L f̂ -Lipschitz-continuous gradient with
respect to a given norm ‖ · ‖U in U , V ⊆ V is a compact convex set, φ : V → � is a
continuous convex function, and E is a linear operator from U to V ∗.

Unless stated explicitly otherwise, we assume that the CP problem (1) referred to
in this subsection is the one with its objective function given by (34). Also, we assume
throughout our discussion that f̄ is finite and that the set of optimal solutions of (1) is
nonempty.

The function f defined as in (34) is generally nondifferentiable but can be closely
approximated by a function with Lipschitz-continuous gradient using the following
construction due to Nesterov [11]. Let hV : V → � be a continuous strongly convex
function with modulus σV > 0 with respect to a given norm ‖ · ‖V on V satisfying
min{hV (v) : v ∈ V} = 0. For some smoothness parameter η > 0, consider the
following function

fη(u) = f̂(u)+max
v
{〈Eu, v〉 − φ(v)− ηhV (v) : v ∈ V}. (35)

The next result, due to Nesterov [11], shows that fη is a function with Lipschitz-con-
tinuous gradient with respect to ‖ · ‖U whose “closeness” to f depends linearly on the
parameter η.

Theorem 3 The following statements hold:

(a) For every u ∈ U , we have fη(u) ≤ f(u) ≤ fη(u)+ ηDV , where

DV ≡ DhV := max{hV (v) : v ∈ V}; (36)

(b) The function fη(u) has Lη-Lipschitz-continuous gradient with respect to ‖ · ‖U ,
where

Lη := L f̂ +
‖E‖2U,V
ησV

. (37)
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Primal-dual first-order methods for cone programming 15

We are now ready to state Nesterov’s smooth approximation scheme to solve (1).

Nesterov’s smooth approximation scheme:

(0) Assume f̄ is known and let ε > 0 be given.
(1) Let η := ε/(2DV ) and consider the approximation problem

f̄η ≡ inf{fη(u) : u ∈ U}. (38)

(2) Apply Nesterov’s optimal method (or its variant) to (38) and terminate whenever
an iterate usd

k satisfying f(usd
k )− f̄ ≤ ε is found.

end

Note that the above scheme differs slightly from Nesterov’s original scheme pre-
sented in [11] in that its termination is based on the exact value of f̄ , while the
termination of the latter one is based on a lower bound estimate of f̄ computed at
each iteration of the optimal method applied to (38). The following result describes
the convergence behavior of the above scheme. Since the proof of this result given in
[11] assumes that U is bounded, we provide below another proof which is suitable to
the case when U is unbounded.

Theorem 4 Nesterov’s smooth approximation scheme generates an iterate usd
k satis-

fying f(usd
k )− f̄ ≤ ε in no more than

⎡
⎢⎢⎢

√√√√8dU (ū;u0)

σU ε

(
2DV ‖E‖2U,V

σV ε
+ L f̂

) ⎤
⎥⎥⎥

(39)

iterations, where ū is an optimal solution of (1) and ‖E‖U,V is defined in (3).

Proof By Theorem 1, we have

fη(u
sd
k )− fη(ū) ≤ 4Lη

k(k + 1)σU
dU (ū;u0), ∀k ≥ 1.

Hence,

f(usd
k )− f̄ =

(
f(usd

k )− fη(u
sd
k )

)
+

(
fη(u

sd
k )− fη(ū)

)
+ (

fη(ū)− f̄
)

≤ ηDV + 4LηdU (ū;u0)

σU k(k + 1)
, ∀k ≥ 1,

where in the last inequality we have used the facts f(usd
k ) − fη(u

sd
k ) ≤ ηDV and

fη(ū) − f̄ ≤ 0 implied by (a) of Theorem 3. The above relation together with the
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16 G. Lan et al.

definition (37) and the fact η = ε/(2DV ) clearly imply that

f(usd
k )− f̄ ≤ ηDV + 4dU (ū;u0)

σU k2

(‖E‖2U,V
ησV

+ L f̂

)

= ε
[

1

2
+ 4dU (ū;u0)

σU k2ε

(
2DV ‖E‖2U,V

σV ε
+ L f̂

)]

from which the claim immediately follows by rearranging the terms. ��
Recall that the only assumption imposed on the function hV is that it satisfies the

condition that min{hV (v) : v ∈ V} = 0. Letting v0 := argmin{hV (v) : v ∈ V}, it
can be easily seen that min{dhV (v; v0) : v ∈ V} = 0 and max{dhV (v; v0) : v ∈ V} ≤
DhV := max{hV (v) : v ∈ V}. Thus, replacing the function hV by the Bregman
distance function dhV (·; v0) only improves the iteration bound (39).

The following corollary describes the convergence result of Nesterov’s smooth
approximation scheme applied to the nonsmooth formulation (20). We observe that
the norm used to measure the size of Eusd

k − e is not necessarily equal to ‖ · ‖∗V .

Corollary 2 Nesterov’s smooth approximation scheme applied to formulation (20)
generates an iterate usd

k satisfying distK∗(Eusd
k − e) ≤ ε in no more than

⌈
4‖E‖U,V

ε

√
dU (ū;u0)DV

σUσV

⌉
(40)

iterations, where ū is an optimal solution of (20), DV := max{hV (v) : ‖v‖ ≤ 1,
v ∈ −K}, and ‖E‖U,V is defined in (3).

Proof The bound (40) follows directly from Theorem 4 and the fact that L f̂ = 0 and
V = {v : ‖v‖ ≤ 1, v ∈ −K} for formulation (20). ��

The next result essentially shows that, for the case when K = V , and hence
K∗ = {0}, the iteration-complexity bound (40) to obtain an iterate usd

k ∈ U satisfying
‖Eusd

k − e‖∗ ≤ ε for Nesterov’s smooth approximation scheme is always minorized
by the iteration-complexity bound (27) for Nesterov’s optimal method regardless of
the norm ‖ · ‖V and strong convex function hV chosen.

Proposition 3 If K∗ = {0}, then the bound (40) is minorized by

⌈
2
√

2‖E‖
ε

√
dU (ū;u0)

σU

⌉
, (41)

where ‖E‖ is defined in (17). Moreover, if ‖ · ‖ (or equivalently, ‖ · ‖∗) is a scalar
product norm, hV ≡ ‖ · ‖2/2 and ‖ · ‖V ≡ ‖ · ‖, then bound (40) is exactly equal to
(41).
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Primal-dual first-order methods for cone programming 17

Proof Let v0 := argmin{hV (v) : v ∈ V}. Using (36), the fact that hV is strongly
convex with modulus σV with respect to ‖ · ‖V , and the assumption that K = V , and
hence V = {v : ‖v‖ ≤ 1}, we conclude that

√
DV

σV
=

(
max {hV (v) : ‖v‖ ≤ 1}

σV

)1/2

≥ 1√
2

max {‖v − v0‖V : ‖v‖ ≤ 1}

≥ 1√
2

max {max (‖v − v0‖V , ‖v + v0‖V ) : ‖v‖ ≤ 1}

≥ 1√
2

max {‖v‖V : ‖v‖ ≤ 1} ,

where the second inequality is due to the fact that ‖v‖ ≤ 1 implies ‖ − v‖ ≤ 1 and
the last inequality follows from the triangle inequality for norms. The above relation
together with relations (4) and (5) then imply that

4‖E‖U,V
ε

√
dU (ū;u0)DV

σUσV
≥ 2
√

2 max{‖E∗‖V,U‖v‖V : ‖v‖ ≤ 1}
ε

√
dU (ū;u0)

σU

≥ 2
√

2 max{‖E∗v‖∗U : ‖v‖ ≤ 1}
ε

√
dU (ū;u0)

σU

= 2
√

2 ‖E‖
ε

√
dU (ū;u0)

σU
,

where the last equality follows from (3) and (4) with ‖ · ‖V = ‖ · ‖ and definition
(17). The second part of the proposition follows from the fact that, under the stated
assumptions, we have ‖E‖U,V = ‖E‖, DV = 1/2 and σV = 1, and hence that (40) is
equal to (41). ��

In words, Proposition 3 shows that when K∗ = {0} and the norm ‖ · ‖∗ used to
measure the size of Eusd

k − e is a scalar product norm, then the best norm ‖ · ‖V to
choose for Nesterov’s smooth approximation scheme applied to the CP problem (20)
is the norm ‖ · ‖.

Finally, observe that the bound (41) is the same as the bound derived for Nesterov’s
optimal method applied to the smooth formulation (16).

4.2 Nemirovski’s Prox method for nonsmooth CP

In this subsection, we briefly review Nemirovski’s prox method for solving a class of
saddle point (i.e., min–max) problems.

Let U and V be vector spaces and consider the product space U ×V endowed with
a norm denoted by ||| · |||. For the purpose of reviewing Nemirovski’s prox-method, we
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18 G. Lan et al.

still consider problem (1) with the same assumption that U ⊆ U is a closed convex
set but now we assume that the objective function f : U → � is a convex function
having the following representation:

f(u) := max{φ(u, v) : v ∈ V}, ∀u ∈ U , (42)

where V ⊆ V is a compact convex set and φ : U × V → � is a function satisfying
the following three conditions:

(C1) φ(u, ·) is concave for every u ∈ U ;
(C2) φ(·, v) is convex for every v ∈ V;
(C3) φ has L-Lipschitz-continuous gradient with respect to ||| · |||.

Unless stated explicitly otherwise, we assume that the CP problem (1) referred in
this subsection is the one with its objective function specialized in (42). For shortness
of notation, in this subsection we denote the pair (u, v) by w and the set U ×V by W .
For any w ∈W , let Φ(w) : U × V → � be the linear map (see Sect. 1.1) defined as

Φ(w) := (φ′u(w),−φ′v(w)), ∀w ∈W,

where φ′u(w) : U → � and φ′v(w) : V → � denote the partial derivative of φ at w
with respect to u and v. The motivation for considering the map Φ comes from the
fact that a solution w∗ ∈W of the variational inequality 〈Φ(w∗),w−w∗〉 ≥ 0 for all
w ∈W , would yield a solution of the CP problem (1). It should be noted however that,
in our discussion below, we do not make the assumption that this variational inequality
has a solution but only the weaker assumption that the CP problem (1) has an optimal
solution.

Letting H :W → � denote a differentiable strongly convex function with modu-
lus σH > 0 with respect to ||| · |||, the following algorithm for solving problem (1) has
been proposed by Nemirovski [9].

Nemirovski’s prox-method:

(0) Let w0 ∈W be given and set k = 0.
(1) Compute Φ(wk) and let

wsd
k = arg min

w∈W
〈Φ(wk),w〉 +

√
2 L

σH
dH(w;wk).

(2) If the condition

〈Φ(wk),w
sd
k − wk〉 +

√
2 L

σH
dH(wsd

k ;wk) ≥ 0 (43)

is satisfied, let wk+1 = wsd
k ; otherwise, compute Φ(wsd

k ) and let

wk+1 = arg min
w∈W
〈Φ(wsd

k ),w〉 +
√

2 L

σH
dH(w;wk). (44)

(3) Set k← k + 1 and go to step 1.
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Although stated slightly differently here, the above algorithm is exactly the one
for which Nemirovski obtained an iteration-complexity bound in [9]. We also observe
that a slight variation of the above algorithm, where the test (43) is skipped and wk+1
is always computed by means of (44), has been first proposed by Korpelevich [7] for
the special case of convex programming but no uniform rate of convergence is given.
Note that each iteration of Nemirovski’s prox-method requires at most two gradient
evaluations and the solutions of at most two subproblems.

The following result states the convergence properties of the above algorithm. We
include a short proof extending the one of Theorem 3.2 of Nemirovski [9] to the case
where the set U is unbounded.

Theorem 5 Assume that φ : W → � is a function satisfying conditions (C1)–(C3)
and that H : W → � is a differentiable strongly convex function with modulus
σH > 0 with respect to ||| · |||. Assume also that ū is an optimal solution of problem
(1). Then, the sequence of iterates {wsd

k =: (usd
k , v

sd
k )} generated by Nemirovski’s

algorithm satisfies

f(u
ag
k )− f̄ ≤

√
2 L DH(ū;w0)

σH k
, ∀k ≥ 0,

where

u
ag
k :=

1

k + 1

k∑
l=0

usd
l , ∀k ≥ 0,

DH(ū;w0) := max {dH(w;w0) : w ∈ {ū} × V}. (45)

Proof The arguments used in proof of Proposition 2.2 of Nemirovski [9] (specifically,
by letting γt ≡ σH/(

√
2L) and εt ≡ 0 in the inequalities given in the first seven lines

on p. 236 of [9]) imply that

φ(u
ag
k , v)− φ(u, vag

k ) ≤
√

2 L dH(w;w0)

σH k
, ∀w = (u, v) ∈W,

where v
ag
k := (

∑k
l=0 vsd

l )/(k + 1). Using the definition (42), the inequality obtained
by maximizing both sides of the above relation over the set {ū}×V , and the definition
(45), we obtain

f(u
ag
k )− f(ū) = max

v∈V
φ(u

ag
k , v)−max

v∈V
φ(ū, v)

≤
[

max
v∈V

φ(u
ag
k , v)

]
− φ(ū, vag

k ) ≤
√

2 L DH(ū;w0)

σH k
.

��
Now, we examine the consequences of applying Nemirovski’s prox-method to the

nonsmooth formulation (20) for which φ(u, v) = 〈Eu − e, v〉. For that end, assume
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that ‖ · ‖U and ‖ · ‖V are given norms for the vector spaces U and V , respectively, and
consider the norm on the product space U × V given by

|||w||| :=
√
θU

2‖u‖2U + θV
2‖v‖2V , (46)

where θU , θV > 0 are positive scalars. Assume also that hU : U → � and hV :
V → � are given differentiable strongly convex functions with modulus σU and σV

with respect to ‖ · ‖U and ‖ · ‖V , respectively, and consider the following function
H :W → � defined as

H(w) := γU hU (u)+ γV hV (v), ∀w = (u, v) ∈W, (47)

where γU , γV > 0 are positive scalars. It is easy to check that H is a differentiable
strongly convex function with modulus

σH = min{σUγU θU
−2, σV γV θV

−2} (48)

with respect to the norm (46), and that the dual norm of (46) is given by

|||(u∗, v∗)|||∗ :=
√
θU
−2(‖u∗‖∗U )2 + θV

−2(‖v∗‖∗V )2, ∀(u∗, v∗) ∈ U∗ × V ∗. (49)

The following result describes the convergence behavior of Nemirovski’s prox-method
applied to problem (20).

Corollary 3 For some positive scalars θU , θV , γU and γV , consider the norm
||| · ||| and function H defined in (46) and (47), respectively. Then, Nemirovski’s prox-
method applied to (20) generates a point u

ag
k :=

∑k
l=0 usd

l /(k + 1) ∈ U satisfying
distK∗(Eu

ag
k − e) ≤ ε in no more than

⌈√
2 θU

−1θV
−1‖E‖U,V (γU dU (ū;u0)+ γV DV (v0))

min{σUγU θU
−2, σV γV θV

−2} ε

⌉
(50)

iterations, where ū is an optimal solution of (20), ‖E‖U,V is defined in (3), and

DV (v0) := max{dhV (v; v0) : ‖v‖ ≤ 1, v ∈ −K}. (51)

Proof Noting that φ(w) := 〈Eu − e, v〉 and Φ(w) := (E∗v,−Eu + d) for problem
(20) and using relations (49), (5) and (46), we have

|||Φ(w1)−Φ(w2)|||∗ =
√
θU
−2(‖E∗(v1 − v2)‖∗U )2 + θV

−2(‖E(u1 − u2)‖∗V )2

≤
√
θU
−2‖E‖2U,V ‖v1 − v2‖2V + θV

−2‖E‖2U,V ‖u1 − u2‖2U
=

√
θU
−2θV

−2‖E‖2U,V
(
θV

2‖v1 − v2‖2V + θU
2‖u1 − u2‖2U

)

= θU
−1θV

−1‖E‖U,V |||w1 − w2|||,
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from which we conclude that φ has L-Lipschitz-continuous gradient with respect to
||| · |||, where L = θU

−1θV
−1‖E‖U,V . Also, using relations (45), (47) and (51) and the

fact that, for formulation (20), the set V is equal to {v ∈ V : ‖v‖ ≤ 1, v ∈ K}, we
easily see that DH(ū;w0) = γU dU (ū;u0)+γV DV (v0). The result now follows from
Theorem 5, the above two conclusions and relation (48). ��

An interesting issue to examine is how the bound (50) compares with the bound
(40) derived for Nesterov’s smooth approximation scheme. The following result shows
that the bound (40) minorizes, up to a constant factor, the bound (50).

Proposition 4 Regardless of the values of positive scalars θU , θV , γU and γV , the
bound (50) is minorized by

⌈
2
√

2‖E‖U,V
ε

√
dU (ū;u0)DV (v0)

σUσV

⌉
. (52)

Proof Letting K denote the bound (50), we easily see that

K ≥
√

2‖E‖U,V
ε

(
θU dU (ū;u0)

θV σU
+ θV DV (v0)

θUσV

)
≥ 2
√

2‖E‖U,V
ε

√
dU (ū;u0)DV (v0)

σUσV
,

where the last inequality follows from the fact that α2 + α̃2 ≥ 2αα̃ for any α, α̃ ∈ �.
��

Observe that the lower bound (52) is equal to the bound (40) divided by
√

2 when-
ever the function hV used in Nesterov’s smooth approximation scheme is chosen as
the Bregman distance function dhV (·; v0), where v0 is the v-component of w0 (see
also the discussion after the proof of Theorem 4). Observe also that the bound (50)
becomes equal to the lower bound (52) upon choosing the scalars θU , θV , γU and γV

as

θU =
√

σU

dU (ū;u0)
, θV =

√
σV

DV (v0)
, γU = 1

dU (ū;u0)
, γV = 1

DV (v0)
.

Unfortunately, we can not use the above optimal values since the values for θU and γU

depend on the unknown quantity dU (ū;u0). However, if an upper bound on dU (ū;u0)

is known or a reasonable guess of this quantity is made, a reasonable approach is to
replace dU (ū;u0) by its upper bound or estimate on the above formulas for θU and γU .
It should be noted however that if the estimate of dU (ū;u0) is poor then the resulting
iteration bound for Nemirovski’s prox method may be significantly larger than the one
for Nesterov’s smooth approximation scheme.

5 Computational results

In this section, we report the results of our computational experiments where we com-
pare the performance of the four first-order methods discussed in the previous sections
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applied to the CCLS (10) corresponding to two instance sets of cone programming
problems, namely: LP and SDP. We also compare the performance of the above first-
order methods applied to CCLS (10) against the low-rank method [2,3] on a set of
randomly generated SDP instances.

5.1 Algorithm setup

As mentioned in Sect. 2, there are numerous ways to reformulate the general cone
programming as a CCLS. In our computational experiments though, we only consider
the CCLS (10) and its associated primal-dual formulations (16) and (20). In this sub-
section, we provide a detailed description of the norm ‖ · ‖∗ used in the primal-dual
formulations (16) and (20), the norms ‖ · ‖U and ‖ · ‖V and functions hU and hV used
by the several first-order methods and the termination criterion employed in our com-
putational experiments. Since we only deal with LP and SDP, we assume throughout
this subsection that the spaces X = X∗, Y = Y ∗ are finite-dimensional Euclidean
spaces endowed with the standard Euclidean norm which we denote by ‖ · ‖2.

We assume that the norm ‖ · ‖∗ on X∗ × Y ∗ × � used in both formulations (16)
and (20) is given by

‖(x∗, y∗, t)‖∗ :=
√
ω2

d‖x∗‖22 + ω2
p‖y∗‖22 + ω2

o|t |2, ∀(x∗, y∗, t) ∈ X∗ × Y ∗ × �,
(53)

whereωd , ωp andωo are prespecified positive constants. Reasonable choices for these
constants will be discussed in the next two subsections.

We next describe the norm ‖ · ‖U and function hU used in our implementation of
Nesterov’s optimal method and its variant proposed in this paper. We define ‖ · ‖U as

‖(x, y, s∗)‖U :=
√
θ2

X‖x‖22 + θ2
Y ‖y‖22 + θ2

S‖s∗‖22, ∀(x, y, s∗) ∈ U ≡ X × Y × X∗,
(54)

where θX , θY , and θS are some positive scalars whose specific choice will be described
below. We then set hU (·) := 1

2‖ · ‖2U . Note that this function hU is strongly convex
with modulus σU = 1 with respect to ‖ · ‖U . We use u0 = (x0, y0, s0) = (0, 0, 0) as
initial point for both algorithms.

The choice of the scalars θX , θY and θS are made so as to minimize an upper bound
on the iteration-complexity bound (27). It can be easily verified that

‖E‖ ≤
√
θ−2

X F2
X + θ−2

Y F2
Y + θ−2

S F2
S ,

where

FX :=
√
ω2

p‖A‖22 + ω2
o‖c∗‖22, FY :=

√
ω2

d‖A‖22 + ω2
o‖b∗‖22, FS := ωd ,
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and ‖A‖2 is the spectral norm of A. Letting ū =: (x̄, ȳ, s̄∗) be the optimal solution
that appears in (27), we see that

dU (ū;u0) ≤ ‖ȳ‖
2

2

(
θ2

XQ2
X + θ2

Y + θ2
SQ2

S

)
,

where QX and QY are arbitrary constants satisfying

QX ≥ ‖x̄‖2/‖ȳ‖2, QS ≥ ‖s̄∗‖2/‖ȳ‖2. (55)

The above two relations together with the fact that σU = 1 then clearly imply that
(27) can be bounded by

2‖ȳ‖
ε

√
θ−2

X F2
X + θ−2

Y F2
Y + θ−2

S F2
S

√
θ2

XQ2
X + θ2

Y + θ2
SQ2

S .

In terms of the bounds QX and QS , a set of scalars θX , θY and θS that minimizes the
above bound is

θX =
(FXQX

)1/2
, θY = F1/2

Y , θS =
(FS

QS

)1/2
. (56)

Note that the formulae for θX , θY and θS depend on the bounds QX and QS , which
are required to satisfy (55). Since (x̄, ȳ, s̄∗) is unknown, the ratios ‖x̄‖2/‖ȳ‖2 and
‖s̄∗‖2/‖ȳ‖2 can not be precisely computed. However, making the reasonable assump-
tion that ‖ȳ‖2 ≥ 1, then we can estimate the second ratio as

‖s̄∗‖2
‖ȳ‖2 ≤

‖A∗ȳ − c∗‖2
‖ȳ‖2 ≤ ‖A

∗‖2‖ȳ‖2 + ‖c∗‖2
‖ȳ‖2 ≤ ‖A‖2 + ‖c∗‖2,

and hence set QS := ‖A‖2 + ‖c∗‖2. As for the other ratio, we do not know a sound
way to majorize it and hence we simply employ the following ad-hoc scheme which
defines QX as QX := √p/q where p and q are the dimensions of the spaces X and
Y , respectively.

As for Nesterov’s smooth approximation scheme and Nemirovski’s prox-method,
we set the norm ‖ · ‖U and the function hU in exactly the same way as those for
Nesterov’s optimal method described above. Moreover, in view of Proposition 3, we
choose the norm ‖ · ‖V ≡ ‖ · ‖ and the function hV (·) ≡ ‖ · ‖2/2 in order to mini-
mize the iteration-complexity bound (40) or an estimated iteration-complexity bound
(52), respectively, for Nesterov’s smooth approximation scheme and Nemirovski’s
prox-method.

The following two termination criterion are used in our computational studies. For
a given termination parameter ε > 0, we want to find a point (x, y, s∗) ∈ X × Y × X
such that

max

{‖A∗y + s∗ − c∗‖2
max(1, ‖c∗‖2) ,

‖Ax− b∗‖2
max(1, ‖b∗‖2) ,

|〈c∗,x〉 − 〈b∗, y〉|
max(1, (|〈c∗,x〉| + |〈b∗, y〉|)/2)

}
≤ ε,
(57)
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or a point (x, y) ∈ X × Y satisfying

max

{
dL∗(c∗−A∗y)
max(1, ‖c∗‖2) ,

‖Ax−b∗‖2
‖b∗‖2 ,

|〈c∗,x〉−〈b∗, y〉|
max(1, (|〈c∗,x〉| + |〈b∗, y〉|)/2)

}
≤ ε.

(58)

We observe that the termination criterion (57) is exactly the same as the one used by
the code SDPT3 [13] for solving SDP problems. Observe also that the left hand side
of the alternative criterion (58) is obtained by minimizing the left hand side of (57) for
all s∗ ∈ L∗ and, as a result, it does not depend on s∗. The latter termination criterion
is used when comparing the variant of Nesterov’s method with Burer and Monteiro’s
low-rank method which, being a primal-only method, generates only x and a dual
estimate y based on x.

5.2 Comparisons of three first-order methods for LP

In this subsection, we compare the performance of Nesterov’s optimal method, Neste-
rov’s smooth approximation scheme, and Nemirovski’s prox-method on a set of ran-
domly generated LP instances.

We use the algorithm setup as described in Sect. 5.1. To be more compatible with
the termination criterion (57), we choose the following weights ωp, ωd and ωo for the
norm ‖ · ‖∗ defined in (53):

ωd = 1

max(1, ‖c‖2) , ωp = 1

max(1, ‖b‖2) , ωo = 1

max (1, ‖b‖2 + ‖c‖2) .
(59)

For our experiment, 27 LP instances were randomly generated as follows. First, we
randomly generate a matrix A ∈ �m×n with prescribed density ρ (i.e., the percentage
of nonzero elements of the matrix), and vectors x0, s0 ∈ �n+ and y0 ∈ �m. Then, we
set b = Ax0 and c = AT y0 + s0. Clearly, the resulting LPs have primal-dual optimal
solutions. The number of variables n, the number of constraints m, and the density
parameter ρ for these twenty seven LPs are listed in columns one to three of Table 1,
respectively.

The codes for the aforementioned three first-order methods (abbreviated as NES-S,
NES-N and NEM, respectively) used for this comparison are written in Matlab. The
termination criterion (57) with ε = 0.01 is used for all three methods. All computations
are performed on an Intel Xeon 2.66 GHz machine with Red Hat Linux version 8. The
performance of NES-S, NES-N and NEM for the above LP instances are presented in
Table 1. The numbers of iterations of NES-S, NES-N and NEM are given in columns
four to six, and CPU times (in seconds) are given in the last three columns, respec-
tively. From Table 1, we conclude that NES-S, that is, Nesterov’s optimal method, is
the most efficient one among these three first-order methods for solving LPs.
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Table 1 Comparison of the three methods on random LP problems

Problem Iter Time

n m ρ (%) nes- s nes- n nem nes- s nes- n nem

1,000 100 1 1,396 2,532 7,088 11.24 20.69 303.82

1,000 100 5 1,340 2,331 8,473 12.32 21.74 398.22

1,000 100 10 1,229 1,995 6,968 12.92 21.21 349.47

1,000 500 1 1,019 2,293 3,780 11.17 25.38 235.76

1,000 500 5 839 2,096 2,162 14.14 35.45 158.74

1,000 500 10 647 1,842 1,574 15.97 45.48 134.37

1,000 900 1 1,123 2,778 4,246 15.31 38.29 334.95

1,000 900 5 695 2,247 2,081 17.63 57.01 204.53

1,000 900 10 714 2,122 2,105 27.65 81.70 246.95

5,000 500 1 3,289 5,377 45,657 163.41 270.56 11,830.66

5,000 500 5 2,235 3,307 23,297 204.64 303.21 7,458.39

5,000 500 10 1,094 2,452 3,391 157.60 350.88 1,282.41

5,000 2,500 1 1,945 4,683 11,645 219.40 531.45 5,114.41

5,000 2,500 5 1,248 4,242 7,093 450.26 1,513.71 5,189.31

5,000 2,500 10 1,335 3,826 7,177 890.61 2,543.32 7,977.18

5,000 4,500 1 1,499 5,353 10,229 297.23 1,055.15 6,434.42

5,000 4,500 5 1,632 4,836 10,950 1,216.35 3,654.01 15,104.14

5,000 4,500 10 1,649 4,568 10,892 2,358.79 6,535.41 25,046.20

10,000 1,000 1 4,096 6,447 74,335 557.05 876.63 44,987.31

10,000 5,000 1 1,906 6,507 14,743 880.24 2,977.75 18,373.51

10,000 9,000 1 2,208 7,747 20,846 1,825.14 6,371.42 40,180.74

5.3 Computational comparison on SDP problems

In this subsection, we compare the performance of Nesterov’s optimal method, its var-
iant proposed in Sect. 3, and the low-rank method [2,3] on a set of randomly generated
SDP instances. The codes of these three methods are all written in ANSI C for this
comparison. The experiments were conducted on an Intel Xeon 2.66 GHz machine
with Red Hat Linux version 8.

Table 2 describes five groups of SDP instances which were randomly generated
in a similar way as the LP instances of Sect. 5.2. Within each group, we generated
three SDP instances having the same number of constraints m, the same dimension
n(n+ 1)/2 of the variable x, and density ρ as listed in columns two to four, respec-
tively. Column five displays the quantity q ≡ mρ/n, which is proportional to the
ratio between the arithmetic complexity of an iteration of the low-rank method and
that of Nesterov’s optimal method or its variant. Indeed, the arithmetic complexity
of an iteration of Nesterov’s optimal method and/or its variant can be bounded by
O(mn2ρ + n3) (see Sect. 3), while that of the low-rank method can be bounded by
O(n2r +mn2ρ), where r is a positive number satisfying r(r + 1)/2 ≤ m (see the
discussions in [2,3]).
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Table 2 SDP instances

Group m n ρ (%) q ≡ mρ/n Instances

1 1,600 80 80 16 sdp-d11, sdp-d12, sdp-d13

2 1,600 80 60 12 sdp-d21, sdp-d22, sdp-d23

3 2,000 100 20 4 sdp-d31, sdp-d32, sdp-d33

4 6,000 150 2 0.8 sdp-d41, sdp-d42, sdp-d43

5 10,000 200 1 0.5 sdp-d51, sdp-d52, sdp-d53

Table 3 Comparison of
Nesterov’s method and its
variant

Instance Nesterov’s method The variant Improvement (%)

sdp-d11 642 492 23.36

sdp-d12 742 590 20.49

sdp-d13 847 658 22.31

sdp-d21 815 612 24.91

sdp-d22 913 713 21.91

sdp-d23 817 605 25.95

sdp-d31 24,900 21,100 15.26

sdp-d32 28,866 24,086 16.56

sdp-d33 26,150 22,377 14.43

sdp-d41 135,084 108,121 19.96

sdp-d42 136,592 109,013 20.19

sdp-d43 127,647 104,851 17.86

sdp-d51 93,164 78,154 16.11

sdp-d52 96,450 81,088 15.93

sdp-d53 87,388 73,651 15.72

In Sect. 5.2, we have already seen that Nesterov’s optimal method computationally
outperforms the other two first-order methods, namely, Nesterov’s smooth approxi-
mation scheme and Nemirovski’s prox-method for solving LP problems. In addition,
our preliminary computational study shows that the same conclusion also holds for
SDP problems. In the first experiment of this subsection, we compare the best of the
three aforementioned methods, namely, Nesterov’s optimal method with its variant.
We use the same algorithm setup as described in Sect. 5.1 for these two methods. The
termination criterion (57) with ε = 2.0e− 3 is used for both methods. The computa-
tional results are reported in Table 3. The instance names and the number of iterations
of both methods are given in columns one to three, respectively. In the last column, we
report the percentage of improvement of the variant compared to the original method
in terms of number of iterations. Note that since both methods have similar computa-
tional cost per iteration, the number of iterations is a good measure for comparing both
methods. The results given in Table 3 show that the variant consistently outperforms
the original method.

In the second experiment, we compare the variant of Nesterov’s optimal method
with the low-rank method. We divide this comparison into two parts. In the first part,
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Table 4 Comparison of the
variant and low-rank method for
ε = 0.02

Instance Low-rank The new variant

Time Iterations Time Iterations

sdp-d11 2 10 10 60

sdp-d12 1 10 12 60

sdp-d13 2 10 11 60

sdp-d21 2 20 9 60

sdp-d22 2 20 9 60

sdp-d23 1 20 9 60

sdp-d31 5 60 11 90

sdp-d32 5 60 11 90

sdp-d33 4 50 10 90

sdp-d41 28 500 20 110

sdp-d42 51 880 20 110

sdp-d43 37 620 21 110

sdp-d51 52 440 62 170

sdp-d52 54 470 62 170

sdp-d53 49 400 69 190

the stopping criterion (58) with ε = 2.0e − 2 is used for both methods. The compu-
tational results are presented in Table 4. The instance names are listed in column one.
The CPU times (in seconds) for both methods are presented in columns two and four,
and the number of iterations for both methods are given in columns three and five,
respectively. Table 4 shows that the performance of both methods is comparable. In the
second part, the termination criterion (58) with ε = 1.0e−5 is used for both methods.
Also, each method is given an upper bound of two hours (or 7,200 s) of computation
time on each instance. The computational results are reported in Table 5. Column one
gives the instance names. The final accuracies that these methods achieve are given
in columns two and four, the CPU times (in seconds) are given in columns three and
six, and the number of iterations are given in columns four and seven, respectively.
From Table 5, we see that the low-rank method outperforms the variant of Nesterov’s
optimal method on all instances.

From the last experiment above, we conclude that the performance of the variant
of Nesterov’s optimal method and the low-rank method is comparable for obtaining
solutions with low accuracy, but the low-rank method has much better performance
when solutions with high accuracy are computed. We note however that, while the low-
rank method has only been implemented for SDP problems, the variant of Nesterov’s
optimal method can potentially solve a large class of cone programming problems.

6 Concluding remarks

In this paper, we discussed primal-dual first-order methods, namely, Nesterov’s opti-
mal method and its variant, Nesterov’s smooth approximation scheme, and Nemirov-
ski’s prox-method for cone programming problems. The computational results showed
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Table 5 Comparison of the variant and low-rank method for ε = 1.0e− 5

Instance Low rank P-D first-order

Accuracy Time Iterations Accuracy Time Iterations

sdp-d11 1.1e−4 7,200 56,940 5.8e−4 7,200 42,440

sdp-d12 1.4e−4 7,200 57,370 5.9e−4 7,200 42,590

sdp-d13 5.6e−5 7,200 56,980 5.8e−4 7,200 42,460

sdp-d21 5.5e−5 7,200 75,890 5.2e−4 7,200 54,010

sdp-d22 4.3e−5 7,200 75,890 4.9e−4 7,200 54,030

sdp-d23 3.8e−5 7,200 75,180 4.8e−4 7,200 54,070

sdp-d31 1.0e−5 594 9,510 1.2e−3 7,200 64,990

sdp-d32 1.0e−5 1,387 22,060 1.2e−3 7,200 65,950

sdp-d33 1.0e−5 590 9,440 1.3e−3 7,200 64,860

sdp-d41 1.0e−5 126 2,250 3.9e−3 7,200 42,530

sdp-d42 1.0e−5 161 2,810 3.8e−3 7,200 42,500

sdp-d43 1.0e−5 121 2,050 4.7e−3 7,200 42,480

sdp-d51 1.0e−5 227 1,960 9.9e−3 7,200 20,810

sdp-d52 1.0e−5 210 1,960 9.7e−3 7,200 20,470

sdp-d53 1.0e−5 263 2,100 1.0e−2 7,200 20,670

that the variant of Nesterov’s optimal method is the best one among these methods. In
this section, we propose some potential topics for future research.

All computational studies performed in this paper are based on the primal-dual
formulation (10). As mentioned in Sect. 2, there are a variety of formulations that
are suitable for the variant of Nesterov’s optimal method proposed in this paper. We
would like to see how the performance of the variant of Nesterov’s optimal method
varies with the different formulations.

When applied to solve LP, an iteration of the methods discussed in this paper is
fairly cheap since it only involves matrix-vector multiplications. Preliminary compu-
tational results also show that these methods are very promising for finding solutions
with low accuracy of large-scale sparse and/or dense LPs. It would be interesting to
compare these methods with other ones such as interior point and simplex methods
on a collection of LP instances from Netlib. In addition, we expect these methods to
be capable of finding solutions with low accuracy for large-scale second-order cone
programming problems.

Finally, the primal-dual first-order methods discussed in this paper are presently
only suitable for solving linear cone programming problems. A natural question is
whether these methods can be extended to solve convex quadratic cone programming
problems.

Appendix

Proposition 5 Given a scalar product norm ‖ · ‖ on the vector space V and a closed
convex set C ⊆ V , the function ψ : V → � defined as ψ(v) = (dC(v))2 is convex
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and has 2-Lipschitz-continuous gradient with respect to ‖ · ‖, where dC is the distance
function to C measured in terms of ‖ · ‖.
Proof The convexity of ψ follows directly from the facts that the distance function
dC is convex (see Example IV.1.3 (c) on p. 153 of [5]) and that ψ is the post-compo-
sition of dC with the increasing convex function τ(t) = t2, for t ≥ 0 (see Proposition
IV.2.1.8 in [5]). Moreover, it is shown in Example XI.3.4.4 on p. 121 of [5] that ψ is
differentiable with derivative ψ ′ given by

ψ ′(v) = 2(v −ΠC(v)), ∀v ∈ V, (60)

where ΠC(v) := argminṽ∈C{‖v − ṽ‖}. Also, denoting the scalar product associated
with the norm ‖ · ‖ by 〈·, ·〉, it follows from Proposition III.3.1.3 of [5] that

〈ΠC(v1)−ΠC(v2), v1 − v2〉 ≥ ‖ΠC(v1)−ΠC(v2)‖2, ∀v1, v2 ∈ V,

which clearly implies that

‖(v1 −ΠC(v1)− (v2 −ΠC(v2))‖2
= ‖v1 − v2‖2 − 2〈ΠC(v1)−ΠC(v2), v1 − v2〉 + ‖ΠC(v1)−ΠC(v2)‖2
≤ ‖v1 − v2‖2 − ‖ΠC(v1)−ΠC(v2)‖2 ≤ ‖v1 − v2‖2.

Hence, we conclude from identity (60) and the above relation that ψ has 2-Lipschitz-
continuous gradient with respect to ‖ · ‖. ��
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