
An Accelerated Hybrid Proximal Extragradient Method for Convex

Optimization and its Implications to Second-Order Methods

Renato D.C. Monteiro ∗ B. F. Svaiter†

May 10, 2011 (Revised: May 24, 2012)

Abstract

This paper presents an accelerated variant of the hybrid proximal extragradient (HPE) method
for convex optimization, referred to as the accelerated HPE (A-HPE) framework. Iteration-
complexity results are established for the A-HPE framework, as well as a special version of it,
where a large stepsize condition is imposed. Two specific implementations of the A-HPE frame-
work are described in the context of a structured convex optimization problem whose objective
function consists of the sum of a smooth convex function and an extended real-valued non-smooth
convex function. In the first implementation, a generalization of a variant of Nesterov’s method
is obtained for the case where the smooth component of the objective function has Lipschitz con-
tinuous gradient. In the second implementation, an accelerated Newton proximal extragradient
(A-NPE) method is obtained for the case where the smooth component of the objective function
has Lipschitz continuous Hessian. It is shown that the A-NPE method has a O(1/k7/2) conver-
gence rate, which improves upon the O(1/k3) convergence rate bound for another accelerated
Newton-type method presented by Nesterov. Finally, while Nesterov’s method is based on exact
solutions of subproblems with cubic regularization terms, the A-NPE method is based on inex-
act solutions of subproblems with quadratic regularization terms, and hence is potentially more
tractable from a computational point of view.

Key words: complexity, extragradient, variational inequality, maximal monotone operator, prox-
imal point, ergodic convergence, hybrid, convex programming, accelerated gradient, accelerated
Newton

1 Introduction

A broad class of optimization, saddle point, equilibrium and variational inequality (VI) problems
can be posed as the monotone inclusion problem (MI), namely: finding x such that 0 ∈ T (x), where
T is a maximal monotone point-to-set operator defined in a real Hilbert space. The proximal point

∗School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0205. (email:
monteiro@isye.gatech.edu). The work of this author was partially supported by NSF Grants CCF-0808863 and
CMMI-0900094 and ONR Grant ONR N00014-11-1-0062.

†IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil (benar@impa.br). The work of this author
was partially supported by CNPq grants 303583/2008-8, 302962/2011-5, 480101/2008-6, 474944/2010-7, FAPERJ
grants E-26/102.821/2008, E-26/102.940/2011 and by PRONEX-Optimization.

1

method, proposed by Martinet [6], and further studied by Rockafellar [16, 15], is a classical iterative
scheme for solving the MI problem which generates a sequence {xk} according to

xk = (λkT + I)−1(xk−1),

It has been used as a generic framework for the design and analysis of several implementable al-
gorithms. The classical inexact version of the proximal point method allows for the presence of a
sequence of summable errors in the above iteration, i.e.:

‖xk − (λkT + I)−1(xk−1)‖ ≤ ek,

∞
∑

k=1

ek <∞,

where ‖·‖ is the canonical norm of the Hilbert space. Convergence results under the above error
condition have been establish in [16] and have been used in the convergence analysis of other methods
that can be recast in the above framework [15].

New inexact versions of the proximal point method with relative error tolerance were proposed by
Solodov and Svaiter [18, 19, 20, 21]. Iteration complexity results for one of these inexact versions of
the proximal point method introduced in [18, 19], namely the hybrid proximal extragradient (HPE)
method, were established in [10]. Application of this framework in the iteration-complexity analysis
of several zero-order (or, in the context of optimization, first-order) methods for solving monotone
variational inequalities, and monotone inclusion and saddle-point problems, are discussed in [10] and
in the subsequent papers [8, 9].

The HPE framework was also used to study the iteration-complexity of a first-order (or, in the
context of optimization, second-order) method for solving monotone nonlinear equations (see [10])
and, more generally, for monotone smooth variational inequalities and inclusion problems consisting
of the sum of a smooth monotone map and a maximal monotone point-to-set operator (see [11]).

Iteration-complexity bounds for accelerated inexact versions of the proximal point method for
convex optimization have been obtained in [4, 17] under suitable absolute error asymptotic condi-
tions. The purpose of this paper is to present an accelerated variant of the HPE method for convex
optimization (based on a relative error condition), which we refer to as the accelerated HPE (A-HPE)
framework. This framework builds on the ideas introduced in [10, 18, 19, 12]. Iteration-complexity
results are established for the A-HPE method, as well as a special version of it, where a large stepsize
condition is imposed. We then give two specific implementations of the A-HPE framework in the
context of a structured convex optimization problem whose objective function consists of the sum
of a smooth convex function and an extended real-valued non-smooth convex function. In the first
implementation, we obtain a generalization of a variant of Nesterov’s method for the case where
the smooth component of the objective function has Lipschitz continuous gradient. In the second
implementation, we obtain a accelerated Newton proximal extragradient (A-NPE) method for the
case where the smooth component of the objective function has Lipschitz continuous Hessian. We
show that the A-NPE method has a O(1/k7/2) convergence rate, which improves upon the O(1/k3)
convergence rate bound for another accelerated Newton-type method presented in Nesterov [13].
As opposed to the method in the latter paper, which is based on exact solutions of subproblems
with cubic regularization terms, the A-NPE method is based on inexact solutions of subproblems
with quadratic regularization terms, and hence is potentially more tractable from a computational
point of view. In addition, the method in [13] is described only in the context of unconstrained con-
vex optimization, while A-HPE framework applies to constrained, as well as more general, convex
optimization problems.

2

This paper is organized as follows. Section 2 introduces some basic definitions and facts about
convex functions and ε-enlargement of maximal monotone operators. Section 3 describes in the
context of convex optimization an accelerated variant of the HPE method introduced in [18, 19]
and studies its computational complexity. Section 4 analyzes the convergence rate of a special
version of the A-HPE framework, namely the large-step A-HPE framework, which imposes a large-
step condition on the sequence of stepsizes. Section 5 describes a first-order implementation of the
A-HPE framework which leads to a generalization of a variant of Nesterov’s method. Section 6
describes a second-order implementation of the large-step A-HPE framework, namely the A-NPE
method. Section 7 describes a line-search procedure which is used to compute the stepsize at each
iteration of the A-NPE method.

2 Basic definition and notation

In this section, we review some basic definitions and facts about convex functions and ε-enlargement
of monotone multi-valued maps.

Throughout this paper, E will denote a finite dimensional inner product real vector space with
inner product and induced norm denoted by 〈·, ·〉 and ‖·‖, respectively. For a nonempty closed convex
set Ω ⊆ E, we denote the orthogonal projection operator onto Ω by PΩ. We denote the set of real
numbers by R and the set of extended reals, namely R ∪ {±∞} by R̄ = R ∪ {±∞}. We let R+

and R++ denote for the set of nonnegative and positive real numbers, respectively. The domain of
definition of a point-to-point function F is denoted by Dom F .

A point-to-set operator T : E ⇒ E is a relation T ⊆ E× E. Alternatively, one can consider T as
a multi-valued function of E into the family ℘(E) = 2(E) of subsets of E, namely:

T (z) = {v ∈ E | (z, v) ∈ T}, ∀z ∈ E.

Regardless of the approach, it is usual to identify T with its graph defined as

Gr(T) = {(z, v) ∈ E× E | v ∈ T (z)}.

The domain of T , denoted by DomT , is defined as

Dom T := {z ∈ E : T (z) 6= ∅}.

The operator T : E ⇒ E is monotone if

〈v − ṽ, z − z̃〉 ≥ 0, ∀(z, v), (z̃, ṽ) ∈ Gr(T),

and T is maximal monotone if it is monotone and maximal in the family of monotone operators with
respect to the partial order of inclusion, i.e., S : E ⇒ E monotone and Gr(S) ⊃ Gr(T) implies that
S = T .

In [2], Burachik, Iusem and Svaiter introduced the ε-enlargement of maximal monotone operators.
In [10] this concept was extended to a generic point-to-set operator in E as follows. Given T : E ⇒ E

and a scalar ε, define T ε : E ⇒ E as

T ε(z) = {v ∈ E | 〈z − z̃, v − ṽ〉 ≥ −ε, ∀z̃ ∈ E, ∀ṽ ∈ T (z̃)}, ∀z ∈ E. (1)

We now state a few useful properties of the operator T ε that will be needed in our presentation.

3

Proposition 2.1. Let T, T ′ : E ⇒ E. Then,

a) if ε1 ≤ ε2, then T ε1(z) ⊆ T ε2(z) for every z ∈ E;

b) T ε(z) + (T ′)ε
′
(z) ⊆ (T + T ′)ε+ε′(z) for every z ∈ E and ε, ε′ ∈ R;

c) T is monotone if, and only if, T ⊆ T 0.

Proof. Statements a) and b) follow immediately from definition (1) and statement c) is proved in [7,
Proposition 21].

Proposition 2.2 ([3, Corrolary 3.8]). Let T : E ⇒ E be a maximal monotone operator. Then,
Dom (T ε) ⊆ Dom (T) for any ε ≥ 0.

For a scalar ε ≥ 0, the ε-subdifferential of a proper closed convex function f : E → R̄ is the
operator ∂εf : E ⇒ E defined as

∂εf(x) = {v | f(y) ≥ f(x) + 〈y − x, v〉 − ε, ∀y ∈ E}, ∀x ∈ E. (2)

When ε = 0, the operator ∂εf is simply denoted by ∂f and is referred to as the subdifferential of f .
The operator ∂f is trivially monotone if f is proper. If f is a proper lower semi-continuous convex
function, then ∂f is maximal monotone [14]. The next proposition states some useful properties of
the ε-subdifferential.

Proposition 2.3. Let f : E→ R̄ be a proper convex function. Then,

a) ∂εf(x) ⊆ (∂f)ε(x) for any ε ≥ 0 and x ∈ E, where (∂f)ε stands for the ε-enlargement of ∂f ;

b) if v ∈ ∂f(x) and f(y) <∞, then v ∈ ∂εf(y), where ε := f(y)− [f(x) + 〈y − x, v〉].

Proof. Statement a) is proved in [2, Proposition 3] and b) is a classical result which can be found,
for example, in Proposition 4.2.2 of [5].

Let X ⊆ E be a non-empty closed convex set. The indicator function of X is the function
δX : E→ R̄ defined as

δX(x) =

{

0, x ∈ X,

∞, otherwise,

and the normal cone operator of X is the point-to-set map NX : E ⇒ E given by

NX(x) =

{

∅, x /∈ X,

{v ∈ E, | 〈y − x, v〉 ≤ 0, ∀y ∈ X}, x ∈ X.
(3)

Clearly, the normal cone operator NX of X can be expressed in terms of δX as NX = ∂δX .

4

3 An accelerated hybrid proximal extragradient framework

In this section, we describe in the context of convex optimization an accelerated variant of the hybrid
proximal extragradient method introduced in [18, 19] and study its computational complexity. This
variant uses ideas similar to the ones used in Nesterov’s optimal method but generalizes the later
method in a significant way.

Our problem of interest is the convex optimization problem

f∗ := inf {f(x) : x ∈ E}, (4)

where f : E → R ∪ {∞} is a proper closed convex function. We assume throughout the paper that
f∗ ∈ R and the set of optimal solutions X∗ of (4) is nonempty.

The accelerated hybrid proximal extragradient framework studied in this section is as follows.

A-HPE Framework

0) Let x0, y0 ∈ E and 0 ≤ σ ≤ 1 be given, and set A0 = 0 and k = 0.

1) Compute λk+1 > 0 and a triple (ỹk+1, vk+1, εk+1) ∈ E× E× R+ such that

vk+1 ∈ ∂εk+1
f(ỹk+1), ‖λk+1vk+1 + ỹk+1 − x̃k‖2 + 2λk+1εk+1 ≤ σ2‖ỹk+1 − x̃k‖2, (5)

where

x̃k =
Ak

Ak + ak+1
yk +

ak+1

Ak + ak+1
xk, (6)

ak+1 =
λk+1 +

√

λ2
k+1 + 4λk+1Ak

2
. (7)

2) Find yk+1 such that f(yk+1) ≤ f(ỹk+1) and let

Ak+1 = Ak + ak+1, (8)

xk+1 = xk − ak+1vk+1. (9)

3) Set k ← k + 1, and go to step 1.

end

We now make several remarks about the A-HPE Framework. First, the framework obtained by
replacing (8) by the equation Ak+1 = 0, which as consequence imply that x̃j = xj , aj = λj and
xj+1 = xj−λj+1vj+1 for all j ∈ N, is exactly the HPE method proposed by Solodov and Svaiter [18].
Second, the A-HPE Framework does not specify how to compute λk+1 and (ỹk+1, vk+1, εk+1) as in
step 1. Specific computation of these quantities will depend on the particular implementation of the
framework and properties of function f . In Sections 5 and 6, we will describe procedures for finding
these quantities in the context of two specific implementations of the A-HPE framework, namely: a
first-order method which is a variant of Nesterov’s algorithm, and a second-order accelerated method.
Third, for an arbitrary λk+1 and x̃k as in (6)-(7), the exact proximal point iterate ỹ and the vector

5

v defined as

ỹ := arg min
x∈E

(

λk+1f(x) +
1

2
‖x− x̃k‖2

)

, v :=
1

λk+1
(x̃k − ỹ),

are characterized by
v ∈ ∂f(ỹ), λk+1v + ỹ − x̃k = 0, (10)

and hence εk+1 := 0, ỹk+1 := ỹ and vk+1 := v satisfy the error tolerance (5) with σ = 0. Therefore,
the error criterion (5) is a relaxation of the characterization (10) of the proximal point iterate in
that the inclusion in (10) is relaxed to v ∈ ∂εf(ỹ) and the equation in (10) is allowed to have a
residual r = λk+1v + ỹ − x̃k such that the residual pair (r, ε) is small relative to ‖ỹ − x̃k‖ in that
‖r‖2 +2λk+1ε ≤ σ2‖ỹ − x̃k‖2. Fourth, the error tolerance (5) is the optimization version of the HPE
relative error tolerance introduced in [18] in that an inclusion in terms of the ε-enlargement of a
maximal monotone operator is replaced by an inclusion in terms of the ε-subdifferential of a proper
closed convex function. Fifth, there are two readily available rules for choosing yk+1 in step 2) of the
A-HPE framework, namely:

• either set yk+1 = ỹk+1;

• or, yk+1 = argmin{f(y) : y ∈ {yk, ỹk+1}}.

The advantage of the latter rule is that it forces the sequence {f(yk)} to be non-increasing.
For the sake of future reference, we state the following trivial result.

Lemma 3.1. For every integer k ≥ 0, we have λk+1Ak+1 = a2
k+1 > 0.

Proof. Clearly, ak+1 > 0 satisfies (7) if, and only if, a = ak+1 > 0 satisfies

a2 − λk+1a− λk+1Ak = 0,

or equivalently, a2
k+1 = λk+1(Ak + ak+1) = λk+1Ak+1, where the last equality is due to (8).

In order to analyze the properties of the sequences {xk} and {yk}, define the affine maps γk :
E→ R as

γk(x) = f(ỹk) + 〈x− ỹk, vk〉 − εk, ∀x ∈ E, k ≥ 1. (11)

and the aggregate affine maps Γk : E→ R recursively as

Γ0 ≡ 0, Γk+1 =
Ak

Ak+1
Γk +

ak+1

Ak+1
γk+1, ∀k ≥ 0. (12)

Lemma 3.2. For every integer k ≥ 0, there hold:

a) γk+1 is affine and γk+1 ≤ f ;

b) Γk is affine and AkΓk ≤ Akf ;

c) xk = arg minx∈E

(

AkΓk(x) + 1
2‖x− x0‖2

)

.

6

Proof. Statement a) follows from (11), the inclusion in (5), and definition (2). Statement b) follows
from a), (12) and a simple induction argument. To prove c), first note that (12) imply by induction
that

Ak∇Γk(x) =
k
∑

j=1

ajvj, ∀x ∈ E.

Moreover, (9) imply that xk = x0−
∑k

j=1 ajvj . The last two conclusions then imply that Ak∇Γk(xk)+
xk−x0 = 0, and hence that xk satisfies the optimality condition for the minimization problem in c).
Hence, c) follows.

The following elementary result will be used in the analysis of the A-HPE framework.

Lemma 3.3. Let vectors x̃, ỹ, ṽ ∈ E and scalars λ > 0, ε, σ ≥ 0 be given. Then, the inequality

‖λṽ + ỹ − x̃‖2 + 2λε ≤ σ2‖ỹ − x̃‖2

is equivalent to the inequality

min
x∈E

{

〈ṽ, x− ỹ〉 − ε +
1

2λ
‖x− x̃‖2

}

≥ 1− σ2

2λ
‖ỹ − x̃‖2.

Lemma 3.4. For integer k ≥ 0, define

βk = inf
x∈E

(

AkΓk(x) +
1

2
‖x− x0‖2

)

−Akf(yk). (13)

Then, β0 = 0 and

βk+1 ≥ βk +
(1− σ2)Ak+1

2λk+1
‖ỹk+1 − x̃k‖2, ∀k ≥ 0. (14)

Proof. Since A0 = 0, we trivially have β0 = 0. We will now prove (14). Let an arbitrary x ∈ E be
given. Define

x̃ =
Ak

Ak+1
yk +

ak+1

Ak+1
x (15)

and note that, by (6), (8) and the affinity of γk+1, we have

x̃− x̃k =
ak+1

Ak+1
(x− xk), (16)

γk+1(x̃) =
Ak

Ak+1
γk+1(yk) +

ak+1

Ak+1
γk+1(x). (17)

Using the definition of Γk+1 in (12), and items b) and c) of Lemma 3.2, we conclude that for any
x ∈ E,

Ak+1Γk+1(x) +
1

2
‖x− x0‖2 = ak+1γk+1(x) + AkΓk(x) +

1

2
‖x− x0‖2

= ak+1γk+1(x) + AkΓk(xk) +
1

2
‖xk − x0‖2 +

1

2
‖x− xk‖2

= ak+1γk+1(x) + Akf(yk) + βk +
1

2
‖x− xk‖2,

7

where the third equality follows from the definition of βk in (13). Combining the above relation with
Lemma 3.2(a), the definition of x̃ in (15), and relations (16) and (17), we conclude that

Ak+1Γk+1(x) +
1

2
‖x− x0‖2 ≥ ak+1γk+1(x) + Akγk+1(yk) + βk +

1

2
‖x− xk‖2

= βk + Ak+1γk+1(x̃) +
A2

k+1

2a2
k+1

‖x̃− x̃k‖2

= βk + Ak+1γk+1(x̃) +
Ak+1

2λk+1
‖x̃− x̃k‖2,

where the last equality is due to Lemma 3.1. Using definition (11) with k = k + 1, the inequality in
(5), and Lemma 3.3 with ṽ = vk+1, ỹ = ỹk+1, x̃ = x̃k and ε = εk+1, we conclude that

γk+1(x̃) +
1

2λk+1
‖x̃− x̃k‖2 = f(ỹk+1) +

(

〈x̃− ỹk+1, vk+1〉 − εk+1 +
1

2λk+1
‖x̃− x̃k‖2

)

≥ f(ỹk+1) +
1− σ2

2λk+1
‖ỹk+1 − x̃k‖2.

Using the non-negativity of Ak+1 and the above two relations, we conclude that

inf
x∈E

(

Ak+1Γk+1(x) +
1

2
‖x− x0‖2

)

≥ βk + Ak+1f(ỹk+1) +
(1 − σ2)Ak+1

2λk+1
‖ỹk+1 − x̃k‖2,

which, combined with definition (13) with k = k + 1, and the inequality in step 2) of the A-HPE
framework, proves that (14) holds.

We now make a remark about Lemma 3.4. The only conditions we have used about xk, yk, Ak

and Γk in order to show that (14) holds are that: Ak ≥ 0, yk ∈ dom f , Γk is an affine function such
that AkΓk ≤ Akf ,

xk = argminx∈E

(

AkΓk(x) +
1

2
‖x− x0‖2

)

,

and that (xk+1, yk+1, Ak+1) is obtained according to an iteration of the A-HPE framework initialized
with the triple (xk, yk, Ak).

The next proposition follows directly from Lemma 3.4.

Proposition 3.5. For every integer k ≥ 1 and x ∈ E,

Akf(yk) +
1− σ2

2

k
∑

j=1

Aj

λj
‖ỹj − x̃j−1‖2 +

1

2
‖x− xk‖2 ≤ AkΓk(x) +

1

2
‖x− x0‖2.

Proof. Adding (14) from k = 0 to k = k − 1 and using the fact that β0 = 0, we conclude that

1− σ2

2

k
∑

j=1

Aj

λj
‖ỹj − x̃j−1‖2 ≤ βk,

which together with (13) then imply that

Akf(yk) +
1− σ2

2

k
∑

j=1

Aj

λj
‖ỹj − x̃j−1‖2 ≤ inf

x′∈E

(

AkΓk(x) +
1

2
‖x′ − x0‖2

)

. (18)

8

Using b) and c) of Lemma 3.2, we conclude that for any x ∈ E,

AkΓk(x) +
1

2
‖x− x0‖2 = inf

x′∈E

(

AkΓk(x
′) +

1

2
‖x′ − x0‖2

)

+
1

2
‖x− xk‖2.

To end the proof, add ‖x− xk‖2/2 to both sides of (18) and use the above equality.

The following main result, which establishes the rate of convergence of f(yk)−f∗ and the bound-
edness of {xk}, follows as an immediate consequence of the previous result.

Theorem 3.6. Let x∗ be the projection of x0 onto X∗ and d0 be the distance of x0 to X∗. Then, for
every integer k ≥ 1,

1

2
‖x∗ − xk‖2 + Ak [f(yk)− f∗] +

1− σ2

2

k
∑

j=1

Aj

λj
‖ỹj − x̃j−1‖2 ≤

1

2
d2
0.

As a consequence, for every integer k ≥ 1,

f(yk)− f∗ ≤
d2
0

2Ak
, ‖xk − x∗‖ ≤ d0, (19)

and, if σ < 1, then
k
∑

j=1

Aj

λj
‖ỹj − x̃j−1‖2 ≤

d2
0

1− σ2
. (20)

Proof. This result follows immediately from Proposition 3.5 with x = x∗ and Lemma 3.2(b).

The following result shows how fast Ak grows in terms of the sequence of stepsizes {λk}.

Lemma 3.7. For every integer k ≥ 0,

√

Ak+1 ≥
√

Ak +
1

2

√

λk+1. (21)

As a consequence, the following statements hold:

a) for every integer k ≥ 1,

Ak ≥
1

4





k
∑

j=1

√

λj





2

; (22)

b) if σ < 1, then
∑∞

j=1 ‖ỹj − x̃j−1‖2 ≤ 4d2
0/(1 − σ2).

Proof. Noting that the definition of ak+1 in (7) implies that

ak+1 ≥
λk+1

2
+
√

λk+1Ak

and using (8), we conclude that

Ak+1 ≥ Ak +

(

λk+1

2
+
√

λk+1Ak

)

≥
(

√

Ak +
1

2

√

λk+1

)2

, ∀k ≥ 0,

9

and hence that (21) holds for every k ≥ 0. Adding (21) from k = 0 to k = k − 1 and using the fact
that A0 = 0, we conclude that

√

Ak ≥
1

2

k
∑

j=1

√

λj, ∀k ≥ 1,

and hence that a) holds. Statement b) follows from a) and (20).

The following result follows as an immediate consequence of Theorem 3.6 and Lemma 3.7.

Theorem 3.8. For every integer k ≥ 1, we have

f(yk)− f∗ ≤ 2d2
0





k
∑

j=1

√

λj





−2

.

Theorem 3.8 gives an upper bound on f(yk)− f∗ in terms of the sequence {λk}. Depending on
the specific instance of the A-HPE, it is possible to further refine this upper bound to obtain an
upper bound depending on the iteration count k only. Specific illustrations of that will be given in
Sections 4, 5 and 6.

Recall that vk ∈ ∂εk
f(ỹk) in view of the formulation of the A-HPE framework. Since the set of

solutions of the inclusion 0 ∈ ∂f(x) is exactly X∗, it follows that the size of ‖vk‖ and εk provides
an optimality measure for ỹk. The following result provides a certain estimate on these quantities in
terms of the sequences {λk} and {Ak}, and hence {λk} only, in view of Lemma 3.7.

Proposition 3.9. Assume that σ < 1. For every integer k ≥ 1, we have vk ∈ ∂εk
f(ỹk), and there

exists 1 ≤ i ≤ k such that

√

λi‖vi‖ ≤
√

1 + σ

1− σ

d0
√

∑k
j=1 Aj

, εi ≤
σ2

2(1− σ2)

d2
0

∑k
j=1 Aj

.

Proof. For every integer k ≥ 1, define

τk := max

{

2εk

σ2
,

λk‖vk‖2
(1 + σ)2

}

,

with the convention 0/0 = 0. The inequality in (5) with k = k − 1, the non-negativity of εk and
triangle inequality imply that

2λkεk ≤ σ2‖ỹk − x̃k−1‖2,
‖λkvk‖ ≤ ‖ỹk − x̃k−1‖+ ‖λkvk + ỹk − x̃k−1‖ ≤ (1 + σ)‖ỹk − x̃k−1‖.

Therefore,
λkτk ≤ ‖ỹk − x̃k−1‖2, ∀k ≥ 1.

Hence, it follows from (20) that

d2
0

1− σ2
≥

k
∑

j=1

Ajτj ≥
(

min
j=1,...,k

τj

)





k
∑

j=1

Aj



 .

Noting the definition of τk, we easily see that the last inequality implies the conclusion of the
proposition.

10

Theorem 3.6 shows that the sequence {xk} is bounded. The following result establishes bound-
edness of {yk}, and hence of {x̃k} in view of (6), under the condition that yk+1 is chosen to be ỹk+1

at every iteration of the A-HPE framework.

Theorem 3.10. Let x∗ be the projection of x0 onto X∗ and d0 be the distance of x0 to X∗. Consider
the A-HPE framework with σ < 1 and yk+1 chosen as yk+1 = ỹk+1 for every k ≥ 0. Then, for every
k ≥ 1,

‖yk − x∗‖ ≤
(

2√
1− σ2

+ 1

)

d0.

Proof. We first claim that for every integer k ≥ 1, there holds

‖yk − x∗‖ ≤
1

Ak





k
∑

j=1

Aj‖yj − x̃j−1‖



 + d0. (23)

We will show this claim by induction on k. Note first that the triangle inequality, relations (6) and
(8), the convexity of the norm, and Theorem 3.6, imply that

‖yk+1 − x∗‖ ≤ ‖yk+1 − x̃k‖+ ‖x̃k − x∗‖

≤ ‖yk+1 − x̃k‖+
Ak

Ak+1
‖yk − x∗‖+

ak+1

Ak+1
‖xk − x∗‖

≤ ‖yk+1 − x̃k‖+
Ak

Ak+1
‖yk − x∗‖+

ak+1

Ak+1
d0, ∀k ≥ 0.

The previous inequality with k = 0 and the fact that A0 = 0 clearly imply (23) with k = 1. Assume
now that (23) holds for k and let us show it also holds for k + 1. Indeed, the previous inequality,
relation (8) and the induction hypothesis imply that

‖yk+1 − x∗‖ ≤ ‖yk+1 − x̃k‖+
Ak

Ak+1







1

Ak





k
∑

j=1

Aj‖yj − x̃j−1‖



 + d0







+
ak+1

Ak+1
d0

=
1

Ak+1





k+1
∑

j=1

Aj‖yj − x̃j−1‖



 + d0,

and hence that (23) holds for k + 1. Hence, the claim follows.
Letting sk := ‖yk − x̃k−1‖, it follows from Theorem 3.6 and the assumption that yk = ỹk for

every k ≥ 1 that
k
∑

j=1

Aj

λj
s2
j ≤

d2
0

1− σ2
.

Hence, in view of Lemma A.2 with C = d2
0/(1− σ2), αj = Aj and βj = Aj/λj for every j = 1, . . . , k,

we conclude that

k
∑

j=1

Aj‖yj − x̃j−1‖ ≤
d0√

1− σ2

√

√

√

√

k
∑

j=1

Ajλj ≤
d0√

1− σ2

√

Ak

√

√

√

√

k
∑

j=1

λj ≤
d0√

1− σ2

√

Ak

k
∑

j=1

√

λj,

11

where the second inequality follows from the fact {Ak} is increasing and the last one from the fact
that the 2-norm is majorized by the 1-norm. The latter inequality together with (23) then imply
that

‖yk − x∗‖ ≤
d0√

1− σ2

1√
Ak

k
∑

j=1

√

λj + d0.

The conclusion of the proposition now follows from the latter inequality and Lemma 3.7.

4 Large-step A-HPE Framework

In this section, we analyze the convergence rate of a special version of the A-HPE Framework which
ensures that the sequence of stepsizes {λk} is not too small. This special version, referred to as the
large-step A-HPE framework, will be useful in the analysis of second-order inexact proximal methods
for solving (4) discussed in Section 6.

We start by stating the whole large-step A-HPE Framework.

Large-step A-HPE Framework

0) Let x0, y0 ∈ E, 0 ≤ σ < 1 and θ > 0 be given, and set A0 = 0 and k = 0.

1) If 0 ∈ ∂f(xk), then stop.

2) Otherwise, compute λk+1 > 0 and a triple (ỹk+1, vk+1, εk+1) ∈ E× E× R+ such that

vk+1 ∈ ∂εk+1
f(ỹk+1), ‖λk+1vk+1 + ỹk+1 − x̃k‖2 + 2λk+1εk+1 ≤ σ2‖ỹk+1 − x̃k‖2, (24)

λk+1‖ỹk+1 − x̃k‖ ≥ θ, (25)

where

x̃k =
Ak

Ak + ak+1
yk +

ak+1

Ak + ak+1
xk, (26)

ak+1 =
λk+1 +

√

λ2
k+1 + 4λk+1Ak

2
. (27)

3) Choose yk+1 such that f(yk+1) ≤ f(ỹk+1) and let

Ak+1 = Ak + ak+1, (28)

xk+1 = xk − ak+1vk+1.

4) Set k ← k + 1, and go to step 1.

end

We now make a few remarks about the Large-step A-HPE Framework. First, the large-step
A-HPE Framework is similar to the A-HPE Framework, except that it adds a stopping criterion
and requires the ‘large-step’ condition (25) on the quantities λk+1, x̃k and ỹk+1 computed at step

12

1 of the A-HPE Framework. Clearly, ignoring the stopping criterion in step 1, any implementa-
tion of the Large-step A-HPE Framework is also an instance of the A-HPE Framework. Second,
as in the A-HPE Framework, the above framework does not specify how the quantities λk+1 and
(ỹk+1, vk+1, εk+1) are computed in step 2. An specific implementation of the above framework will
be described in Sections 6 and 7 in which these quantities are computed by solving subproblems
based on second-order approximations of f . Third, due to statement b) of Lemma 3.7 and the first
remark above, any instance of the large-step A-HPE Framework satisfies limk→∞ ‖ỹk+1 − x̃k‖ = 0,
and hence limk→∞ λk =∞, due to the ‘large-step’ condition (25). As a result, the Large-step A-HPE
Framework does not contain variants of Nesterov’s method where a prox-type subproblem based on
a first-order approximation of f and with bounded stepsize λk is solved at the k-th iteration.

In what follows, we study the complexity of the large-step A-HPE framework. For simplicity of
exposition, the convergence results presented below implicitly assume that the framework does not
stop in a finite number of iterations. However, they can easily be restated without assuming such
condition by saying that either the conclusion stated thereof holds or xk is a solution of (4).

The main result we intend to prove in this section is as follows.

Theorem 4.1. Let d0 denote the distance of x0 to X∗. For every integer k ≥ 1, the following
statements hold:

a) there holds

f(yk)− f∗ ≤
37/2

2
√

2

d3
0

θ
√

1− σ2

1

k7/2
; (29)

b) vk ∈ ∂εk
f(ỹk) and there exists i ≤ k such that

‖vi‖ = O
(

d2
0

θk3

)

, εi = O
(

d3
0

θ k9/2

)

. (30)

Before giving the proof of the above result, we will first establish a number of technical results.
Note that we are assuming 0 ≤ σ < 1.

Lemma 4.2. If, for some constants b > 0 and ξ ≥ 0, there holds

Ak ≥ bkξ, ∀k ≥ 1, (31)

then

Ak ≥
wb1/3

(ξ/7 + 1)7/3
k(ξ+7)/3, ∀k ≥ 1,

where

w =
1

4

(

θ2(1− σ2)

d2
0

)1/3

. (32)

Proof. First we claim that for every integer k ≥ 1,

k
∑

j=1

Aj

λ3
j

≤ d2
0

θ2(1− σ2)
. (33)

13

To prove this claim, use the large step condition (25) and inequality (20) on Theorem 3.6 to conclude
that

k
∑

j=1

Aj

λ3
j

θ2 ≤
k
∑

j=1

Aj

λ3
j

(λj‖ỹj − x̃j−1‖)2 =

k
∑

j=1

Aj

λj
‖ỹj − x̃j−1‖2 ≤

d2
0

1− σ2
.

and divide the above inequalities by θ2.
Using (33) and Lemma A.1 with

C =
d2
0

θ2(1− σ2)
, αj = Aj , tj =

√

λj , ∀j = 1, . . . , k,

we conclude that
k
∑

j=1

√

λj ≥
1

C1/6





k
∑

j=1

A
1/7
j





7/6

,

which, combined with Lemma 3.7 shows that, for every k ≥ 1,

Ak ≥ w





k
∑

j=1

A
1/7
j





7/3

, (34)

Assume that (31) holds. Then, using (34), we have

Ak ≥ wb1/3





k
∑

j=1

jξ/7





7/3

, ∀k ≥ 1.

Since 0 ≤ t 7→ tξ/7 is non-decreasing, we have

k
∑

j=1

jξ/7 ≥
∫ k

0
tξ/7 dt =

1

ξ/7 + 1
kξ/7+1.

The conclusion of the lemma now follows by combining the above two inequalities.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1: We first claim that for every integer i ≥ 0, we have

Ak ≥ bik
ξi , ∀k ≥ 1, (35)

where

bi := w̃

(

A1

w̃

) 1

3i

, ξi :=
7

2

(

1− 3−i
)

, w̃ :=

(

w

(3/2)7/3

)3/2

. (36)

We will prove this claim by induction on i. The claim is obviously true for i = 0 since in this case
b0 = A1 and ξ0 = 0, and hence b0k

ξ0 = A1 ≤ Ak for every k ≥ 1. Assume now that the result holds
for i ≥ 0. Using this assumption and Lemma 4.2 with b = bi and ξ = ξi, we conclude that

Ak ≥
wb

1/3
i

(ξi/7 + 1)7/3
k(ξi+7)/3, ∀k ≥ 1,

14

Since (36) implies that

ξi + 7

3
=

1

3

[

7

2
(1− 3−i) + 7

]

=
7

2
(1− 3−(i+1)) = ξi+1

and

wb
1/3
i

(ξi/7 + 1)7/3
≥ wb

1/3
i

(3/2)7/3
= w̃2/3b

1/3
i = w̃2/3

(

w̃

(

A1

w̃

)
1

3i

)1/3

= w̃

(

A1

w̃

)
1

3i+1

= bi+1,

we conclude that (35) holds for i + 1. Hence, we conclude that (35) holds for every i ≥ 0.
Now letting i goes to∞ in (35) and noting that limi→∞ bi = w̃ and limi→∞ ξi = 7/2, we conclude

that

Ak ≥ w̃k7/2 =

(

2

3

)
7

2

w3/2k7/2 =

(

2

3

)
7

2

(

θ(1− σ2)1/2

8d0

)

k7/2.

Statement a) now follows from the last inequality and the first inequality in (19). Moreover, the
above inequality together with Proposition 3.9 imply the existence of i ≤ k such that the second
estimate in (30) holds and

√

λi‖vi‖ = O
(

d
3/2
0

θ1/2k9/4

)

.

Now, it is easily seen that the inequality in (24) and the large step condition (25) imply that

λ2
i ‖vi‖ ≥ θ(1− σ).

Combining the last two inequalities, we now easily see that the first estimate in (30) also holds.

5 Application I: First-order methods

In this section, we use the theory presented in the previous sections to analyze a first-order imple-
mentation of the A-HPE framework for solving structured convex optimization problems.

The problem of interest in this section is

f∗ := min{f(x) := g(x) + h(x) : x ∈ E}, (37)

where the following conditions are assumed to hold:

A.1) g, h : E→ R̄ are proper closed convex functions;

A.2) g is differentiable on a closed convex set Ω ⊇ dom (h);

A.3) ∇g is L0-Lipschitz continuous on Ω;

A.4) the solution set X∗ of (37) is non-empty.

15

Under the above assumptions, it can be easily shown that problem (37) is equivalent to the
inclusion

0 ∈ (∇g + ∂h)(x). (38)

We now state a specific implementation of the A-HPE framework for solving (37) under the above
assumptions. In the following sections, we let PΩ denote the projection operator onto Ω.

Algorithm I:

0) Let x0, y0 ∈ E and 0 < σ ≤ 1 and set be given, and set A0 = 0, λ = σ2/L0 and k = 0.

1) Define

ak+1 =
λ +

√

λ2 + 4λAk

2
(39)

x̃k =
Ak

Ak + ak+1
yk +

ak+1

Ak + ak+1
xk, (40)

and compute

x′
k = PΩ(x̃k), yk+1 = (I + λ∂h)−1(x̃k − λ∇g(x′

k)). (41)

2) Define

Ak+1 = Ak + ak+1, (42)

xk+1 = xk −
ak+1

λ
(x̃k − yk+1).

3) Set k ← k + 1, and go to step 1.

end

Note that the computation of yk+1 in (41) is equivalent to solving

yk+1 = arg min
x∈E

(

λ
[

〈∇g(x′
k), x〉+ h(x)

]

+
1

2
‖x− x̃k‖2

)

. (43)

The following result shows that Algorithm I is a special case of the A-HPE framework with λk = λ
for all k ≥ 1.

Proposition 5.1. Define for every k ≥ 0,

λk+1 = λ, ỹk+1 = yk+1, vk+1 =
1

λ
(x̃k − yk+1), (44)

εk+1 = g(yk+1)− [g(x′
k) + 〈yk+1 − x′

k,∇g(x′
k)〉]. (45)

Then

vk+1 ∈ ∂εk+1
(g + h)(ỹk+1), ‖λk+1vk+1 + ỹk+1 − x̃k‖2 + 2λk+1εk+1 ≤ σ2‖ỹk+1 − x̃k‖2.

As a consequence, Algorithm I is a particular case of the A-HPE framework.

16

Proof. Using (41), (44), (45) and Proposition 2.3(b) we easily see that

vk+1 −∇g(x′
k) ∈ ∂h(yk+1), ∇g(x′

k) ∈ ∂εk+1
g(yk+1), (46)

Since (∂εg + ∂h)(y) ⊆ ∂ε(g + h)(y), we conclude that

vk+1 ∈ ∂εk+1
(g + h)(yk+1).

Noting that yk+1 ∈ dom ∂h ⊆ Ω and x′
k = PΩ(x̃k) ∈ Ω, it follows from (45), Assumption A.3, and a

well-known property of PΩ(·), that

εk+1 ≤
L0

2
‖yk+1 − x′

k‖2 ≤
L0

2
‖yk+1 − x̃k‖2,

This inequality together with (44) and the fact that λ = σ2/L0 then imply that

‖λvk+1 + yk+1 − x̃k‖2 + 2λεk+1 = 2λεk+1 ≤ λL0‖yk+1 − x̃k‖2 = σ2‖yk+1 − x̃k‖2.

Moreover, note that (44) implies that the update formula for xk+1 in step 2 of Algorithm I is the
same as that of the A-HPE framework. Hence, the result follows.

The following result gives the complexity estimation of Algorithm I as a consequence of Propo-
sition 5.1 and the complexity results for the A-HPE framework on Section 3.

Proposition 5.2. Consider the sequence {yk} generated by Algorithm I, the sequences {vk} and
{εk} defined as in Proposition 5.1 and the sequence {wk} defined as

wk = vk +∇g(yk)−∇g(x′
k−1) k ≥ 1.

Then, the the following statements hold:

a) for every k ≥ 1,

yk ∈ dom (h) ⊆ Ω, f(yk)− f∗ ≤
2L0d

2
0

k2σ2
;

b) if σ < 1, then

‖yk − x∗‖ ≤
(

2√
1− σ2

+ 1

)

d0;

c) if σ < 1, then for every k ≥ 1, vk ∈ ∂εk
g(yk) + ∂h(yk) ⊆ ∂εk

(g + h)(yk), and there exists i ≤ k
such that

‖vi‖ = O
(

L0d0

k3/2

)

, εi = O
(

L0d
2
0

k3

)

;

d) if σ < 1, then for every k ≥ 1, wk ∈ (∇g + ∂h)(yk), and there exists i ≤ k such that

‖wi‖ = O
(

L0d0

k3/2

)

.

17

Proof. Statements a) and b) follow from Proposition 5.1, Theorem 3.8 with λk = λ := σ2/L0 and
Theorem 3.10. Statement c) follows from Proposition 5.1, Lemma 3.7(a), Proposition 3.9 and the
fact that λk = λ := σ2/L0. The inclusion in d) follows from the first inclusion in (46) with k = k− 1
and the definition of wk. Noting that yk ∈ dom ∂h ⊆ Ω and x′

k−1 = PΩ(x̃k−1) ∈ Ω, it follows from
the definition of wk, Assumption A.3, the non-expansiveness of PΩ(·) and the last equality in (44),
that

‖wk‖ ≤ ‖vk‖+ ‖∇g(yk)−∇g(x′
k−1)‖ ≤ ‖vk‖+ L0‖yk − x̃k−1‖ = (1 + λL0) ‖vk‖.

The complexity estimation in d) now follows from the previous inequality, statement c) and the
definition of λ.

It can be shown that Algorithm I for the case in which Ω = E, and hence ∇g is defined and
is L0-Lipschitz continuous on the whole E, reduces to a variant of Nesterov’s method, namely the
FISTA method in [1] (see also Algorithm 2 of [22]). In this case, x′

k = x̃k and only the resolvent
in (41), or equivalently the minimization subproblem (43), has to be computed at iteration k, while
in the general case where Ω 6= E, the projection of x̃k onto Ω must also be computed in order to
determine x′

k.
In summary, we have seen above that the A-HPE contains a variant of Nesterov’s optimal method

for (37) when Ω = E, and also an extension of this variant when Ω 6= E. The example of this section
also shows that the A-HPE is a natural framework for generalizing Nesterov’s acceleration schemes.
We will also see in the next section that it is a suitable framework for designing and analyzing
second-order proximal methods for (37).

6 Application II: Second-order methods

We will now apply the theory outlined in Sections 3 and 4 to analyze an accelerated Newton proximal
extragradient (A-NPE) method, which is an accelerated version of the method presented in [10] for
solving a monotone nonlinear equation.

In this section, our problem of interest is the same as that of Section 5, namely problem (37).
However, in this section, we impose a different set of assumptions on (37), i.e.:

C.1) g and h are proper closed convex functions;

C.2) g is twice-differentiable on a closed convex set Ω such that Ω ⊇ Dom (∂h);

C.3) g′′(·) is L1-Lipschitz continuous on Ω.

Recall that, for the monotone inclusion problem (38), the exact proximal iteration y from x with
stepsize λ > 0 is defined as

y = argminu∈Eg(u) + h(u) +
1

2λ
‖u− x‖2. (47)

The accelerated NPE method of this section is based on inexact solutions of the minimization problem

min
u∈E

gx(u) + h(u) +
1

2λ
‖u− x‖2, (48)

18

where gx is the second-order approximation of g at x with respect to Ω defined as

gx(y) = g(x̄) + 〈∇g(x̄), y − x̄〉+ 1

2
〈y − x̄, g′′(x̄)(y − x̄)〉, x̄ := PΩ(x). (49)

Note that the unique solution yx of (48) together with the vector v := (x− yx)/λ are characterized
by the optimality condition

v ∈ (∇gx + ∂h)(yx), λv + yx − x = 0. (50)

We will consider the following notion of approximate solution for (50), and hence of (48).

Definition 6.1. Given (λ, x) ∈ R++ × E and σ̂ ≥ 0, the triple (y, u, ε) ∈ E × E × R+ is called a
σ̂-approximate Newton solution of (47) at (λ, x) if

u ∈ (∇gx + ∂εh)(y), ‖λu + y − x‖2 + 2λε ≤ σ̂2‖y − x‖2.
We now make a few remarks about the above definition. First, if (yx, v) is the solution pair of

(50), then (yx, v, 0) is a σ̂-approximate Newton solution of (47) at (λ, x) for any σ̂ ≥ 0. Second, if h
is the indicator function δX of a closed convex set X ⊆ E, then exact computation of the pair (yx, v)
boils down to minimizing a strongly convex quadratic function over X.

The next result shows how an approximate Newton solution can be used to generate a triple
(y, v, ε) satisfying (5) with f = g + h.

Lemma 6.2. Suppose that the triple (y, u, ε) ∈ E × E × R+ is a σ̂-approximate Newton solution of
(47) at (λ, x) and define

v = ∇g(y) + u−∇gx(y), σ = σ̂ +
L1

2
λ‖y − x‖.

Then,
v ∈ (∇g + ∂εh)(y) ⊆ ∂ε(g + h)(y), ‖λv + y − x‖2 + 2λε ≤ σ2‖y − x‖2.

Proof. Direct use of the inclusion in Definition 6.1 together with the definition of v shows that

v = u +∇g(y)−∇gx(y) ∈ (∇gx + ∂εh)(y) +∇g(y)−∇gx(y) = (∇g + ∂εh)(y),

which proves the first inclusion. The second inclusion follows trivially from the first one and basic
properties of the ε-subdifferential. Now, Definition 6.1, Assumption C.2 and a basic property of the
ε-subdifferential imply that

y ∈ Dom (∂εh) ⊆ cl (∂h) ⊆ Ω.

Letting x̄ = PΩ(x) and using the above conclusion, Assumption C.3 and (49), we conclude that

‖v − u‖ = ‖∇g(y) −∇gx(y)‖ =
∥

∥∇g(y) − (∇g(x̄) + g′′(x̄)(y − x̄)
∥

∥ ≤ L1

2
‖y − x̄‖2 ≤ L1

2
‖y − x‖2,

where the last inequality follows from the fact that PΩ is a non-expansive map. The above inequality,
the triangle inequality for norms, the definition of σ and the inequality in Definition 6.1 then imply
that

‖λv + y − x‖2 + 2λε ≤ (λ‖v − u‖+ ‖λu + y − x‖)2 + 2λε

≤
(

λ‖v − u‖+
√

‖λu + y − x‖2 + 2λε
)2

≤
(

L1

2
λ‖y − x‖2 + σ̂‖y − x‖

)2

= σ2‖y − x‖2.

19

We now state the accelerated NPE method based on the above notion of approximate solutions.

Accelerated Newton Proximal Extragradient (A-NPE) Method:

0) Let x0, y0 ∈ E, σ̂ ≥ 0 and 0 < σℓ < σu < 1 such that

σ := σ̂ + σu < 1, σℓ(1 + σ̂) < σu(1− σ̂) (51)

be given, and set A0 = 0 and k = 1.

1) If 0 ∈ ∂f(xk), then stop.

2) Otherwise, compute a positive scalar λk+1 and a σ̂-approximate Newton solution
(yk+1, uk+1, εk+1) ∈ E× E× R+ of (47) at (λk+1, x̃k) satisfying

2σℓ

L1
≤ λk+1‖ỹk+1 − x̃k‖ ≤

2σu

L1
, (52)

where

x̃k =
Ak

Ak + ak+1
yk +

ak+1

Ak + ak+1
xk, (53)

ak+1 =
λk+1 +

√

λ2
k+1 + 4λk+1Ak

2
. (54)

3) Choose yk+1 such that f(yk+1) ≤ f(ỹk+1) and let

vk+1 = ∇g(ỹk+1) + uk+1 −∇gx̃k
(ỹk+1), (55)

Ak+1 = Ak + ak+1, (56)

xk+1 = xk − ak+1vk+1.

4) Set k ← k + 1, and go to step 1.

end

Define, for each k,

σk := σ̂ +
L1

2
λk‖ỹk − x̃k−1‖. (57)

We will now establish that the inexact accelerated NPE method can be viewed as a special case
of the large-step A-HPE framework.

Proposition 6.3. Let σ be defined as in (51). Then, for each k ≥ 0, σk+1 ≤ σ and

vk+1 ∈
(

∇g + ∂εk+1
h
)

(ỹk+1) ⊆ ∂εk+1
(g + h)(ỹk+1), (58)

‖λk+1vk+1 + ỹk+1 − x̃k‖2 + 2λk+1εk+1 ≤ σ2
k+1‖ỹk+1 − x̃k‖2.

As a consequence of (52) and (55), it follows that: the accelerated NPE method is a special case of
the large-step A-HPE framework stated in Section 3 with f = g + h and θ = 2σℓ/L1.

20

Proof. The inequality on σk+1 follows from (52) and the definition of σ in (51). The inclusion
and the other inequality follow from the fact that (yk+1, uk+1, εk+1) is a σ̂-approximate Newton
solution of (47) at (λk+1, x̃k), relation (55) and Lemma 6.2 with (x, λ) = (x̃k, λk+1) and (y, u, ε) =
(yk+1, uk+1, εk+1). The last claim of the proposition follows from its first part and the first inequality
in (52).

As a consequence of the above result, it follows that all the convergence rate and complexity
results derived for the A-HPE and the large-step A-HPE framework hold for A-NPE method.

Theorem 6.4. Let d0 denote the distance of x0 to X∗ and consider the sequences {xk}, {yk}, {ỹk},
{vk} and {εk} generated by the A-NPE method. Then, for every k ≥ 1, the following statements
hold:

a) ‖xk − x∗‖ ≤ d0 and

f(yk)− f∗ ≤
37/2

4
√

2

L1d
3
0

σℓ

√
1− σ2

1

k7/2
, (59)

where σ is given by (51);

b) vk ∈ ∇g(ỹk) + ∂εk
h(ỹk), and there exists i ≤ k such that

‖vi‖ = O
(

L1d
2
0

k3

)

, εi = O
(

L1d
3
0

k9/2

)

. (60)

Proof. This result follows immediately from Theorem 4.1, Proposition 6.3 and the fact that θ =
2σℓ/L1.

Assuming that we have at our disposal a black-box which is able to compute a σ̂-approximate
Newton solution at any given pair (x, λ) ∈ E×ℜ++, the next section describes a line-search procedure,
and corresponding complexity bounds, for finding a stepsize λk+1 > 0, and hence the corresponding
x̃k given by (53)-(54), which, together with a σ̂-approximate Newton solution (yk+1, uk+1, εk+1) at
(λk+1, x̃k) output by the black-box, satisfy condition (52).

We note that a simpler line-search procedure has been described in [11] which accomplishes the
same goal under the simpler assumption that the base point x̃k does not depend on the choice of
λk+1.

7 Line Search

The main goal of this section is to present a line search procedure for implementing step 2 of the
A-NPE method. This section contains four subsections as follows. Subsection 7.1 reviews some
technical results about the resolvent of a maximal monotone operator. Subsection 7.2 introduces
a certain structured monotone inclusion problem of which (38) is a special case, and studies some
properties of the resolvents of maximal monotone operators obtained by linearizing the operator of
this inclusion problem. Subsection 7.3 presents a line search procedure in the more general setting
of the structured monotone inclusion problem. Finally, Subsection 7.4 specializes the line search
procedure of the previous subsection to the context of (38) in order to obtain an implementation of
step 2 of the A-NPE method.

21

7.1 Preliminary results

Let a maximal monotone operator B : E ⇒ E and x ∈ E be given and define for each λ > 0,

yB(λ;x) := (I + λB)−1(x), ϕB(λ;x) := λ‖yB(λ;x)− x‖. (61)

In subsection, we describe some basic properties of ϕB that will be needed in our presentation.
The point yB(λ;x) is the exact proximal point iteration from x with stepsize λ > 0 with respect

to the inclusion 0 ∈ B(x). Note that yB(λ;x) is the unique solution y of the inclusion

0 ∈ (λB + I)(y)− x = λB(y) + y − x, (62)

or equivalently, the y-component of the unique solution (y, v) of the inclusion/equation

v ∈ B(y), λv + y − x = 0. (63)

The following result, whose proof can be found in Lemma 4.3 of [10], describes some basic
properties of the function λ 7→ ϕB(λ;x).

Proposition 7.1. For every x ∈ E, the following statements hold:

a) λ > 0→ ϕB(λ;x) is a continuous function;

b) for every 0 < λ̃ ≤ λ,

λ

λ̃
ϕB(λ̃;x) ≤ ϕB(λ;x) ≤

(

λ

λ̃

)2

ϕB(λ̃;x). (64)

The following definition introduces the notion of an approximate solution of (63).

Definition 7.2. Given σ̂ ≥ 0, the triple (y, v, ε) is said to be a σ̂-approximate solution of (63) at
(λ, x) if

v ∈ Bε(y), ‖λv + y − x‖2 + 2λε ≤ σ̂2‖y − x‖2. (65)

Note that (y, v, ε) = (ỹk+1, vk+1, εk+1), where ỹk+1, vk+1 and εk+1 are as in step 2 of the Large-
step A-HPE Framework, is a σ-approximate solution of (63) with B = ∂f at (λk+1, x̃k), due to
Proposition 2.3(a). Note also that (y, v, ε) = (yk+1, uk+1, εk+1), where yk+1, uk+1 and εk+1 are as in
step 2 of the A-NPE method, is a σ-approximate solution of (63) with B = (∇gx̃k

+∂h) at (λk+1, x̃k),
due to the fact that

(∇gx̃k
+ ∂εh)(y) ⊆ ∂ε(gx̃k

+ h)(y) ⊆ [∂(gx̃k
+ h)]ε(y), ∀y ∈ E.

Note also that the conditions (25) and (52) that appear in these methods are conditions on the
quantity λ‖y − x‖. The following result, whose proof can be found in Lemma 4.1 of [10], shows
that the quantity λ‖y − x‖, where (y, v, ε) is a σ̂-approximate solution of (63) at (λ, x), can be
well-approximated by ϕB(x;λ).

Proposition 7.3. Let x ∈ E, λ > 0 and σ̂ ≥ 0 be given. If (y, v, ε) is a σ̂-approximate solution of
(63) at (λ, x), then

(1− σ̂)λ‖y − x‖ ≤ ϕB(λ;x) ≤ (1 + σ̂)λ‖y − x‖. (66)

22

7.2 Technical Results

In this subsection, we describe the monotone inclusion problem in the context of which the line search
procedure of Subsection 7.3 will be presented. It contains the inclusion (38) as a special case, and
hence any line search procedure described in the context of this inclusion problem will also work in
the setting of (38). We will also establish a number of preliminary results for the associated function
ϕB in this setting.

In this subsection, we consider the monotone inclusion problem

0 ∈ T (x) := (G + H)(x), (67)

where G : Dom G ⊆ E→ E and H : E ⇒ E satisfy

C.1) H is a maximal monotone operator;

C.2) G is monotone and differentiable on a closed convex set Ω such that Dom H ⊆ Ω ⊆ Dom G;

C.3) G′ is L-Lipschitz continuous on Ω.

Observe that the monotone inclusion problem (38) is a special case of (67) in which G = ∇g
and H = ∂h. Also, under the above assumptions, it can be shown using Proposition A.1 of [8] that
T = G + H is a maximal monotone operator.

Recall that, for the monotone inclusion problem (67), the exact proximal iteration from x with
stepsize λ > 0 is the unique solution y of the inclusion

0 ∈ λ(G + H)(y) + y − x, (68)

or equivalently, the y-component of the unique solution (y, v) of the inclusion/equation

v ∈ (G + H)(y), λv + y − x = 0. (69)

For x ∈ E, define the ‘first-order approximation’ of Tx : E ⇒ E of T at x as

Tx(y) = Gx(y) + H(y), ∀y ∈ E,

where Gx : E→ E is the first-order approximation of G at x with respect to Ω given by

Gx(y) = G(PΩ(x)) + G′(PΩ(x))(y − x).

Lemma 7.4. For every x ∈ E and y ∈ Ω,

‖G(y) −Gx(y)‖ ≤ L

2
‖y − x‖2.

Proof. Use the fact that G(y)−Gx(y) is a linearization error, Assumption C.3 and the fact that PΩ

is non-expansive.

Finally, note that when G = ∇g and H = ∂h, where g and h are as in Section 6, then Tx =
∇gx + ∂h. In view of Proposition 7.3 and the fact that the approximate Newton solutions generated
by A-NPE method are approximate solutions of operators of the form Tx = ∇gx + ∂h where the
base point x depends on the choice of the stepsize λ, it is important to understand how the quantity
ϕTx

(λ;x) behaves in terms of λ and x in order to develop a scheme for computing λ = λk+1 satisfying
condition (52). The dependence of ϕTx

(λ;x) in terms of λ follows from Proposition 7.1, while its
dependence in terms of x follows from the next result.

23

Lemma 7.5. Let x, x̃ ∈ E and λ > 0 be given and define B := Tx and B̃ := Tx̃. Then,

|ϕB(λ;x) − ϕB̃(λ; x̃)| ≤ λ‖x̃− x‖+ Lλ2‖x̃− x‖2 + 2Lλ‖x̃− x‖η. (70)

where
η := min

{

ϕB(λ;x) , ϕB̃(λ; x̃)
}

.

As a consequence,

ϕB(λ;x) ≤ λ‖x̃− x‖+ Lλ2‖x̃− x‖2 + (2Lλ‖x̃− x‖+ 1) ϕB̃(λ; x̃).

Proof. To simplify notation, let y = yB(λ;x) and ỹ = yB̃(λ; x̃). Then, there exist unique v ∈ B(y)

and ṽ ∈ B̃(ỹ) such that
λv + y − x = 0, λṽ + ỹ − x̃ = 0. (71)

Clearly,
ϕB(λ;x) = λ2‖v‖, ϕB̃(λ; x̃) = λ2‖ṽ‖. (72)

Let u := v + Gx̃(y) − Gx(y) and note that the fact that v ∈ B(y) and the first identity (71) imply
that

u ∈ B(y) + Gx̃(y)−Gx(y) = Tx(y) + Gx̃(y)−Gx(y) = Gx̃(y) + H(y) = Gx̃(y) = B̃(y)

and
λu + y − x̃ = λv + y − x + (x̃− x) + λ(u− v) = (x̃− x) + λ(u− v).

Subtracting the second equation in (71) from the last identity, we conclude that

λ(u− ṽ) + (y − ỹ) = (x̃− x) + λ(u− v).

Since u ∈ B̃(y) and ṽ ∈ B̃(ỹ), it follows from the monotonicity of B̃ that

〈u− ṽ, y − ỹ〉 ≥ 0,

which together with the previous relation and the triangle inequality for norms imply that

λ‖u− ṽ‖ ≤ ‖x̃− x‖+ λ‖u− v‖,

and hence that
λ‖v − ṽ‖ ≤ ‖x̃− x‖+ 2λ‖u − v‖,

The latter conclusion together with (72) then imply that

|ϕB(λ;x)− ϕB̃(λ; x̃)| = λ2 | ‖v‖ − ‖ṽ‖ | ≤ λ2‖v − ṽ‖ ≤ λ [‖x̃− x‖+ 2λ‖u− v‖] . (73)

Now, letting xp = PΩ(x) and x̃p = PΩ(x̃), and using the definition of u, we have

u− v = Gx̃(y)−Gx(y) = G(x̃p) + G′(x̃p)(y − x̃p)− [G(xp) + G′(xp)(y − xp)]

= [G(x̃p) + G′(x̃p)(xp − x̃p)−G(xp)] + [G′(x̃p)−G′(xp)](y − xp)

24

and hence

λ‖u− v‖ ≤ λ‖G(x̃p) + G′(x̃p)(xp − x̃p)−G(xp)‖+ λ‖G′(x̃p)−G′(xp)‖‖y − xp‖

≤ λL

2
‖x̃p − xp‖2 + λL‖x̃p − xp‖‖y − x̃p‖ ≤

λL

2
‖x̃− x‖2 + Lλ‖x̃− x‖‖y − x‖

=
λL

2
‖x̃− x‖2 + L‖x̃− x‖ϕB(λ;x).

Combining the latter inequality with (73), we then conclude that

|ϕB(λ;x)− ϕB̃(λ; x̃)| ≤ λ
[

‖x̃− x‖+ Lλ‖x̃− x‖2 + 2LϕB(λ;x)‖x̃ − x‖
]

.

This inequality and the symmetric one obtained by interchanging x and x̃ in the latter relation then
imply (70).

The following definition extends the notion of a σ̂-approximate Newton solution to the context
of (69).

Definition 7.6. Given (λ, x) ∈ R++ × E and σ̂ ≥ 0, the triple (y, u, ε) ∈ E × E × R+ is called a
σ̂-approximate Newton solution of (69) at (λ, x) if

u ∈ (Gx + Hε)(y), ‖λu + y − x‖2 + 2λε ≤ σ̂2‖y − x‖2.

Note that when G = ∇g and H = ∂h, where g and h are as in Section 6, then a σ̂-approximate
Newton solution according to Definition 6.1 is σ̂-approximate Newton solution according to Defini-
tion 7.6, due to Proposition 2.3(a).

The following result shows that σ̂-approximate Newton solutions of (69) yield approximate solu-
tions of (69).

Proposition 7.7. Let (λ, x) ∈ R++ × E and a σ̂-approximate Newton solution (y, u, ε) of (69) at
(λ, x) be given, and define v := G(y) + u−Gx(y). Then,

v ∈ (G + Hε)(y) ⊆ T ε(y), ‖λv + y − x‖2 + 2λε ≤
(

σ̂ +
Lλ

2
‖y − x‖

)2

‖y − x‖2 (74)

and

‖v‖ ≤ 1

λ

(

1 + σ̂ +
Lλ

2
‖y − x‖

)

‖y − x‖, ε ≤ σ̂2

2λ
‖y − x‖2. (75)

Proof. The first inclusion and the inequality in (74) have been established in Lemma 3.2 of [11].
The second inclusion in (74) can be easily proved using Assumptions C.1 and C.2, the definition of
T , and b) and c) of Proposition 2.1. Moreover, the inequalities in (75) follow either from (74) or
Definition 7.6.

As a consequence of Proposition 7.7, we can now establish the following result which will be used
to obtain the upper endpoint of the initial bracketing interval used in the line search procedure of
Subsection 7.3 for computing the stepsize λk+1 satisfying (51).

25

Lemma 7.8. Let tolerances ρ̄ > 0 and ε̄ > 0 and scalars σ̂ ≥ 0 and α > 0 be given. Then, for any
scalar

λ ≥ max

{
√

α

ρ̄

(

1 + σ̂ +
Lα

2

)

,

(

σ̂2α2

2ε̄

)
1

3

}

, (76)

vector x ∈ E and σ̂-approximate Newton solution (y, u, ε) of (69) at (λ, x), one of the following
statements hold:

a) either, λ‖y − x‖ > α;

b) or, the vector v := G(y)−Gx(y) + u satisfies

v ∈ (G + Hε)(y), ‖v‖ ≤ ρ̄, ε ≤ ε̄. (77)

Proof. To prove the lemma, let λ satisfying (76) be given and assume that a) does not hold, i.e.,

λ‖y − x‖ ≤ α. (78)

Then, it follows from Proposition 7.7 and relations (76) and (78) that the inclusion in (77) holds and

‖v‖ ≤ 1

λ

(

1 + σ̂ +
Lλ

2
‖y − x‖

)

‖y − x‖ ≤
(

1 + σ̂ +
Lα

2

)

α

λ2
≤ ρ̄,

and

ε ≤ σ̂2‖y − x‖2
2λ

≤ σ̂2α2

2λ3
≤ ε̄.

We now make a few remarks about Lemma 7.8. First, note that condition (77) is a natural
relaxation of an exact solution of (67), where two levels of relaxations are introduced, namely: the
scalar ε ≥ 0 in the enlargement of H and the residual v in place of 0 as in (67). Hence, if a triple
(y, u, ε) satisfying condition (77) is found for some user-supplied tolerance pair (ρ̄, ε̄), then y can
be considered a sufficiently accurate approximate solution of (67) and the pair (v, ε) provides a
certificate of such accuracy. Second, when the triple (y, u, ε) fails to satisfy b), then (76) describes
how large λ should be chosen so as to guarantee that the quantity λ‖y − x‖ be larger than a given
scalar α > 0.

The following result describes the idea for obtaining the lower endpoint of the initial bracket
interval for the line search procedure of Subsection 7.3.

Lemma 7.9. Let x0
− ∈ E, (λ0

+, x0
+) ∈ R++ × E and a σ̂-approximate Newton solution (y0

+, u0
+, ε0

+)
of (69) at (λ0

+, x0
+) be given. Then, for any scalar α such that

0 < α ≤ λ0
+‖y0

+ − x0
+‖, (79)

scalar λ0
− > 0 such that

λ0
− ≤

α(1− σ̂)λ0
+

(1 + σ̂)(1 + 2Lθ0
+)λ0

+‖y0
+ − x0

+‖+ θ0
+ + L(θ0

+)2
, θ0

+ := λ0
+‖x0

+ − x0
−‖, (80)

and σ̂-approximate Newton solution (y0
−, u0

−, ε0
−) of (69) at (x0

−, λ0
−), we have

(1 + σ̂)λ0
− ≤ (1− σ̂)λ0

+, (81)

λ0
−‖y0

− − x0
−‖ ≤ α. (82)

26

Proof. First, note that (81) follows immediately from (79) and (80). Let B− := Tx0
−

and B+ = Tx0
+
.

Since a σ̂-approximate Newton solution of (69) at (λ0
−, x0

−) is obviously a σ̂-approximate solution of
(63) with B = B−, it follows from Lemma 7.3 with B = B− that

λ0
−‖y0

− − x0
−‖ ≤

ϕB−
(λ0

−;x0
−)

1− σ̂
≤ λ0

−ϕB−
(λ0

+;x0
−)

(1− σ̂)λ0
+

,

where the last inequality is due to (81) and Proposition 7.1(b) with B = B−, λ̃ = λ0
− and λ = λ0

+.
Also, Lemma 7.5 with λ = λ0

+, x = x0
− and x̃ = x0

+, and the definition of θ0
+ in (80) imply that

ϕB−
(λ0

+;x0
−) ≤

(

1 + 2Lθ0
+

)

ϕB+
(λ0

+;x0
+) + θ0

+ + L(θ0
+)2

≤
(

1 + 2Lθ0
+

)

(1 + σ̂)λ0
+‖y0

+ − x0
+‖+ θ0

+ + L(θ0
+)2 ≤ α(1 − σ̂)λ0

+

λ0
−

,

where the last inequality follows from the definition of λ0
−. Combining the above two inequalities,

we then conclude that (82) holds.

7.3 Line search problem and procedure

In this subsection, we describe a line search procedure whose goal is to implement step 2 of the A-
NPE method. For the sake of generality and simplicity of notation, it will be described in a setting
slightly more general than that of (37), or equivalently (38). Namely, we will consider the setting of
the inclusion problem (67) with G and H satisfying conditions C.1 to C.3.

Throughout this subsection, we assume that we have at our disposal the following Newton Black-
Box.

Newton Black-Box: For any given σ ≥ 0 and (λ, x) ∈ R++ × E, it computes a σ-approximate
Newton solution (y, u, ε) of (69) at (λ, x).

With the aid of the above black-box, the goal of the line search procedure described in this
subsection is to solve the following line search problem.

Line Search Problem: Given tolerances σ̂ ≥ 0, ρ̄ > 0 and ε̄ > 0, bounds α+ > α− > 0 and a
continuous curve x : [0,∞)→ E satisfying the property that, for some constant M0 ≥ 0 and M1 ≥ 0,

‖x(s)− x(t)‖ ≤ min

{

M0

t
(s− t) , M1‖x(s)− x(0)‖

}

, ∀s ≥ t > 0, (83)

the problem is to find a stepsize λ > 0 and a σ̂-approximate Newton solution (yλ, uλ, ελ) of (69) at
(λ, x(λ)) such that

a) either λ‖yλ − x(λ)‖ ∈ [α−, α+], or;

b) the triple (y, v, ε) = (yλ, vλ, ελ) satisfies (77), where

vλ := G(yλ) + uλ −Gx(λ)(yλ).

We now state the procedure for solving the above line-search problem.

27

Bracketing/Bisection Procedure:

Input: Curve x : [0,∞) → E satisfying (83), tolerances σ̂ ≥ 0, ρ̄ > 0 and ε̄ > 0, and bounds
α+ > α− > 0 satisfying

α−(1 + σ̂) < α+(1− σ̂); (84)

Output: stepsize λ > 0 and a σ̂-approximate Newton solution (yλ, uλ, ελ of (69) at (λ, x(λ))
such that either a) or b) above holds.

1) (Bracketing stage) compute

λ0
+ := max

{
√

α+

ρ̄

(

1 + σ̂ +
Lα+

2

)

,

(

σ̂2α2
+

2ε̄

)

1

3

}

, (85)

and set x0
+ = x(λ0

+); use the Newton Black-Box to compute a σ̂-approximate Newton solution
(y0

+, u0
+, ε0

+) of (69) at (λ0
+, x0

+), and set

v0
+ = G(y0

+)−Gx0
+
(y0

+) + u0
+;

1.a) if (v0
+, ε0

+) satisfies ‖v0
+‖ ≤ ρ̄ and ε0

+ ≤ ε̄, then output λ = λ0
+ and (yλ, uλ, ελ =

(y0
+, u0

+, ε0
+), and stop;

1.b) otherwise, compute γ0 := M1λ
0
+‖x0

+ − x(0)‖ and

λ0
− :=

(1− σ̂)α−λ0
+

(1 + σ̂)(1 + 2Lγ0)λ0
+‖y0

+ − x0
+‖+ γ0 + L(γ0)2

, x0
− := x(λ0

−), (86)

and use the Newton Black-Box to compute a σ̂-approximate Newton solution (y0
−, u0

−, ε0
−)

of (69) at (λ0
−, x0

−).

2) (Bisection stage) set λ− = λ0
− and λ+ = λ0

+;

2.a) set λ = (λ− + λ+)/2, use the Newton Black-Box to compute a σ̂-approximate Newton
solution (yλ, uλ, ελ) of (69) at (λ, x(λ)), and set

vλ := G(yλ) + uλ −Gx(λ)(yλ);

if (vλ, ελ) satisfies ‖vλ‖ ≤ ρ̄ and ελ ≤ ε̄, then output λ and (yλ, uλ, ελ), and stop;

2.b) if λ‖yλ − x(λ)‖ ∈ [α−, α+], then output λ and (y, u, ε), and stop;

2.c) if λ‖yλ − x(λ)‖ > α+, then set λ+ ← λ; else set λ− ← λ;

2.d) go to step 2.a.

end

Proposition 7.10. If the Bracketing/Bisection procedure does not stop during the Bracketing stage,
then at the end of the Bracketing stage, the following conditions hold:

λ0
−‖y0

− − x0
−‖ ≤ α−, λ0

+‖y0
+ − x0

+‖ ≥ α+.

28

Proof. Assume that Bracketing/Bisection procedure does not stop during the Bracketing stage. In
view of Lemma 7.8 with α = α+, λ = λ0

+, x = x0
+, (y, u, ε) = (y0

+, u0
+, ε0

+) and v = v0
+, we conclude

that λ0
+‖y0

+−x0
+‖ > α+. Observe that (84) implies that α− < α+, and hence that λ0

+‖y0
+−x0

+‖ > α−.
Also, the assumption on the curve x : [0,∞)→ E and the definition of γ0 in step 1.b) implies that

λ0
+‖x0

+ − x0
−‖ = λ0

+‖x(λ0
+)− x(λ0

−)‖ ≤ λ0
+‖x(λ0

+)− x(0)‖ = M1λ
0
+‖x0

+ − x(0)‖ = γ0,

and hence that λ0
− given by (86) satisfies the inequality in (80). Hence, using Lemma 7.9 with

α = α−, we conclude that λ0
−‖y0

− − x0
−‖ ≤ α−.

The proof of the following result can be found in Proposition 4.8 of [10].

Proposition 7.11. Assume that x∗ ∈ T−1(0) = (G + H)−1(0) and let x̄, x ∈ E be given. Then,

‖x− (I + λTx̄)−1(x)‖ ≤ ‖x− x∗‖+ λL‖x̄− x∗‖2.

As a consequence, for every x ∈ E, x∗ ∈ T−1(0) and λ > 0, there holds

ϕTx
(λ;x) ≤ λ‖x− x∗‖+ λ2L‖x− x∗‖2.

We are now ready to give the complexity of the Bracketing/Bisection procedure.

Lemma 7.12. The Bracketing/Bisection procedure makes at most

3 + log






C2

0M0λ
0
+







1 + LM0λ
0
+ + 2

(

L + 1
M0λ0

+

)

(1 + σ̂)α−

(1− σ̂)α+ − (1 + σ̂)α−













Black-Box calls, where λ0
+ is as in (85),

C0 :=
(1 + σ̂)(1 + 2Lγ0)

[

λ0
+d(x0

+) + (λ0
+)2Ld(x0

+)2
]

+ γ0 + L(γ0)
2

(1− σ̂)2α−
,

γ0 is defined in step 1.b) of the procedure, and d(x0
+) denotes the distance of x0

+ to T−1(0).

Proof. First observe that the Bracketing/Bisection procedure performs at most two Black-Box call
during the Bracketing stage. Assume that the procedure enters the Bisection stage and let us
estimate the number of Black-Box calls within this stage. Since λ = (λ− + λ+)/2, it follows that,
after j bisection iterations, the scalars λ− and λ+ computed at step 2.c) satisfy

λ+ − λ− =
1

2j
(λ0

+ − λ0
−) ≤ 1

2j
λ0

+, (87)

and hence

j ≤ log

(

λ0
+

λ+ − λ−

)

. (88)

Assume now that the method does not stop at the j-th bisection iteration. Then, the values of λ−

and λ+ at step 2.c) of this iteration satisfy

λ+‖yλ+
− x(λ+)‖ > α+, λ−‖yλ−

− x(λ−)‖ < α−.

29

and let x+ := x(λ+), x− := x(λ−), B+ := Tx+
and B− := Tx−

. Hence, applying Lemma 7.3 twice,
one time with B = B+, x = x+ and (y, u, ε) = (yλ+

, uλ+
, ελ+

), and the other with B = B−, x = x−

and (y, u, ε) = (yλ−
, uλ−

, ελ−
), we conclude that

ϕ+ := ϕB+
(λ+;x+) > (1− σ̂)α+, ϕ− := ϕB−

(λ−;x−) < (1 + σ̂)α−, (89)

On the other hand, it follows from Proposition 7.1(b) with B = B+, x = x+, λ̃ = λ− and λ = λ+,
and Lemma 7.5 with λ = λ−, x = x+ and x̃ = x− that

ϕ+ = ϕB+
(λ+;x+) ≤

(

λ+

λ−

)2

ϕB+
(λ−;x+)

≤
(

λ+

λ−

)2
[

θ + Lθ2 + (1 + 2Lθ)ϕ−))
]

, (90)

where
θ := λ−‖x+ − x−‖ ≤M0(λ+ − λ−), (91)

in view of the property assumed for the curve x(·). Hence, we conclude that

ϕ+ − ϕ− ≤
(

λ+

λ−

)2

θ[1 + Lθ + 2Lϕ−] +

[

(

λ+

λ−

)2

− 1

]

ϕ−

≤
(

λ0
+

λ0
−

)2

M0

(

1 + LM0λ
0
+ + 2Lϕ−

)

(λ+ − λ−) +
(λ+ + λ−)

(λ−)2
ϕ−(λ+ − λ−)

≤
(

λ0
+

λ0
−

)2

M0

(

1 + LM0λ
0
+ + 2Lϕ−

)

(λ+ − λ−) + 2
λ0

+

(λ0
−)2

ϕ−(λ+ − λ−)

= (λ+ − λ−)

(

λ0
+

λ0
−

)2

M0

[

1 + LM0λ
0
+ + 2

(

L +
1

M0λ
0
+

)

ϕ−

]

.

Combining the latter inequality with (89), we then conclude that

1

λ+ − λ−

≤
(

λ0
+

λ0
−

)2

M0







1 + LM0λ
0
+ + 2

(

L + 1
M0λ0

+

)

(1 + σ̂)α−

(1− σ̂)α+ − (1 + σ̂)α−






. (92)

We will now estimate the ratio λ0
+/λ0

−. First note that Lemma 7.3 with λ = λ0
+, x = x0

+, B = Tx0
+

and (y, u, ε) = (y0
+, u0

+, ε0
+) and Proposition 7.11 with λ = λ0

+ and x = x0
+ imply that

λ0
+‖y0

+ − x0
+‖ ≤

ϕT
x0
+

(λ0
+;x0

+)

1− σ̂
≤ λ0

+d(x0
+) + (λ0

+)2Ld(x0
+)2

1− σ̂
.

The latter inequality together with relations (85) and (80) then imply that

λ0
+

λ0
−

=
(1 + σ̂)(1 + 2Lγ0)λ

0
+‖y0

+ − x0
+‖+ γ0 + L(γ0)

2

(1− σ̂)α−

≤ (1 + σ̂)(1 + 2Lγ0)
[

λ0
+d(x0

+) + (λ0
+)2Ld(x0

+)2
]

+ γ0 + L(γ0)
2

(1− σ̂)2α−

The result now follows from the above inequality and relations (88) and (92).

30

7.4 Complexity of implementing step 2 of the A-NPE method

In this subsection, we study a special case of the line search procedure introduced in the previous
subsection whose goal is to implement step 2 of the A-NPE method. We will also derive its compu-
tational complexity, and as a by-product the overall complexity of the A-NPE method, in terms of
number of calls to a given optimization Newton Black-Box.

Throughout this subsection without further mentioning, we consider only the version of the A-
NPE method in which σ < 1 and yk+1 = ỹk+1 for every k ≥ 0, and hence the sequence {yk} is
bounded due to Theorem 3.10.

We assume throughout this subsection that an optimization Newton Black-Box for (37) is avail-
able which, given σ̂ and (λ, x) ∈ R++ × E, finds a σ̂-approximate Newton optimal solution for (37)
at (λ, x), i.e., a triple (y, u, ε) ∈ E× E× R+ such that

u ∈ (∇gx + ∂εh)(y), ‖λu + y − x‖2 + 2λε ≤ σ̂2‖y − x‖2. (93)

Clearly, by Proposition 2.3(a), it follows that a σ̂-approximate Newton optimal solution for (47) is
a σ̂-approximate Newton solution for (50) in the sense of Definition 7.6, and hence an optimization
Newton Black-Box for (47) is a Newton Black-Box for (50) in the sense of Subsection 7.3. Note
also that the triple (ỹk+1, uk+1, εk+1) as in Step 2 of the A-NPE method is a σ̂-approximate Newton
solution for (47) at (λk+1, x̃k).

Consider the curve

x̃k(λ) =
Ak

Ak + ak+1(λ)
yk +

ak+1(λ)

Ak + ak+1(λ)
xk. (94)

where

ak+1(λ) =
λ +

√

λ2 + 4Akλ

2
, (95)

In order to compute the stepsize λk+1, and the triple (ỹk+1, uk+1, εk+1) as in Step 2 of the A-
NPE method, the strategy used is based on invoking the line search procedure described in the
previous subsection to look for a stepsize λk+1 > 0 and a σ̂-approximate Newton optimal solution
(ỹk+1, uk+1, εk+1) at (λk+1, x̃k(λk+1)) such that

2σℓ

L
≤ λk+1‖ỹk+1 − x̃k(λk+1)‖ ≤

2σu

L
. (96)

and then setting (ak+1, x̃k) = (ak+1(λk+1), x̃k(λk+1)). More precisely, with the aid of the opti-
mization Newton Black-Box at our disposal, we can use the Bracketing/Bisection Procedure of the
previous subsection with tolerances σ̂ ≥ 0, ρ̄ > 0 and ε̄ > 0, curve x(·) = x̃k(·), and bounds
α− = 2σℓ/L, α+ = 2σu/L to compute a stepsize λk+1 > 0 and a σ̂-approximate Newton optimal
solution (ỹk+1, uk+1, εk+1) at (λk+1, x̃k(λk+1)) such that

a) either, the residual pair (vk+1, εk+1) (see relation (58)) with vk+1 given by (55) satisfy ‖vk+1‖ ≤
ρ̄ and εk+1 ≤ ε̄;

b) or relation (96) holds, and as a consequence, λk+1 and (ỹk+1, uk+1, εk+1) fulfil the conditions
of step 2 of the A-NPE method;

The following result shows that the curve (94) satisfies property (83) as required by the Brack-
eting/Bisection procedure.

31

Lemma 7.13. The curve x̃k(·), where x̃k(·) is given by (94), satisfies (83) with

M0 := 2

(

1√
1− σ2

+ 1

)

d0, M1 = 1. (97)

Proof. To show the lemma, let s > t > 0 be given. Define

τ(λ) =
ak+1(λ)

Ak + ak+1(λ)
, ∀λ > 0,

where ak+1(λ) is given by (95), and note that τ(·) is an increasing function. In view of (94), we have

x̃k(λ) = yk + τ(λ)(xk − yk), ∀λ > 0.

and hence
‖x̃k(s)− x̃k(t)‖ = (τ(s)− τ(t))‖xk − yk‖. (98)

Since τ(·) is increasing and τ(0) = 0, we conclude

‖x̃k(s)− x̃k(t)‖ ≤ ‖x̃k(s)− x̃k(0)‖. (99)

Clearly (95) implies that a = ak+1(λ) satisfies the second-order equation a2 − λk+1a− λk+1Ak = 0,
and hence

τ(λ) =
ak+1(λ)

Ak + ak+1(λ)
=

λ

ak+1(λ)
=

2

1 +
√

1 + 4Akλ−1
,

where the last equality is due to (95). Differentiating the last expression for τ(λ), we conclude that

τ̇(λ) =
4Akλ

−2

(

1 +
√

1 + 4Akλ−1
)2√

1 + 4Akλ−1

≤ 1

λ
, ∀λ > 0.

Hence, by the mean value theorem, we have

τ(s)− τ(t) = τ̇(ξ)(s − t) ≤ 1

ξ
(s− t) ≤ 1

t
(s− t),

for some ξ ∈ (t, s). Combining the last inequality with (98), we then obtain

‖x̃k(s)− x̃k(t)‖ =
‖xk − yk‖

t
(s− t).

Now, Theorem 3.6, Theorem 3.10, and the triangle inequality for norms, imply that

‖xk − yk‖ ≤ 2

(

1√
1− σ2

+ 1

)

d0.

The latter two inequalities together with (99) then imply that the curve x̃(·) = x̃k(·) satisfies (83)
with M0 and M1 given by (97).

Viewing σℓ, σu, σ̂ as universal constants, the following result establishes the complexity of the
line search procedure when used to implement step 2 of the A-NPE method.

32

Theorem 7.14. Let ρ̄ > 0 and ε̄ > 0 be given and suppose that the Bracketing/Bisection procedure
is used to implement step 2 of the A-NPE method as explained in the paragraphs preceding Lemma
7.13. Then, the procedure performs at most

O
(

max
{

log ε̄−1, log ρ̄−1, log d0, log L, log L−1
})

. (100)

optimization Newton Black-Box calls to compute a stepsize λk+1 > 0 and a σ̂-approximate New-
ton optimal solution (ỹk+1, uk+1, εk+1) at (λk+1, x̃k(λk+1)) such that one of the statements a) or b)
preceding Lemma 7.13 holds.

Proof. Viewing σℓ, σu, σ̂ as universal constants, it follows from the definition of γ0 in step 1.b of
Bracketing/Bisection procedure and Lemmas 7.12 and 7.13 that the latter procedure when used to
implement step 2 of the A-NPE method will find a stepsize λk+1 > 0 and a σ̂-approximate Newton
optimal solution (ỹk+1, uk+1, εk+1) at (λk+1, x̃k(λk+1)) such that either statements a) or b) holds in
at most

O
(

max
{

log λ0
+ , log d0 , log L , log d(x̃k(λ

0
+)) , log

∥

∥x̃k(λ
0
+)− yk

∥

∥

})

.

optimization Newton Black-Box calls, where d(x̃k(λ0
+)) denotes the distance of x̃k(λ

0
+) to X∗. Now,

using (85), the fact that α+ = 2σu/L, Theorems 3.6 and 3.10 and the triangle inequality for norms,
we easily see that the above bound is majorized by (100).

Assuming that an upper bound on d0 is known, the following result describes the computational
complexity (in terms of number of optimization Newton Black-Box calls) for the A-NPE method to
find an iterate yk such that f(yk)− f∗ ≤ δ, for some given tolerance δ > 0.

Theorem 7.15. Assume that an upper bound D0 on the distance d0 from x0 to X∗ is known and
let tolerance δ > 0 be given. Consider the A-NPE method with step 2 implemented as explained in
this subsection with tolerances ρ̄ and ε̄ chosen as ρ̄ = δ/(2D0) and ε̄ = δ/2. Then, an iterate yk

satisfying f(yk)− f∗ ≤ δ will be found in no more than

O
(

(

L1d
3
0

δ

)2/7
)

iterations of this method, making no more than

O
(

(

L1d
3
0

δ

)2/7

max
{

log δ−1, log L, log L−1, log D0

}

)

calls to the optimization Newton Black-Box.

Proof. This result follows immediately from Theorems 6.4(a) and 7.14.

The following result gives the complexity of computing of an approximate solution of (38).

Theorem 7.16. Consider the A-NPE method with step 2 implemented as explained in this subsection
with given tolerances ρ̄ > 0 and ε̄ > 0. Then, the A-NPE method finds a triple (ỹk, vk, εk) satisfying

vk ∈ ∇g(ỹk) + ∂εk
h(ỹk), ‖vk‖ ≤ ρ̄, εk ≤ ε̄

33

in at most

O
(

d
2/3
0 max

{

(

L1

ρ̄

)1/3

,

(

L1

ε̄

)2/9
})

iterations of this method, making no more than

O
(

d
2/3
0 max

{

log ρ̄−1, log ε̄−1, log L, log L−1, log d0

}

max

{

(

L1

ρ̄

)1/3

,

(

L1

ε̄

)2/9
})

calls to the optimization Newton Black-Box.

Proof. This result follows immediately from Theorems 6.4(b) and 7.14.

8 Concluding remarks

In this section, we discuss the relationship between the A-HPE framework and the accelerated inexact
proximal point method studied in [4, 17]. First, although they are presented with different notation,
it can be shown that the exact method in [4] and the exact case of the A-HPE framework, namely
the one in which σ = 0 in (5), coincide. The other remarks below concern the inexact case. Second,
instead of using the relative error condition (5), they assume that one of the (or both) residuals
rk+1 := λk+1vk+1 + ỹk+1 − x̃k and εk+1 are O(1/kp), for some scalar p > 0. Hence, their method is
based on an absolute error asymptotic condition rather than a relative error condition such as the
one, namely (5), used by the A-HPE Framework. Third, aside from the use of different error criteria,
all steps of the A-HPE and the one in [4, 17] are the same with the exception of the update formula
(9). More specifically, instead of (9), they use the formula

xk+1 = xk −
ak+1

λk+1
(ỹk+1 − x̃k),

and also assume that ỹk+1 = yk+1. Clearly, when rk+1 6= 0, the two aforementioned formulae, and
hence the respective methods, differ. We believe that the use of the relative error condition and
the update formula (9) play an important role in making the A-HPE Framework a powerful tool
in the design and/or analysis of accelerated methods for convex optimization, as illustrated by the
discussion in Sections 5 and 6.

A Auxiliary technical results

First we state a technical result which proof is simple, and hence is omitted.

Lemma A.1. If C > 0, t1, . . . , tk > 0 and α1, . . . , αk > 0 are such that

k
∑

j=1

αj

t6j
≤ C,

then
k
∑

j=1

tj ≥
1

C1/6





k
∑

j=1

α
1/7
j





7/6

.

34

Lemma A.2. For any C ≥ 0, α1, . . . , αk ∈ R and β1, . . . , βk > 0, there holds

max







k
∑

j=0

αjsj :

k
∑

j=0

βjs
2
j ≤ C







=

√

√

√

√C

k
∑

j=0

α2
j

βj
.

Proof. The lemma holds trivially when C = 0. Suppose then that C > 0. Consider the maximization
problem and associated Lagrangean

max







k
∑

j=0

αjsj :

k
∑

j=0

βjs
2
j ≤ C







, L(s, µ) =

n
∑

j=0

αjsj +
µ

2



C −
k
∑

j=0

βjs
2
j



 .

Since the feasible set of this problem is a compact convex set and the objective function is linear,
there exists a solution to this problem, say s∗, in the boundary of the feasible set, that is

k
∑

j=0

βj(s
∗
j)

2 = C. (101)

Moreover, since 0 is an interior point of the feasible set, there exists µ∗ ≥ 0 such that

∇sL(s∗, µ∗) = 0,

whence
µ∗βjs

∗
j = αj, j = 0, . . . , n. (102)

If µ∗ = 0, then α1 = · · · = αn = 0, and the lemma holds trivially. So, assume that µ∗ > 0.
Multiplying each of the n + 1 equalities in (102) by the corresponding s∗j and adding the resulting
equalities, we conclude that

µ∗
n
∑

j=0

βj(s
∗
j)

2 =
n
∑

j=0

αjs
∗
j ,

which, combined with (101) yields

µ∗C =
n
∑

j=0

αjs
∗
j .

Multiplying each of the n+1 equalities in (102) by the corresponding αj/βj and adding the resulting
equalities, we conclude that

µ∗

n
∑

j=0

αjs
∗
j =

n
∑

j=0

α2
j/βj ,

To end the proof, multiply the above equality by C and use the previous equality.

References

[1] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci., 2(1):183–202, 2009.

35

[2] Regina S. Burachik, Alfredo N. Iusem, and B. F. Svaiter. Enlargement of monotone operators
with applications to variational inequalities. Set-Valued Anal., 5(2):159–180, 1997.

[3] Regina Sandra Burachik and B. F. Svaiter. ǫ-enlargements of maximal monotone operators in
Banach spaces. Set-Valued Anal., 7(2):117–132, 1999.

[4] Osman Güler. New proximal point algorithms for convex minimization. SIAM J. Optim.,
2(4):649–664, 1992.

[5] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Convex analysis and minimization algo-
rithms. II, volume 306 of Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences]. Springer-Verlag, Berlin, 1993. Advanced theory and bundle
methods.

[6] B. Martinet. Régularisation d’inéquations variationnelles par approximations successives. Rev.
Française Informat. Recherche Opérationnelle, 4(Ser. R-3):154–158, 1970.

[7] J.-E. Mart́ınez-Legaz and B. F. Svaiter. Monotone operators representable by l.s.c. convex
functions. Set-Valued Anal., 13(1):21–46, 2005.

[8] R. D. C. Monteiro and B. F. Svaiter. Complexity of variants of Tseng’s modified F-B splitting
and Korpelevich’s methods for hemivariational inequalities with applications to saddle point
and convex optimization problems. SIAM Journal on Optimization, 21:1688–1720, 2010.

[9] R. D. C. Monteiro and B. F. Svaiter. Iteration-complexity of block-decomposition algorithms
and the alternating minimization augmented lagrangian method. Manuscript, School of Indus-
trial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0205, USA,
August 2010.

[10] R. D. C. Monteiro and B. F. Svaiter. On the complexity of the hybrid proximal extragradient
method for the iterates and the ergodic mean. SIAM Journal on Optimization, 20:2755–2787,
2010.

[11] R. D. C. Monteiro and B. F. Svaiter. Iteration-complexity of a Newton proximal extragradient
method for monotone variational inequalities and inclusion problems. Manuscript, School of
Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0205,
USA, April 2011.

[12] Y. E. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming,
103:127–152, 2005.

[13] Yu. Nesterov. Accelerating the cubic regularization of Newton’s method on convex problems.
Math. Program., 112(1, Ser. B):159–181, 2008.

[14] R. T. Rockafellar. On the maximal monotonicity of subdifferential mappings. Pacific J. Math.,
33:209–216, 1970.

[15] R. T. Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm in
convex programming. Math. Oper. Res., 1(2):97–116, 1976.

36

[16] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control
Optimization, 14(5):877–898, 1976.

[17] S. Salzo and S. Villa. Inexact and accelerated proximal point algorithms. J. Convex Anal.,
19(4), 2012.

[18] M. V. Solodov and B. F. Svaiter. A hybrid approximate extragradient-proximal point algorithm
using the enlargement of a maximal monotone operator. Set-Valued Anal., 7(4):323–345, 1999.

[19] M. V. Solodov and B. F. Svaiter. A hybrid projection-proximal point algorithm. J. Convex
Anal., 6(1):59–70, 1999.

[20] M. V. Solodov and B. F. Svaiter. An inexact hybrid generalized proximal point algorithm and
some new results on the theory of Bregman functions. Math. Oper. Res., 25(2):214–230, 2000.

[21] M. V. Solodov and B. F. Svaiter. A unified framework for some inexact proximal point algo-
rithms. Numer. Funct. Anal. Optim., 22(7-8):1013–1035, 2001.

[22] P Tseng. On accelerated proximal gradient methods for convex-concave optimization. Technical
report, Department of Mathematics, University of Washington, Washington, 98195, USA, 2008.

37

