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Abstract. In this paper we analyze the iteration complexity of the hybrid proximal extragradient
(HPE) method for finding a zero of a maximal monotone operator recently proposed by Solodov and
Svaiter. One of the key points of our analysis is the use of new termination criteria based on the
ε-enlargement of a maximal monotone operator. The advantage of using these termination criteria
is that their definition do not depend on the boundedness of the domain of the operator. We then
show that Korpelevich’s extragradient method for solving monotone variational inequalities falls in
the framework of the HPE method. As a consequence, using the complexity analysis of the HPE
method, we obtain new complexity bounds for Korpelevich’s extragradient method which do not
require the feasible set to be bounded, as assumed in a recent paper by Nemirovski. Another feature
of our analysis is that the derived iteration-complexity bounds are proportional to the distance of
the initial point to the solution set. The HPE framework is also used to obtain the first iteration-
complexity result for Tseng’s modified forward-backward splitting method for finding a zero of the
sum of a monotone Lipschitz continuous map with an arbitrary maximal monotone operator whose
resolvent is assumed to be easily computable. Also using the framework of the HPE method, we
study the complexity of a variant of a Newton-type extragradient algorithm proposed by Solodov
and Svaiter for finding a zero of a smooth monotone function with Lipschitz continuous Jacobian.
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1. Introduction. A broad class of optimization, saddle point, equilibrium, and
variational inequality (VI) problems can be posed as the monotone inclusion problem,
namely: finding x such that 0 ∈ T (x), where T is a maximal monotone point-to-set
operator. The proximal point method, proposed by Rockafellar [21], is a classical iter-
ative scheme for solving the monotone inclusion problem which generates a sequence
{xk} according to

xk = (λkT + I)−1(xk−1).

It has been used as a generic framework for the design and analysis of several im-
plementable algorithms. The classical inexact version of the proximal point method
allows for the presence of a sequence of summable errors in the above iteration, i.e.,

‖xk − (λkT + I)−1(xk−1)‖ ≤ ek,

∞∑
k=1

ek <∞.
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Convergence results under the above error condition have been establish in [21] and
have been used in the convergence analysis of other methods that can be recast in the
above framework.

New inexact versions of the proximal point method, with relative error criteria
were proposed by Solodov and Svaiter [22, 23, 25, 24]. In this paper, we will concern
ourselves with one of these inexact versions of the proximal point method introduced
in [22], namely the hybrid proximal extragradient (HPE) method. In contrast to
[22], which studies only global convergence of the HPE method, we establish in this
paper its iteration complexity. One of the key points of our analysis is the use of a
new termination criterion based on the ε-enlargement of T introduced in [2]. More
specifically, given ε > 0, the algorithm terminates whenever it finds a point ȳ and a
pair (v̄, ε̄) such that

(1) v̄ ∈ T ε̄(ȳ), max{‖v̄‖, ε̄} ≤ ε.

For each x, T ε(x) is an outer approximation of T (x) which coincides with T (x) when
ε = 0. Hence, for ε = 0 the above termination criterion reduces to the condition
that 0 ∈ T (x). The ε-enlargement of maximal monotone operators is a generalization
of the ε-subgradient enlargement of the subdifferential of a convex function. The
advantage of using this termination criterion is that it does not require boundedness
of the domain of T . Another feature of our analysis is that the derived iteration
complexity bounds are proportional to the distance of the initial point to the solution
set. Results of this kind are known for minimization of convex functions but, to
the best our knowledge, are new in the context of monotone VI problems (see, for
example, [19]).

We then establish a new result showing that Korpelevich’s extragradient method
for solving VI problems is a special case of the HPE method. This allows us to
obtain an O(d0/ε) iteration complexity for termination criterion (1), where d0 is
the distance of the initial iterate to the solution set. Since, together with every
iterate ȳk, the method also generates a pair (v̄k, ε̄k) so that (1) can be checked, there
is no need to assume the feasible set to be bounded or to estimate d0. We also
translate (and sometimes strengthen) the above complexity results to the context
of monotone VI problems with linear operators and/or bounded feasible sets, and
monotone complementarity problems.

The HPE framework is also used to obtain the first iteration-complexity result
for Tseng’s modified forward-backward splitting (MF-BS) method [27] for finding a
zero of the sum of a monotone Lipschitz continuous map with an arbitrary maximal
monotone operator whose resolvent is assumed to be easily computable.

Also using the framework of the HPE method, we study the complexity of a
variant of a Newton-type extragradient algorithm proposed in [22] for finding a zero
of a smooth monotone function with Lipschitz continuous Jacobian.

Previous papers dealing with iteration-complexity analysis of methods for VIs
are as follows. In [14], a unifying geometric framework based on the ellipsoid method
ideas is presented for VIs with bounded feasible sets and co-coercive (also know as
strong-f-monotone) maps. Bundle-type methods for solving VIs with bounded fea-
sible sets and/or bounded variation maps are studied in [6, 12]. Nemirovski [15]
studies the complexity of Korpelevich’s extragradient method under the assumption
that the feasible set is bounded and an upper bound of its diameter is known. Nes-
terov [18] proposes a new dual extrapolation algorithm for solving VI problems whose
termination depends on the guess of a ball centered at the initial iterate. Finally,
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asymptotic convergence rate results for extragradient-type methods are thoroughly
discussed in [7, 10, 26].

This paper is organized as follows. In section 2, we review the definition and
some of the basic properties of the ε-enlargement of a point-to-set operator and state
some new results about the ε-enlargement of a monotone Lipschitz continuous map.
Section 3 introduces two notions of approximate solutions for the VI problem. It
also discusses how the monotone VI problem can be viewed as a special instance of
the monotone inclusion problem and interprets the above two notions of approximate
solutions in terms of criterion (1). The HPE method is reviewed in section 4, where
its general iteration complexity is also derived. In section 5, we derive iteration-
complexity results for Korpelevich’s extragradient method to obtain different types of
approximate solutions, even for the case of unbounded feasible sets. In subsections 5.1
and 5.2, we obtain other complexity results for Korpelevich’s method under different
assumptions on the function (e.g., linearity) and the feasible set (e.g., conic and/or
bounded set) of the VI problem. In section 6, we consider a particular version of
Tseng’s (MF-BS) method [27], review the result of [22] that it can be viewed as a
particular case of the HPE method, and use this fact to derive, for the first time, its
iteration complexities for finding different types of approximate solutions. In section 7,
we study the iteration complexity of a Newton-type proximal extragradient method
for solving a monotone smooth nonlinear equation. In section 8, we conclude our main
presentation by providing some concluding remarks. Finally, we review in Appendix A
other notions of error measures and discuss their relationship with the error measures
used in the main presentation of the paper.

Notation. Throughout this paper, we let Rn denote an n-dimensional space with
inner product and induced norm denoted by 〈·, ·〉 and ‖ · ‖, respectively.

2. The ε-enlargement. Since our complexity analysis is based on the ε-en-
largement of a monotone operator, in this section we give its definition and review
some of its properties. We also derive new results for the ε-enlargement of Lipschitz
continuous monotone operators.

A point-to-set operator T : Rn ⇒ R
n is a relation T ⊂ R

n × R
n and

T (x) = {v ∈ R
n | (x, v) ∈ T }.

Alternatively, one can consider T as a multivalued function of Rn into the family
℘(Rn) = 2(R

n) of subsets of Rn. Regardless of the approach, it is typical to identify
T with its graph,

Gr(T ) = {(x, v) ∈ R
n × R

n | v ∈ T (x)}.
An operator T : Rn ⇒ R

n is monotone if

〈v − ṽ, x− x̃〉 ≥ 0 ∀(x, v), (x̃, ṽ) ∈ Gr(T ),

and T is maximal monotone if it is monotone and maximal in the family of monotone
operators with respect to the partial order of inclusion, i.e., S : Rn ⇒ R

n monotone
and Gr(S) ⊃ Gr(T ) imply that S = T .

In [2], Burachik, Iusem, and Svaiter introduced the ε-enlargement of maximal
monotone operators. Here, we extend this concept to a generic point-to-set operator
in R

n. Given T : Rn ⇒ R
n and a scalar ε, define T ε : Rn ⇒ R

n as

(2) T ε(x) = {v ∈ R
n | 〈x− x̃, v − ṽ〉 ≥ −ε ∀x̃ ∈ R

n, ∀ṽ ∈ T (x̃)} ∀x ∈ R
n.
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We now state a few useful properties of the operator T ε that will be needed in
our presentation.

Proposition 2.1. Let T, T ′ : Rn ⇒ R
n. Then,

(a) if ε1 ≤ ε2, then T ε1(x) ⊂ T ε2(x) for every x ∈ R
n;

(b) T ε(x) + (T ′)ε
′
(x) ⊂ (T + T ′)ε+ε′(x) for every x ∈ R

n and ε, ε′ ∈ R;
(c) T is monotone if and only if T ⊂ T 0;
(d) T is maximal monotone if and only if T = T 0;
(e) if T is maximal monotone, {(xk, vk, εk)} ⊂ R

n × R
n × R+ converges to

(x̄, v̄, ε̄), and vk ∈ T εk(xk) for every k, then v̄ ∈ T ε̄(x̄).
Proof. Statements (a), (b), (c), and (d) follow directly from definition (2) and the

definition of (maximal) monotonicity. For a proof of statement (e), see [4].
We now make two remarks about Proposition 2.1. If T is a monotone operator

and ε ≥ 0, it follows from (a) and (d) that T ε(x) ⊃ T (x) for every x ∈ R
n, and hence

that T ε is really an enlargement of T . Moreover, if T is maximal monotone, then (e)
says that T and T ε coincide when ε = 0.

The ε-enlargement of monotone operators is a generalization of the ε-subdifferen-
tial of convex functions. Recall that for a function f : Rn → R̄ and scalar ε ≥ 0, the
ε-subdifferential of f is the operator ∂εf : Rn ⇒ R

n defined as

∂εf(x) = {v | f(y) ≥ f(x) + 〈y − x, v〉 − ε ∀y ∈ R
n} ∀x ∈ R

n.

When ε = 0, the operator ∂εf is simply denoted by ∂f and is referred to as the
subdifferential of f . The operator ∂f is trivially monotone if f is proper. If f is a
proper lower semicontinuous convex function, then ∂f is maximal monotone [20]. The
conjugate of f is the function f∗ : Rn → R̄ defined as

f∗(s) = sup
x∈Rn

〈s, x〉 − f(x) ∀s ∈ R
n.

The following result lists some useful properties about the ε-subdifferential of a
proper convex function.

Proposition 2.2. Let f : Rn → R̄ be a proper convex function. Then,
(a) ∂εf(x) ⊂ (∂f)ε(x) for any ε ≥ 0 and x ∈ R

n;
(b) ∂εf(x) = {v |f(x) + f∗(v) ≤ 〈x, v〉 + ε} for any ε ≥ 0 and x ∈ R

n;
(c) if v ∈ ∂f(x) and f(y) <∞, then v ∈ ∂εf(y), where ε := f(y)− [f(x) + 〈y −

x, v〉].
Note that, due to the definition of T ε, the verification of the inclusion v ∈ T ε(x)

requires checking an infinite number of inequalities. This verification is feasible only
for specially-structured instances of operators T . However, it is possible to compute
points in the graph of T ε using the following weak transportation formula [3].

Theorem 2.3 (see [3, Theorem 2.3]). Suppose that T : Rn ⇒ R
n is maximal

monotone. Let xi, vi ∈ R
n and εi, αi ∈ R+, for i = 1, . . . , k, be such that

vi ∈ T εi(xi), i = 1, . . . , k,
k∑

i=1

αi = 1,

and define

(3) x̄ =

k∑
i=1

αixi, v̄ =

k∑
i=1

αivi, ε̄ =

k∑
i=1

αiεi + αi〈xi − x̄, vi − v̄〉.
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Then, the following statements hold:
(a) ε̄ ≥ 0 and v̄ ∈ T ε̄(x̄).
(b) If, in addition, T = ∂f for some proper lower semicontinuous convex function

f and vi ∈ ∂εif(xi) for i = 1, . . . , k, then v̄ ∈ ∂ε̄f(x̄).
Whenever necessary, we will identify a map F : Ω ⊂ R

n → R
n with the point-to-

set operator F : Rn ⇒ R
n,

F (x) =

{
{F (x)}, x ∈ Ω ,

∅ otherwise.

The following result is an immediate consequence of Theorem 2.3.
Corollary 2.4. Let a monotone map F : Ω ⊂ R

n → R
n, points x1, . . . , xk ∈ R

n,
and nonnegative scalars α1, . . . , αk such that

∑k
i=1 αi = 1 be given. Define

(4) x̄ :=
k∑

i=1

αixi, F̄ :=
k∑

i=1

αiF (xi), ε̄ :=
k∑

i=1

αi〈xi − x̄, F (xi)− F̄ 〉.

Then, ε̄ ≥ 0 and F̄ ∈ F ε̄(x̄).
Proof. First use Zorn’s lemma to conclude that there exist a maximal monotone

T : Rn ⇒ R
n which extends F , that is, F ⊂ T . To end the proof, apply Theorem 2.3

to T and use the assumption that it extends F .
Definition 1. For a constant L ≥ 0, the map F : Ω ⊂ R

m → R
n is said to be

L-Lipschitz continuous on Ω if ‖F (x)− F (x̃)‖ ≤ L‖x− x̃‖ for any x, x̃ ∈ Ω.
Now we are ready to prove that, for a monotone Lipschitz continuous map F

defined on the whole space Rn, the distance between any vector in F ε(x) and F (x) is
proportional to

√
ε.

Proposition 2.5. If F : Rn → R
n is monotone and L-Lipschitz continuous on

R
n, then for every x ∈ R

n, ε ≥ 0, and v ∈ F ε(x),

‖F (x)− v‖ ≤ 2
√
Lε.

Proof. Let v ∈ F ε(x) be given. Then, for any x̃ ∈ R
n, we have

〈F (x) − v, x̃− x〉 = 〈F (x̃)− v, x̃− x〉 − 〈F (x̃)− F (x), x̃ − x〉
≥ −ε− ‖F (x̃)− F (x)‖‖x̃− x‖ ≥ −ε− L‖x̃− x‖2,

where the first inequality follows from the definition of F ε and the Cauchy–Schwarz
inequality, and the second one from the assumption that F : Rn → R

n is L-Lipschitz
continuous. Specializing this inequality for x̃ = x+ (2L)−1p, where p = v − F (x), we
obtain ‖p‖ ≤ 2

√
Lε.

Corollary 2.6. Let a monotone map F : Rn → R
n, points x1, . . . , xk ∈ R

n,
and nonnegative scalars α1, . . . , αk such that

∑k
i=1 αi = 1 be given and define x̄, F̄ ,

and ε̄ as in Corollary 2.4. Then, ε̄ ≥ 0 and

(5) ‖F (x̄)− F̄‖ ≤ 2
√
ε̄ L.

Proof. By Corollary 2.4, we have F̄ ∈ F ε̄(x̄), which together with Proposition 2.5
implies that (5) holds.

We observe that when F is an affine (monotone) map, the left-hand side of (5) is
zero in view of (4). Hence, in this case, the right-hand side of (5) is a poor estimate of



2760 R. D. C. MONTEIRO AND B. F. SVAITER

the error F (x̄)− F̄ . We will now develop a better estimate of this error which depends
on a certain constant which measures the nonlinearity of a monotone map F .

Definition 2. For a monotone map F : Ω ⊂ R
n → R

n, let Nonl(F ; Ω) be the
infimum of all L ≥ 0 such that there exist an L-Lipschitz map G and an affine map
A such that

F = G+A,
with G and A monotone.

Clearly, if F is a monotone affine map, then Nonl(F ;Rn) = 0. Note also that if
F is monotone and L-Lipschitz on Ω, then Nonl(F ; Ω) ≤ L. We note however that
Nonl(F ; Ω) can be much smaller than L for many relevant instances. For example, if
F = G+μA, where μ ≥ 0, A is a monotone affine map and the mapG is monotone and
L-Lipschitz on Ω, then we have Nonl(F ; Ω) ≤ L. Hence, in the latter case, Nonl(F ; Ω)
is bounded by a constant which does not depend on μ while the Lipschitz constant of
F converges to ∞ as μ→∞ if A is not constant.

Proposition 2.7. Let a monotone map F : Rn → R
n, points x1, . . . , xk ∈ R

n,
and nonnegative scalars α1, . . . , αk such that

∑k
i=1 αi = 1 be given and define x̄, F̄ ,

and ε̄ as in Corollary 2.4. Then, ε̄ ≥ 0 and

(6) ‖F (x̄)− F̄‖ ≤ 2
√
ε̄NF ,

where NF := Nonl(F ;Rn).
Proof. Suppose that F = G +A, where G is an L-Lipschitz monotone map and

A is an affine monotone map. Define

(7)
Ḡ =

∑k
i=1 αiG(xi), ε̄g :=

∑k
i=1 αi〈G(xi)− Ḡ, xi − x̄〉,

ā =
∑k

i=1 αiA(xi), ε̄a :=
∑k

i=1 αi〈A(xi)− ā, xi − x̄〉.
Since G is a monotone map, it follows from Corollary 2.6 that ε̄g ≥ 0 and ‖G(x̄)−Ḡ‖ ≤
2
√
ε̄gL. Moreover, since A is affine and monotone, we conclude that ā = A(x̄) and

ε̄a ≥ 0. Also, noting that F̄ = Ḡ+ ā and ε̄ = ε̄a + ε̄g ≥ ε̄g, we conclude that

‖F (x̄)− F̄‖ = ∥∥[G(x̄) +A(x̄)]− [Ḡ+ ā]
∥∥ =

∥∥G(x̄)− Ḡ
∥∥ ≤ 2

√
ε̄gL ≤ 2

√
ε̄L.

Bound (6) now follows by noting that NF is the infimum of all L for G and A as
above.

3. Approximate solutions of the VI problem. In this section, we introduce
two notions of approximate solutions of the VI problem. We then discuss how the
monotone VI problem can be viewed as a special instance of the monotone inclusion
problem and interpret these two notions of approximate solutions for the VI problem
in terms of criterion (1).

We assume throughout this section that the following assumptions hold:
(A.1) F : Ω ⊂ R

n → R
n is a continuous monotone map.

(A.2) X ⊂ Ω is a nonempty closed convex set.
The monotone VI problem with respect to the pair (F,X), denoted by VIP(F,X),

consists of finding x∗ such that

(8) x∗ ∈ X, 〈x− x∗, F (x∗)〉 ≥ 0 ∀x ∈ X.

It is well known that, under the above assumptions, condition (8) is equivalent to

(9) x∗ ∈ X, 〈x − x∗, F (x)〉 ≥ 0 ∀x ∈ X.
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We will now introduce two notions of approximate solutions of the VIP(F,X),
which are essentially relaxations of the characterizations (8) and (9) of an exact solu-
tion of the VI problem.

Definition 3. A point x ∈ X is an ε-strong solution of VIP(F,X) if

(10) θs(x;F ) := sup
y∈X
〈F (x), x − y〉 ≤ ε,

and is an ε-weak solution of VIP(F,X) if

(11) θw(x;F ) := sup
y∈X
〈F (y), x− y〉 ≤ ε.

The functions θs and −θw are referred to as the gap function and the dual gap
function, respectively, in [5]. Note that, due to the monotonicity of F , we have
0 ≤ θw(·;F ) ≤ θs(·;F ), and hence every ε-strong solution is also an ε-weak solution.

For VI problems with unbounded feasible sets, the two above notions of approxi-
mate solutions are too strong. For example, if X = R

n, the set of ε-strong solutions
agree with the solution set. The following definition relaxes the above notions.

Definition 4. A point x ∈ X is an (ρ, ε)-strong solution (resp., (ρ, ε)-weak
solution) of VIP(F,X) if, for some r ∈ R

n such that ‖r‖ ≤ ρ, x is an ε-strong (resp.,
ε-weak) solution of VIP(F − r,X); that is,

θs(x;F − r) = sup
y∈X
〈F (x)− r, x− y〉 ≤ ε,(12)

(
resp., θw(x;F − r) = sup

y∈X
〈F (y)− r, x− y〉 ≤ ε

)
.

Moreover, any such pair (r, ε) will be called a strong (resp., weak) residual of x for
VIP(F,X).

We will provide some discussion about a (ρ, ε)-strong solution. First, a (ρ, ε)-
strong solution is also a (ρ, ε)-weak solution. Second, it will be shown in Appendix A
that, if F is L-Lipschitz continuous, then every (ρ, ε)-weak solution of VIP(F,X)
is also a (ρ + 2

√
Lε, ε)-strong solution. Third, as opposed to other notions of ap-

proximate solutions based on some gap function, it uses two tolerances which have
very natural interpretations in the context of (monotone) complementarity problems.
Indeed, if x is a (ρ, ε)-strong solution, then the following result, whose proof is post-
poned until the end of this section, shows that ρmeasures the infeasibility of F (x) with
respect to the dual cone, while ε measures the size of the complementarity slackness.

Proposition 3.1. Assume that X = K, where K is a nonempty closed convex
cone. Then, x̄ ∈ K is a (ρ, ε)-strong solution if and only if there exists q̄ ∈ K∗ such
that

‖F (x̄)− q̄‖ ≤ ρ, 〈x̄, q̄〉 ≤ ε.

We will now characterize the above notions of approximate solutions for the
VIP(F,X) in terms of ε-enlargements of certain maximal monotone operators. Recall
that the normal cone operator of X is the point-to-set map NX : Rn ⇒ R

n,

(13) NX(x) =

{
∅, x /∈ X,

{v ∈ R
n, | 〈y − x, v〉 ≤ 0 ∀y ∈ X}, x ∈ X.
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From the above definition, it follows that (8) is equivalent to −F (x∗) ∈ NX(x∗), and
hence to the monotone inclusion problem

(14) 0 ∈ (F +NX)(x∗).

Note that the assumption on F and X guarantees maximal monotonicity of F +NX

(see, for example, Proposition 12.3.6 of [5]).
It turns out that approximate solutions of VIP(F,X) with weak, or strong, resid-

ual (r, ε) are related with certain approximate solutions of problem (14), as described
by the following result.

Proposition 3.2. Let x̄ ∈ X and pair (r, ε) ∈ R
n × R+ be given. Then, the

following equivalences hold:
(a) (r, ε) is a weak residual of x̄ for VIP(F,X) if and only if r ∈ (F +NX)ε(x̄).
(b) (r, ε) is a strong residual of x̄ for VIP(F,X) if and only if r ∈ (F +Nε

X)(x̄).
Proof. (a) Using definition (2), we have that r ∈ (F +NX)ε(x̄) is equivalent to

〈x− x̄, F (x) + q − r〉 ≥ −ε ∀x ∈ R
n, q ∈ NX(x).

Taking the infimum of the left-hand side for q ∈ NX(x) and using the fact that the
domain of NX is X and the assumption that x̄ ∈ X , we conclude that this condition is
equivalent to θw(x;F − r) ≤ ε, i.e., to (r, ε) being a weak residual of x̄ for VIP(F,X).

(b) This equivalence follows from (a) with r = r − F (x̄) and F ≡ 0.
We will now provide a different characterization for x̄ to be an approximate so-

lution of VIP(F,X) with strong residual (r, ε) for the case when the feasible set is a
closed convex cone. We will first review a few well-known concepts.

The indicator function of X is the function δX : Rn → R̄ defined as

δX(x) =

{
0, x ∈ X,

∞ otherwise.

The normal cone operator NX of X can be expressed in terms of δX as NX = ∂δX .
Direct use of definition (2) and the definition of ε-subdifferential shows that for f =
δX , inclusion on Proposition 2.2(a) holds as equality, i.e.,

(15) (NX)ε = ∂εδX .

We now state the following technical result which characterizes membership in
(NX)ε in terms of certain ε-complementarity conditions.

Lemma 3.3. If K is a nonempty closed convex cone and K∗ is its dual cone, i.e.,

K∗ = {v ∈ R
n | 〈x, v〉 ≥ 0 ∀x ∈ K},

then, for every x ∈ K, we have

−q ∈ (NK)ε(x) ⇐⇒ q ∈ K∗, 〈x, q〉 ≤ ε .

Proof. Since (NK)ε = ∂εδK , it follows from Proposition 2.2(b) that the condition
−q ∈ (NK)ε(x) is equivalent to

(δK)∗(−q) = δK(x) + (δK)∗(−q) ≤ 〈x,−q〉+ ε,

where the first equality follows from the assumption that x ∈ K. To end the proof, it
suffices to use the fact that (δK)∗ = δ−K∗ .
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With the aid of the above lemma, we can now give a characterization of strong
residuals of feasible points for monotone complementarity problems.

Proposition 3.4. Assume that X = K, where K is a nonempty closed convex
cone. Then, (r, ε) is a strong residual of x̄ ∈ K for VIP(F,K) if and only if

q̄ := F (x̄)− r ∈ K∗, 〈x̄, q̄〉 ≤ ε.

Proof. This result follows as an immediate consequence of Proposition 3.2(b) and
Lemma 3.3.

Finally, note that Proposition 3.1 follows as an immediate consequence of Propo-
sition 3.4.

4. The hybrid proximal extragradient method. Throughout this section,
we assume that T : R

n ⇒ R
n is a maximal monotone operator. The monotone

inclusion problem for T is to find x such that

(16) 0 ∈ T (x) .

We also assume throughout this section that this problem has a solution, that is,
T−1(0) �= ∅. In this section we study the iteration complexity of the hybrid proximal
extragradient method introduced in [22] for solving the above problem.

We start by stating the HPE method.
Hybrid proximal extragradient method:

0) Let x0 ∈ R
n and 0 ≤ σ < 1 be given and set k = 1.

1) Choose λk > 0 and find yk, vk ∈ R
n, σk ∈ [0, σ], and εk ≥ 0 such that

(17) vk ∈ T εk(yk), ‖λkvk + yk − xk−1‖2 + 2λkεk ≤ σ2
k‖yk − xk−1‖2 .

2) Define xk = xk−1 − λkvk, set k← k + 1, and go to step 1.
end

We now make several remarks about the HPE method. First, the HPE method
does not specify how to choose λk and how to find yk, vk, and εk as in (17). The
particular choice of λk and the algorithm used to compute yk, vk, and εk will depend
on the particular implementation of the method and the properties of the operator T .
Second, if y := (λkT + I)−1xk−1 is the exact proximal point iterate, or equivalently,

v ∈ T (y),(18)

λkv + y − xk−1 = 0(19)

for some v ∈ R
n, then (yk, vk) = (y, v) and εk = 0 satisfies (17). Therefore, the error

criterion (17) relaxes the inclusion (18) to v ∈ T ε(y) and relaxes (19) by allowing a
small error relative to ‖yk − xk−1‖. Third, note also that due to step 2 of the HPE
method and the error criterion in (17), we have

(20) λkvk + yk − xk−1 = yk − xk, ‖yk − xk‖2 + 2λkεk ≤ σ2
k‖yk − xk−1‖2.

Before establishing the iteration-complexity results for the HPE method, we need
some technical results.

Lemma 4.1. For every k ∈ N,

(21) (1 − σ)‖yk − xk−1‖ ≤ ‖λkvk‖ ≤ (1 + σ)‖yk − xk−1‖ .
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Proof. In view of (17) and the triangle inequality for norms, we have

| ‖λkvk‖ − ‖yk − xk−1‖ | ≤ ‖λkvk + yk − xk−1‖ ≤ σk‖yk − xk−1‖ ∀k ∈ N,

which clearly implies (21).
Lemma 4.2. The following statements hold:
(a) For any x ∈ R

n and i ∈ N,

(22) ‖x− xi−1‖2 = ‖x− xi‖2 + 2λi〈yi − x, vi〉+ ‖yi − xi−1‖2 − ‖xi − yi‖2 .
(b) For any x∗ ∈ T−1(0) and i ∈ N,

‖x∗ − xi−1‖2 ≥ ‖x∗ − xi‖2 + (1 − σ2
i )‖yi − xi−1‖2.

(c) For any x∗ ∈ T−1(0), the sequence {‖x∗ − xk‖} is nonincreasing and

(23) ‖x∗ − x0‖2 ≥
∞∑
k=1

(1− σ2
k) ‖yk − xk−1‖2 ≥ (1− σ2)

∞∑
k=1

‖yk − xk−1‖2 .
Proof. To prove (a), let x ∈ R

n and i ∈ N. Then,

‖x− xi−1‖2 = ‖x− xi‖2 + 2〈x− xi, xi − xi−1〉+ ‖xi − xi−1‖2
= ‖x− xi‖2 + 2〈x− yi, xi − xi−1〉+ 2〈yi − xi, xi − xi−1〉+ ‖xi − xi−1‖2
= ‖x− xi‖2 + 2〈x− yi, xi − xi−1〉+ ‖yi − xi−1‖2 − ‖yi − xi‖2.

Statement (a) now follows by noting that xi − xi−1 = −λivi, in view of step 2 of the
HPE method.

If 0 ∈ T (x∗), then, since vi ∈ T εi(yi), the definition of T εk implies that

〈yi − x∗, vi〉 = 〈yi − x∗, vi − 0〉 ≥ −εi.
Using statement (a) with x = x∗, the above inequality, and (17), we have

‖x∗ − xi−1‖2 ≥ ‖x∗ − xi‖2 − 2λiεi + ‖yi − xi−1‖2 − ‖xi − yi‖2
≥ ‖x∗ − xi‖2 + (1 − σ2

i )‖yi − xi−1‖2,
which proves (b). Statement (c) follows immediately from (b) and the assumptions
0 ≤ σi ≤ σ < 1 (see steps 0 and 1 of the HPE method).

Lemma 4.3. Let d0 be the distance of x0 to T−1(0). For every α ∈ R and every
k, there exists an i ≤ k such that

(24) ‖vi‖ ≤ d0

√√√√ (1 + σ)

(1− σ)

(
λα−2
i∑k
j=1 λ

α
j

)
, εi ≤ d20σ

2

2(1− σ2)

(
λα−1
i∑k
j=1 λ

α
j

)
.

Proof. Define, for each k ∈ N,

τk := max

{
2εkλ

1−α
k

σ2
,
‖vk‖2λ2−α

k

(1 + σ)2

}
.

Then, in view of the assumption that σk ≤ σ for all k ∈ N and relations (17) and
(21), we have

τkλ
α
k = max

{
2εkλk

σ2
,
λ2
k‖vk‖2

(1 + σ)2

}
≤ ‖yk − xk−1‖2.
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Letting x∗ ∈ T−1(0) be such that d0 = ‖x0 − x∗‖, the latter inequality together with
(23) then implies that

k∑
j=1

τjλ
α
j ≤

k∑
j=1

‖yj − xj−1‖2 ≤ ‖x0 − x∗‖2
(1− σ2)

=
d20

(1− σ2)
,

and hence that (
min

j=1,...,k
τj

) k∑
j=1

λα
j ≤

d20
(1− σ2)

.

The conclusion of the proposition now follows immediately from the latter inequality
and the definition of τk.

Theorem 4.4. Let d0 be the distance of x0 to T−1(0). The following statements
hold:

(a) If λ := inf λk > 0, then for every k ∈ N there exists i ≤ k such that

‖vi‖ ≤ d0

√√√√1 + σ

1− σ

(
λ−1∑k
j=1 λj

)
≤ d0

λ
√
k

√
1 + σ

1− σ
,

εi ≤ σ2d20
2(1− σ2)

1∑k
i=1 λi

≤ σ2d20
2(1− σ2)λk

.

(b) For every k ∈ N, there exists an index i ≤ k such that

(25) ‖vi‖ ≤ d0

√√√√1 + σ

1− σ

(
1∑k

j=1 λ
2
j

)
, εi ≤ σ2d20λi

2(1− σ2)
∑k

j=1 λ
2
j

.

(c) If
∑∞

k=1 λ
2
k = ∞, then the sequences {yk} and {xk} converge to some point

in T−1(0).
Proof. Statements (a) and (b) follow from Lemma 4.3 with α equal to 1 and 2,

respectively.
To prove (c), first note that if vi = 0 and εi = 0 for some i, then xi = yi ∈ T−1(0)

and xk = xi for all k ≥ i. We may then assume that

ai := max{‖vi‖, εi} > 0 ∀i.
The assumption that

∑∞
i=1 λ

2
i = +∞ implies that

lim
k→∞

max
j=1,...,k

λj∑k
i=1 λ

2
i

= 0.

Therefore, using also (25) we conclude that

lim
k→∞

min
i=1,...,k

ai = 0.

Therefore, there exists a subsequence {ai}i∈K which converges to 0. Lemma 4.2(c)
implies that {xk} is bounded and

(26) lim
k→∞

‖yk − xk−1‖ = 0.
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Hence, {yk} is also bounded and this implies that there exists a subsequence {yi}i∈K′ ,
with K′ ⊂ K, which converges to some y∗. Since limi∈K′ ai = 0, using Proposi-
tion 2.1(e) we conclude that y∗ ∈ T−1(0). Now use (26) to conclude that y∗ is an
accumulation point of {xk}. Since ‖xk−y∗‖ is nonincreasing in view of Lemma 4.2(c),
we conclude that limk→∞ ‖xk − y∗‖ = 0. In view of (26), the sequence {yk} also con-
verges to y∗.

Both Lemma 4.3 and Theorem 4.4 estimate the quality of the best among the
iterates y1, . . . , yk. We will refer to these estimates as the pointwise complexity bounds
for the HPE algorithm.

We will now develop alternative estimates for the HPE method which we refer
to as the ergodic complexity bounds. The idea of considering averages of the iterates
in the analysis of gradient-type and/or proximal point–based methods for convex
minimization and monotone VIs goes back to at least the mid-seventies (see [1, 13,
17, 16]) and perhaps even earlier.

The sequence of ergodic means {ȳk} associated with {yk} is defined as

(27) ȳk :=
1

Λk

k∑
i=1

λiyi, where Λk :=

k∑
i=1

λi.

The next result, which is a straightforward application of the transportation formula,
shows that the ergodic iterate is related to the ε-enlargement of T , even when εi ≡ 0.
Thus, it provides a computable residual pair for ȳk.

Lemma 4.5. For every k ∈ N, define

(28) v̄k :=
1

Λk

k∑
i=1

λivi, ε̄k :=
1

Λk

k∑
i=1

λi(εi + 〈yi − ȳk, vi − v̄k〉).

Then, ε̄k ≥ 0 and v̄k ∈ T ε̄k(ȳk).
Proof. The inequality ε̄k ≥ 0 and the inclusion v̄k ∈ T ε̄k(ȳk) follow from Theo-

rem 2.3 and the inclusions vi ∈ T εi(yi).
The following result gives alternative expressions for the residual pair (v̄k, ε̄k),

which will be used for obtaining bounds on its size.
Proposition 4.6. For any k we have

v̄k =
1

Λk
(x0 − xk),(29)

ε̄k =
1

2Λk

[
2〈ȳk − x0, xk − x0〉 − ‖xk − x0‖2 + βk

]
,(30)

where

βk :=

k∑
i=1

(
2λiεi + ‖xi − yi‖2 − ‖yi − xi−1‖2

) ≤ 0 .(31)

Proof. The definitions of Λk and v̄k in (27) and (28) and the update rule in step 2
of the HEP method imply that

xk = x0 −
k∑

i=1

λivi = x0 − Λkv̄k,

from which (29) follows.
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Direct use of the definition of ȳk yields

k∑
i=1

λi〈yi − ȳk, vi − v̄k〉 =
k∑

i=1

λi〈yi − ȳk, vi〉 −
k∑

i=1

λi〈yi − ȳk, v̄k〉

=

k∑
i=1

λi〈yi − ȳk, vi〉 −
〈

k∑
i=1

λi(yi − ȳk), v̄k

〉

=
k∑

i=1

λi〈yi − ȳk, vi〉 .

Adding (22) with x = ȳk from i = 1 to k, we have

‖ȳk − x0‖2 = ‖ȳk − xk‖2 +
k∑

i=1

(
2λi〈yi − ȳk, vi〉+ ‖yi − xi−1‖2 − ‖xi − yi‖2

)
.

Combining the above two equations with the definitions of ε̄k in (28) and βk in (31)
we obtain

ε̄k =
1

2Λk

[‖ȳk − x0‖2 − ‖ȳk − xk‖2 + βk

]
.

Relation (30) now follows from the above equation and the identity

‖ȳk − xk‖2 = ‖ȳk − x0‖2 + 2〈ȳk − x0, x0 − xk〉+ ‖x0 − xk‖2.

Finally, the inequality in (31) is due to (20) and the assumption 0 ≤ σi ≤ σ < 1 (see
steps 0 and 1 of the HPE method).

The next result provides estimates on the quality measure of the ergodic mean ȳk.
It essentially shows that the quantities v̄k and ε̄k appearing in (28) are O(1/Λk).

Theorem 4.7. For every k ∈ N, let Λk, ȳk, v̄k, and ε̄k be as (27), (28). Then,
for every k ∈ N, we have

(32) ‖v̄k‖ ≤ 2d0
Λk

, ε̄k ≤ 2θkd
2
0

Λk
,

where d0 is the distance of x0 to T−1(0),

(33) θk := 1 +
σ
√
τk√

(1 − σ2)
, τk = max

i=1,...,k

λi

Λk
≤ 1.

Proof. Let x∗ ∈ T−1(0) be such that ‖x0 − x∗‖ = d0. Using Lemma 4.2(c), we
have ‖xk − x∗‖ ≤ d0, and hence

(34) ‖xk − x0‖ ≤ ‖xk − x∗‖+ ‖x∗ − x0‖ ≤ 2d0

for every k ∈ N. This, together with (29), yields the first bound in (32). Defining

x̄k =
1

Λk

k∑
i=1

λixi,
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and noting (20), (23), (27), (33), and (34), we have

‖x̄k − x0‖ ≤
∥∥∥∥∥ 1

Λk

k∑
i=1

λi(xi − x0)

∥∥∥∥∥(35)

≤ 1

Λk

k∑
i=1

λi‖xi − x0‖ ≤ 2d0,

‖ȳk − x̄k‖2 ≤ 1

Λk

k∑
i=1

λi‖yi − xi‖2 ≤ τk

k∑
i=1

‖yi − xi‖2(36)

≤ σ2τk

k∑
i=1

‖yi − xi−1‖2 ≤ σ2τkd
2
0

(1− σ2)
,

where the first inequalities in the above two relations are due to the convexity of ‖ · ‖
and ‖ · ‖2, respectively. The above two relations together with (33) and the triangular
inequality for norms yield

‖ȳk − x0‖ ≤ ‖ȳk − x̄k‖+ ‖x̄k − x0‖ ≤ σd0

√
τk

1− σ2
+ 2d0 = (1 + θk) d0.

Expressions (30) and (31), the Cauchy–Schwarz inequality, and the above relation
then imply

ε̄k ≤ 1

2Λk

[−‖xk − x0‖2 + 2‖ȳk − x0‖ ‖xk − x0‖
] ≤ 1

2Λk

[−t2k + 2 (1 + θk) d0 tk
]
,

where tk := ‖xk − x0‖. Since 0 ≤ tk ≤ 2d0 and θk > 1 by (34) and (33), respectively,
it follows that the maximum of the right-hand side of the above relation, with respect
to tk, is attained at 2d0. This clearly implies the second inequality in (32).

5. Korpelevich’s extragradient method for the monotone VIP. Our main
goal in this section is to establish the complexity analysis of Korpelevich’s extragra-
dient method for solving the monotone VI problem over an unbounded feasible set.
First, we state Korpelevich’s extragradient algorithm and show that it can be inter-
preted as a particular case of the HPE method. This allows us to use the results of
section 4 to derive its iteration complexities for computing different notions of approx-
imate solutions. In subsection 5.1, we obtain additional iteration-complexity results
under the assumption that F is defined in the whole space Rn (e.g., when F is linear)
and/or X is a closed convex cone. In subsection 5.2, we state the consequences of the
aforementioned iteration-complexity results for the case when X is bounded.

Korpelevich’s method, as well as its global convergence proof, was presented for
the first time in [11]. A unifying global convergence analysis of the proximal point
method and Korpelevich’s method for solving VIP(F,Rn) is presented in [7] using
the concept of modified monotone maps. Results showing that Korpelevich’s method
converges at a linear rate under strong assumptions on the VIP are given in [26].

Throughout this section, unless otherwise explicitly mentioned, we assume that
the set X ⊂ R

n and the map F : Ω ⊂ R
n → R

n satisfy the following assumptions:
(B.1) X ⊂ Ω is a nonempty closed convex set.
(B.2) F is monotone and L-Lipschitz continuous (on Ω).
(B.3) The set of solutions of VIP(F,X) is nonempty.
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We start by stating Korpelevich’s extragradient algorithm. The notation PX denotes
the projection operator onto the set X .
Korpelevich’s extragradient algorithm:

0) Let x0 ∈ X and 0 < σ < 1 be given and set λ = σ/L and k = 1.
1) Compute

(37) yk = PX(xk−1 − λF (xk−1)), xk = PX(xk−1 − λF (yk)).

2) Set k ← k + 1 and go to step 1.
end

We observe that assumptions (B.1) and (B.2) imply that the operator T = F+NX

is maximal monotone (see, for example, Proposition 12.3.6 of [5]). Also, recall that
solving VIP(F,X) is equivalent to solving the monotone inclusion problem 0 ∈ T (x),
where T = F +NX (see the discussion on the paragraph following Proposition 3.1).

We will now show that Korpelevich’s extragradient algorithm for solving VIP
(F,X) can be viewed as a particular case of the HEP method for solving the monotone
inclusion problem 0 ∈ T (x), and this will allow us to obtain iteration-complexity
bounds for Korpelevich’s extragradient algorithm without assuming boundedness of
the feasible set X .

Theorem 5.1. Let {yk} and {xk} be the sequences generated by Korpelevich’s
extragradient algorithm and, for each k ∈ N, define

(38) qk =
1

λ
[xk−1 − λF (yk)− xk] , εk = 〈qk, xk − yk〉, vk = F (yk) + qk.

Then,
(a) xk = xk−1 − λvk;
(b) qk ∈ ∂εkδX(yk) and vk ∈ (F +Nεk

X )(yk) ⊂ (F +NX)εk(yk);
(c) ‖λvk + yk − xk−1‖2 + 2λεk ≤ σ2‖yk − xk−1‖2.

As a consequence of the above statements, it follows that Korpelevich’s algorithm is a
special case of the HPE method.

Proof. Statement (a) follows immediately from the definition of qk and vk in (38).
Recall that the projection map PX has the property that

(39) z − PX(z) ∈ NX(PX(z)) ∀z ∈ R
n.

Using this fact together with the definition of xk and qk in (37) and (38), respectively,
it follows that

(40) qk ∈ NX(xk) = ∂δX(xk).

The first inclusion in statement (b) follows from (40) and Proposition 2.2(c). Using
this inclusion, the definition of vk, and identity (15), we obtain

vk = F (yk) + qk ∈ F (yk) + ∂εkδX(yk) = F (yk) + (NX)εk(yk)

⊂ F 0(yk) + (NX)εk(yk) ⊂ (F +NX)εk(yk),

where the two last inclusions follow from the monotonicity of F and statement (c)
and statement (b) (with ε′ = 0) of Proposition 2.1.

To prove statement (c), define

(41) pk =
1

λ
[xk−1 − λF (xk−1)− yk] .
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Using this definition, the definition of yk in (37), and (39), we conclude that pk ∈
NX(yk). This fact, together with (38), gives the estimate

εk = 〈qk − pk, xk − yk〉+ 〈pk, xk − yk〉 ≤ 〈qk − pk, xk − yk〉.
This, together with (a), implies that

‖λvk + yk − xk−1‖2 + 2λεk = ‖yk − xk‖2 + 2λεk

≤ ‖xk − yk‖2 + 2λ〈qk − pk, xk − yk〉
= ‖λ(qk − pk) + xk − yk‖2 − λ2‖qk − pk‖2
≤ ‖λ(qk − pk) + xk − yk‖2 = ‖λ(F (xk−1)− F (yk))‖2,

where the last equality follows from the definition of qk and pk in (38) and (41).
Statement (c) follows from the previous inequality, the assumption that λ = σ/L,
and our global assumption that F is L-Lipschitz continuous on X .

The following result establishes the global convergence rate of Korpelevich’s ex-
tragradient algorithm in terms of the criterion (1) with T = F +NX .

Theorem 5.2. Let {yk} and {xk} be the sequences generated by Korpelevich’s
extragradient algorithm and let {vk} and {εk} be the sequences given by (38). For
every k ∈ N, define

(42) v̄k =
1

k

k∑
i=1

vi, ȳk =
1

k

k∑
i=1

yi,

(43) ε̄k =
1

k

k∑
i=1

[εi + 〈yi − ȳk, vi − v̄k〉] .

Then, for every k ∈ N, the following statements hold:
(a) yk is an approximate solution of VIP(F,X) with strong residual (vk, εk), and

there exists i ≤ k such that

‖vi‖ ≤ Ld0
σ

√
(1 + σ)

k(1− σ)
, εi ≤ σLd20

2(1− σ2)k
.

(b) ȳk is an approximate solution of VIP(F,X) with weak residual (v̄k, ε̄k), and

(44) ‖v̄k‖ ≤ 2Ld0
kσ

, ε̄k ≤ 2Ld20θ̄k
kσ

,

where d0 is the distance of x0 to the solution set of VIP(F,X) and

(45) θ̄k := 1 +
σ√

k(1− σ2)
.

Proof. (a) By Theorem 5.1(b), we have that vk ∈ (F + Nεk
X )(yk). Hence, by

Proposition 3.2(b), we conclude that yk is an approximate solution of VIP(F,X) with
strong residual (vk, εk). Also, Theorem 5.1 implies that Korpelevich’s extragradient
algorithm is a special case of the general HPE method of section 4, where λk = σ/L
for all k ∈ N. Hence, the remaining claim in (a) follows from Theorem 4.4(a) with
λ = σ/L.
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(b) By Theorem 5.1(b) and Lemma 4.5 with T = F +NX , we conclude that v̄k ∈
(F +NX)ε̄k(ȳk). In view of Proposition 3.2(a), this implies that ȳk is an approximate
solution of VIP(F,X) with weak residual (v̄k, ε̄k). The bounds in (44) follow from
Theorem 4.7 with T = F + NX and λk = σ/L, and the fact that Λk, τk, and θk
defined in (27) and (33) are, in this case, equal to kλ/L, 1/k, and θ̄k, respectively,
where θ̄k is given by (45).

Observe that the derived bounds obtained in (b) are asymptotically better than
the ones obtained in (a). Indeed, while the bounds for εk and ε̄k are O(1/k), the
ones for vk and v̄k are O(1/√k) and O(1/k), respectively. However, it should be
emphasized that (a) describes the quality of the strong residual of some point among
the iterates y1, . . . , yk while (b) describes the quality of the weak residual of ȳk.

The following result, which is an immediate consequence of Theorem 5.2, presents
iteration-complexity bounds for Korpelevich’s extragradient algorithm to obtain (ρ, ε)-
weak and -strong solutions of VIP(F,X). For simplicity, we ignore the dependence
of these bounds on the parameter σ and other universal constants and express them
only in terms of L, d0, and the tolerances ρ and ε.

Corollary 5.3. Consider the sequence {yk} generated by Korpelevich’s extra-
gradient algorithm and the sequence {ȳk} defined as in (42). Then, for every pair of
positive scalars (ρ, ε), the following statements hold:

(a) There exists an index

(46) i = O
(
max

[
Ld20
ε

,
L2d20
ρ2

])

such that the iterate yi is a (ρ, ε)-strong solution of VIP(F,X).
(b) There exists an index

(47) k0 = O
(
max

[
Ld20
ε

,
Ld0
ρ

])

such that, for any k ≥ k0, the point ȳk is a (ρ, ε)-weak solution of VIP(F,X).

5.1. Specialized complexity results for computing strong solutions. In
this subsection we will obtain additional complexity results assuming that F is defined
in all Rn, and/or that the feasible set is a cone.

We first establish the following preliminary result.
Lemma 5.4. Let {yk} and {xk} be the sequences generated by Korpelevich’s

extragradient algorithm and let {vk}, {qk}, and {εk} be the sequences given by (38).
For every k ∈ N, define

(48) F̄k =
1

k

k∑
i=1

F (yi), q̄k =
1

k

k∑
i=1

qi,

(49) ε′k =
1

k

k∑
i=1

〈yi − ȳk, F (yi)− F̄k〉, ε′′k =
1

k

k∑
i=1

[εi + 〈yi − ȳk, qi − q̄k〉] .

Then, for every k ∈ N, we have

F̄k ∈ F ε′k(ȳk), q̄k ∈ (NX)ε
′′
k (ȳk), v̄k = F̄k + q̄k,(50)

ε̄k = ε′k + ε′′k, ε′k, ε
′′
k ≥ 0.(51)
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Proof. Applying Theorem 2.3 with T = F , xi = yi, vi = F (xi), εi = 0, and
αi = 1/k for i = 1, . . . , k, we conclude that F̄k ∈ F ε′k(ȳk) and ε′k ≥ 0. Also, it follows
from Theorems 5.1(b) and 2.3 with T = NX , xi = yi, vi = qi, and αi = 1/k for
i = 1, . . . , k that q̄k ∈ (NX)ε

′′
k (ȳk) and ε′′k ≥ 0. The identity v̄k = F̄k + q̄k follows

from (42), (48), and the fact that vi = F (yi) + qi, i = 1, . . . , k. The other identity
ε̄k = ε′k+ε′′k now follows from (49) and the fact that v̄k = F̄k+ q̄k and vi = F (yi)+ qi,
i = 1, . . . , k.

The following result shows that, if F is defined in all R
n, satisfies assump-

tions (B.1)–(B.3) (and hence is L-Lipschitz continuous on the whole Rn), andNF < L,
then the iteration complexity for the ergodic point ȳk to be a (ρ, ε)-strong solution is
better than the iteration complexity for the best of the iterates among y1, . . . , yk to
be a (ρ, ε)-strong solution. Moreover, when F is affine, it is shown that the depen-
dence on the tolerance ρ of the first complexity is O(1/ρ) while that of the second
complexity is O(1/ρ2).

Theorem 5.5 (F defined in all Rn
). In addition to assumptions (B.1)–(B.3),

assume that Ω = R
n. Let {yk} and {xk} be the sequences generated by Korpelevich’s

extragradient algorithm, let {ȳk}, {v̄k}, {ε′′k}, and {q̄k} be the sequences defined as in
(42), (43), and (48), and define

(52) v̂k := F (ȳk) + q̄k ∀k ∈ N.

Then, for every k ∈ N, ȳk is an approximate solution of VIP(F,X) with strong
residual (v̂k, ε

′′
k), and the following bounds on ‖v̂k‖ and ε′′k hold:

(53) ε′′k ≤
2Ld20θ̄k
kσ

, ‖v̂k‖ ≤ d0
√
8θ̄kLNF√
kσ

+
2Ld0
kσ

,

where NF := Nonl(F ;Rn), θ̄k is defined in (45), and d0 is the distance of x0 to the
solution set of VIP(F,X). As a consequence, the following statements hold:

(a) For every pair of positive scalars (ρ, ε), there exists an index

(54) k0 = O
(
max

[
Ld20
ε

,
Ld0
ρ

+
d20LNF

ρ2

])

such that, for any k ≥ k0, the point ȳk is a (ρ, ε)-strong solution of VIP(F,X).
(b) If F is also affine, then, for every pair of positive scalars (ρ, ε), there exists

an index

(55) k0 = O
(
max

[
Ld20
ε

,
Ld0
ρ

])

such that, for any k ≥ k0, the point ȳk is a (ρ, ε)-strong solution of VIP(F,X).
Proof. (a) First note that (52) and (50) imply that v̂k = F (ȳk) + q̄k ∈ (F +

N
ε′′k
X )(ȳk), from which we conclude that ȳk is an approximate solution of VIP(F,X)

with strong residual (v̂k, ε
′′
k), in view of Proposition 3.2(b). The first bound in (53)

follows immediately from the second bound in (44) and the fact that ε′′k ≤ ε̄k in view
of (51).

Now, (50), (52), Proposition 2.7 with xi = yi, and the triangle inequality for
norms yield

‖v̂k‖ ≤ ‖v̄k‖+ ‖v̂k − v̄k‖ = ‖v̄k‖+ ‖F (ȳk)− F̄k‖ ≤ ‖v̄k‖+ 2
√
ε̄kNF .
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The second bound in (53) now follows from the above inequality and the bounds
in (44).

Statement (a) follows from the bounds in (53), the definition of (ρ, ε)-strong
solution, and some straightforward arguments. Statement (b) is a special case of (a),
where NF = 0.

In many important instances of F (e.g., see the discussion after Definition 2), the
constant NF = Nonl(F ;Rn) is much smaller than L, and hence bound (54) can be
much smaller than (46) on Corollary 5.3.

In the following result, we consider the situation where X = K is a closed convex
cone and VIP(F,K) becomes equivalent to the following monotone complementarity
problem:

0 = F (y)− s, 〈y, s〉 = 0, (y, s) ∈ K ×K∗.

Using Proposition 3.4, we can translate the conclusions of Corollary 5.3(a) and The-
orem 5.5 to the context of the above problem as follows.

Corollary 5.6 (monotone complementarity problems). In addition to assump-
tions (B.2)–(B.3), assume that X = K, where K is a nonempty closed convex cone.
Consider the sequences {xk} and {yk} generated by Korpelevich’s extragradient al-
gorithm applied to VIP(F,K) and the sequences {qk}, {ȳk}, and {q̄k} determined
according to (38), (42), and (48), respectively. Then, for any pair of positive scalars
(ρ, ε), the following statements hold:

(a) There exists an index

k = O
(
max

[
Ld20
ε

,
L2d20
ρ2

])

such that the pair (y, s) = (yk,−qk) satisfies

(56) ‖F (y)− s‖ ≤ ρ, 〈y, s〉 ≤ ε, (y, s) ∈ K ×K∗.

(b) If Ω = R
n and F : Rn → R

n is monotone and L-Lipschitz continuous on R
n,

then there exists an index

(57) k0 = O
(
max

[
Ld20
ε

,
Ld0
ρ

+
d20LNF

ρ2

])
,

where NF := Nonl(F ;Rn), such that, for any k ≥ k0, the pair (y, s) =
(ȳk,−q̄k) satisfies (56). In particular, if F is affine, then the iteration-
complexity bound (57) reduces to the one in (55).

5.2. Bounded feasible set. So far, we have obtained complexity results for
Korpelevich’s method that do not require boundedness of the feasible set. In this
subsection we will give some consequences of these results for the case where the
feasible set X is bounded.

The following simple result shows that, when X is bounded, every approximate
solution of VIP(F,X) with weak (resp., strong) residual (r, ε) is an ε′-weak (resp.,
ε′-strong) solution of VIP(F,X) for some ε′. Recall that the diameter DX of a set
X ⊂ R is defined as

(58) DX := sup{‖x1 − x2‖ : x1, x2 ∈ X}.
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Lemma 5.7. Assume that X has finite diameter DX . For any x̄ ∈ X, if (r, ε) ∈
R

n × R+ is a weak (resp., strong) residual of x̄ for VIP(F,X), then x̄ is an ε′-weak
(resp., ε′-strong) solution of VIP(F,X), where

ε′ := ε+ sup
x∈X
〈r, x̄− x〉 ≤ ε+ ‖r‖DX .

Proof. This result follows from Definitions 3 and 4, the definition of DX , and the
Cauchy–Schwarz inequality.

The following result derives alternative global convergence rate bounds for Kor-
pelevich’s extragradient algorithm in the case where the feasible set X of VIP(F,X)
is bounded.

Theorem 5.8 (bounded feasible sets). Assume that conditions (B.1)–(B.3) hold
and that the set X has finite diameter

DX <∞.

Consider the sequences {xk} and {yk} generated by Korpelevich’s extragradient algo-
rithm applied to VIP(F,X) and the sequences {ȳk} and {ε̄k} determined according to
(42) and (43), respectively. Then, for every k ∈ N, the following statements hold:

(a) ȳk is an ε̃k-weak solution of VIP(F,X), or equivalently,

max
x∈X
〈F (x), ȳk − x〉 ≤ ε̂k,

where

ε̃k :=
2Ld0
kσ

(DX + d0θ̄k
)
.

(b) If Ω = R
n and F : Rn → R

n is monotone and L-Lipschitz continuous on R
n,

then ȳk is an ε̂k-strong solution of VIP(F,X), or equivalently,

max
x∈X
〈F (ȳk), ȳk − x〉 ≤ ε̃k,

where

ε̂k :=
d0DX

√
8θ̄kLNF√
kσ

+
2Ld0(DX + θ̄kd0)

kσ
(59)

and NF := Nonl(F ;Rn).
Proof. Both statements follow immediately from Lemma 5.7 and Theorems 5.2(b)

and 5.5(a).
The following result, which is an immediate consequence of Theorem 5.8, presents

iteration-complexity bounds for Korpelevich’s extragradient algorithm to obtain
ε-weak and -strong solutions of VIP(F,X). We again ignore the dependence of these
bounds on the parameter σ and other universal constants and express them only in
terms of L, d0, and the tolerance ε.

Corollary 5.9. Assume that conditions (B.1)–(B.3) hold and that the set X
has finite diameter DX . Consider the sequence {yk} generated by Korpelevich’s extra-
gradient algorithm applied to VIP(F,X) and the sequence {ȳk} determined according
to (42). Then, for every ε > 0, the following statements hold:
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(a) There exists an index

(60) k0 = O
(
LDXd0

ε

)

such that, for any k ≥ k0, the point ȳk is an ε-weak solution of VIP(F,X).
(b) If Ω = R

n and F : Rn → R
n is monotone and L-Lipschitz continuous on R

n,
then there exists an index

k′0 = O
(
LDXd0

ε
+

LNFD2
Xd20

ε2

)
,

where NF := Nonl(F ;Rn), such that, for any k ≥ k′0, the point ȳk is an
ε-strong solution of VIP(F,X).

It is interesting to compare the iteration-complexity bound obtained in Corol-
lary 5.9(a) for finding an ε-weak solution of VIP(F,X) with the corresponding ones
obtained in Nemirovski [15] and Nesterov [18]. Indeed, their analyses both yield an
O(D2

XL/ε) iteration-complexity bound to obtain an ε-weak solution of VIP(F,X).
Hence, in contrast to their bounds, our bound O(d0DXL/ε) is proportional to d0 and
formally shows for the first time that Korpelevich’s extragradient method benefits
from warm-start.

6. Tseng’s modified forward-backward splitting method. In this section,
we analyze a special case of Tseng’s MF-BS method [27] for solving the inclusion
problem

(61) 0 ∈ T (x), T = F +B,

for the particular case where the following conditions hold:
(C.1) F : Rn → R

n is monotone and L-Lipschitz continuous.
(C.2) B : Rn ⇒ R

n is maximal monotone.
(C.3) The solution set of (F +B)−1(0) �= ∅.

For this problem, an iteration of the general Tseng’s MF-BS method is as follows:

yk = (I + λkB)−1(I − λkF )(xk−1), xk = PY [yk − λk(F (yk)− F (xk−1))],

where Y is a closed convex set such that (F + B)−1(0) ∩ Y �= ∅ and λk > 0 is such
that

(62) λk‖F (yk)− F (xk−1)‖ ≤ σ‖yk − xk−1‖
with σ ∈ (0, 1). Note that since we are assuming that F is L-Lipschitz continuous, the
above inequality is satisfied for λk = σ/L. In the following, we will study the iteration
complexity of the special case of Tseng’s method, where Y = R

n and λk = σ/L for
every k.

We now formally state the special case of the MF-BS method studied in this
section.
Tseng’s MF-BS method:

0) Let x0 ∈ R
n and 0 < σ < 1 be given and set λ = σ/L and k = 1.

1) Compute

(63) yk = (I + λB)−1(I − λF )(xk−1), xk = yk − λ(F (yk)− F (xk−1)).

2) Set k ← k + 1 and go to step 1.
end
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The following result was first observed in [22] for the case Dom(B) = R
n. Al-

though the proof of its extension for an operatorB with arbitrary domain is essentially
the same, we will include it here for the sake of completeness.

Proposition 6.1. Let {yk} and {xk} be the sequences generated by Tseng’s
MF-BS method. For each k, define

qk =
1

λ
(xk−1 − yk)− F (xk−1),(64)

vk = qk + F (yk).(65)

Then,
(a) xk = xk−1 − λvk;
(b) qk ∈ B(yk) and vk ∈ T (yk) = (F +B)(yk);
(c) ‖λvk + yk − xk−1‖2 ≤ σ2‖yk − xk−1‖2.

As a consequence of the above statements, it follows that the special case of Tseng’s
MF-BS method described above is a special case of the HPE method.

Proof. Statement (a) follows directly from (64), (65), and the second equation in
(63). The first inclusion in (b) follows from (64) and the first equation in (63), while
the second inclusion follows from the first one and (65). To prove statement (c), first
use (64), (65) to obtain

(66) λvk + yk − xk−1 = λ(F (yk)− F (xk−1)),

which, together with the assumption of F being L-Lipschitz continuous and the defi-
nition of λ, yields the desired result.

Note that, in view of (66), criterion (62) (with λk = λ) is equivalent to statement
(c) of the above theorem. Also, as a consequence of Proposition 6.1, Theorem 4.4,
Lemma 4.5, and Theorem 4.7, we have the following iteration-complexity result about
Tseng’s MF-BS method.

Theorem 6.2. Consider the sequences {yk} and {xk} generated by Tseng’s MF-
BS method, and the sequences {vk}, {ȳk}, {v̄k}, and {ε̄k} defined as in (64), (65),
(42), and (43) with εi ≡ 0. Then, the following hold:

(a) For every ρ > 0, there exists an index

i = O
(
L2d20
ρ2

)

such that vi ∈ (F +B)(yi) and ‖vi‖ ≤ ρ.
(b) For every ρ, ε > 0, there exists an index

k0 = O
(
max

[
Ld20
ε

,
Ld0
ρ

])

such that v̄k ∈ (F +B)ε̄k(ȳk), ‖v̄k‖ ≤ ρ, and ε̄k ≤ ε for any k ≥ k0.
Since V I(F,X) with X ⊂ R

n closed and convex is equivalent to the inclusion
problem (61) with B = NX , Tseng’s MF-BS method with B = NX can be used to
solve VIP(F,X). In this case, the iteration formula (63) reduces to

(67) yk = PX [xk−1 − λF (xk−1)], xk = yk − λ(F (yk)− F (xk−1)).

Note that, in contrast to Korpelevich’s method, the above algorithm for solving VIP
(F,X) requires just one projection per iteration. Moreover, in addition to the triv-
ial specialization of Theorem 6.2 to the context of monotone VIs, all the iteration-
complexity results of section 5 hold for Tseng’s MF-BS method with B = NX .
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7. Hybrid proximal extragradient for smooth monotone equations. In
this section we consider the problem of solving

(68) F (x) = 0,

where F : Rn → R
n satisfies the following conditions:

(D.1) F is monotone;
(D.2) F is differentiable and its Jacobian F ′ is L1-Lipschitz continuous.

Note that this problem is a special case of VIP(F,X), where X = R
n.

Newton’s method, applied to problem (68), under assumption (D.2), has excellent
local convergence properties, provided the starting point is close to a solution x∗ and
F ′ is nonsingular at x∗. Global well-definedness of Newton’s method requires F ′ to be
nonsingular everywhere on R

n. However, this additional assumption does not guaran-
tee the global convergence of Newton’s method. A globally convergent extrapolation
Newton-type method for solving (68) was proposed in [8, 9] (see also [10]).

Solodov and Svaiter [22] proposed the use of Newton’s method for approximately
solving the proximal subproblem at each iteration of the HPE method for prob-
lem (68). In this section, we will analyze the complexity of a variant of this method.
Specifically, we will consider the following special case of the HPE method.
Newton proximal extragradient (NPE) method:

0) Let x0 ∈ R
n and 0 < σ� < σu < 1 be given and set k = 1.

1) If F (xk1 ) = 0, STOP. Otherwise
2) compute λk ∈ R and sk ∈ R

n satisfying

(λkF
′(xk−1) + I)sk = −λkF (xk−1),(69)

2

L1
σ� ≤ λk‖sk‖ ≤ 2

L1
σu.(70)

3) Define yk = xk−1 + sk and xk = xk−1 − λkF (yk), set k ← k + 1, and go to
step 1.

end
We will assume that F (xk) �= 0 for k = 0, 1, . . . . The complexity analysis will

not be affected by this assumption, because any assertion about the results after k
iterations will be valid, adding the alternative “or the algorithm finds a zero.”

For practical computations, given λk, the step sk shall be computed solving the
linear equation

(F ′(xk) + λ−1
k I)s = −F (xk).

Note that the direction sk in step 1 of the NPE method is the Newton direction with
respect to the proximal point equation λF (x) + λk(x− xk−1) = 0 at the point xk−1.
Define, for each k,

(71) σk :=
L1

2
λk‖sk‖.

We need the following well-known result about differentiable maps with Lipschitz
continuous Jacobian.

Lemma 7.1. Suppose that G : Rn → R
n is differentiable and its Jacobian G′ is

L-Lipschitz continuous. Then, for every x, s ∈ R
n, we have

‖G(x+ s)−G(x) −G′(x)s‖ ≤ L

2
‖s‖2.
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We will now establish that the NPE method can be viewed as a special case of
the HPE method.

Lemma 7.2. For each k, σ� ≤ σk ≤ σu and

(72) ‖λkF (yk) + yk − xk−1‖ ≤ σk‖yk − xk−1‖.
As a consequence, the NPE method is a special case of the HPE method stated in
section 4 with εk = 0, vk = F (yk), and σ = σu.

Proof. The bounds on σk follow directly from (70). Define for each k

Gk(x) := λkF (x) + x− xk−1.

Then, G′
k is λkL1-Lipschitz continuous and in view of (69)

G′
k(xk−1)sk +Gk(xk−1) = 0.

Therefore, using Lemma 7.1 and (71) we have

‖Gk(yk)‖ = ‖Gk(yk)− [G(xk−1) +G′
k(xk−1)sk]‖ ≤ λkL1

2
‖sk‖2 = σk‖sk‖,

which, due to the fact that sk = yk − xk−1, proves (72).
Now we shall prove that the NPE method is a special case of the HPE method.

Using inequality (72) and the facts that σk ≤ σu, εk = 0, vk = F (yk), and F = F 0 =
F εk , we conclude that condition (17) is satisfied with T = F . To end the proof, note
that xk = xk−1 − λkvk.

We have seen in Theorems 4.4 and 4.7 that the performance of the HPE method
depends on the sums

∑
λi and

∑
λ2
i . We now give lower bounds for these quantities

in the context of the NPE method.
Lemma 7.3. The sequence {λk} of the NPE method satisfies

(73)
4β

L2
1

∞∑
i=1

1

λ2
i

≤ d20 ,

where d0 is the distance of x0 to F−1(0) and β is the minimum value of the function
(1− t2)t2 over the interval [σ�, σu], i.e.,

(74) β := min{(1− σ2
� )σ

2
� , (1− σ2

u)σ
2
u}.

As a consequence, for any k,

(75)

k∑
i=1

λi ≥ 2
√
β

L1d0
k3/2,

k∑
i=1

λ2
i ≥

4β

L2
1d

2
0

k2 .

Proof. Using the definition of yi and (71) we have

‖yi − xi−1‖2 =
1

λ2
i

(λ2
i ‖si‖)2 =

1

λ2
i

(
2

L1
σi

)2

.

Since the NPE method is a particular case of the HPE method (Lemma 7.2), we can
combine the above equation with the first inequality in (23) to conclude that

d20 ≥
4

L2
1

∞∑
i=1

(1− σ2
i )σ

2
i

1

λ2
i

.

To end the proof of (73), use the inclusion σi ∈ [σ�, σu] and the definition of β.
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The inequalities in (75) now follow by noting that the minimum value of the

functions
∑k

i=1 ti and
∑k

i=1 t
2
i subject to the condition that

∑k
i=1 t

−2
i ≤ C and ti > 0

for i = 1, . . . , k are k3/2/
√
C and k2/C, respectively.

The next result gives the pointwise iteration-complexity bound for the NPE
method.

Proposition 7.4. Consider the sequence {yk} generated by the NPE method.
Then, for every k ≥ 1, there exists an index i ≤ k such that

‖F (yi)‖ ≤
√

1 + σu

1− σu

L1d
2
0

2k
√
β
,

where β is the constant defined in Lemma 7.3. As a consequence, for any scalar ε > 0,
there exists an index

i = O
(
L1d

2
0

ε

)

such that the iterate yi satisfies ‖F (yi)‖ ≤ ε.
Proof. By Lemma 7.2, the NPE method is a special case of the HPE method,

where σ = σu and the sequences {vk} and {εk} are given by vk = F (yk) and εk = 0
for every k. Hence, it follows from Theorem 4.4(b) and Lemma 7.3 that, for every
k ∈ N, there exists i ≤ k such that

‖F (yi)‖ = ‖vi‖ ≤
√

(1 + σu)

(1− σu)

d0(∑k
i=1 λ

2
i

)1/2 ≤
√

1 + σu

1− σu

L1d
2
0

2k
√
β
.

The last part of the theorem follows immediately from the first part.
We now state a global convergence rate result for the NPE method about the

ergodic pair (ȳk, v̄k) defined as in (27) and (28).
Proposition 7.5. Let {λk}, {yk}, and {xk} be the sequences generated by the

NPE method and consider the sequences {vk} and {εk} defined as vk = F (yk) and
εk = 0 for every k ≥ 1. Then, the sequences {ȳk}, {v̄k}, and {ε̄k} defined according
to (27) and (28) satisfy the following conditions:

(a) For every k ≥ 1, ε̄k ≥ 0 and v̄k ∈ F ε̄k(ȳk), or equivalently, 〈x − ȳk, F (x) −
v̄k〉 ≥ −ε̄k for all x ∈ R

n.
(b) For every k ≥ 1, we have

(76) ‖v̄k‖ ≤ L1d
2
0

k3/2
√
β
, ε̄k ≤ θL1d

3
0

k3/2
√
β
,

where

θ := 1 +
σu√
1− σ2

u

.

Proof. This result follows as an immediate consequence of Theorem 4.7 with
σ = σu and Lemmas 7.2 and 7.3.

Our goal in the remaining part of this section will be to discuss the work involved
in finding the pair (sk, λk) in step 1 of the NPE method. First note that, due to the
monotonicity of F , F ′(x) is positive semidefinite and for every x ∈ R

n and λ > 0, the
system

(77) (λF ′(x) + I)s = −λF (x)
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has a unique solution s ∈ R
n, which we denote by s(λ;x). Clearly,

s(λ;x) = −(F ′(x) + λ−1I)F (x) .

Observe that, given x ∈ R
n, step 1 of the NPE method can be rephrased as the

problem of computing λ > 0 such that

(78) 2σ�/L1 ≤ λ‖s(λ;x)‖ ≤ 2σu/L1.

Computation of the scalar λ will done by performing a logarithmic-type bisection
scheme on λ, which will be discussed shortly. Each iteration of this bisection scheme
requires computation of s(λ;x) and evaluation of the quantity λ‖s(λ;x)‖ to check
whether λ satisfies the aforementioned condition. Without any use of previous in-
formation, computation of s(λ;x) requires O(n3) arithmetic operations for each λ.
Hence, if the aforementioned bisection scheme requires kx evaluations of s(·;x), then
the total cost of the bisection scheme will be O(n3kx) arithmetic operations. How-
ever, it is possible to do better than that by using the following steps. First, com-
pute a Hessenberg factorization of F ′(x), i.e., factor F ′(x) as F ′(x) = QHQT ,
where Q is an orthonormal matrix and H is an upper Hessenberg matrix (namely,
Hij = 0 for every j < i). Then, s = s(λ;x) can be computed by solving the system
(H + λ−1I)s̃ = QTF (x) for s̃ and letting s = QT s̃. Clearly, the first step of the
modified bisection scheme can be performed in O(n3) arithmetic operations and sub-
sequent steps in O(n2) arithmetic operations. Hence, the modified bisection scheme
can be carried out in O(n3 + n2kx) arithmetic operations.

Given a fixed x ∈ R
n, our goal now will be to describe the aforementioned bisec-

tion scheme to compute λ and to estimate its number of iterations kx.
Proposition 7.6. For any x ∈ R

n, the mapping λ → s(λ;x) is continuous on
(0,∞) and

(79)
λ‖F (x)‖

λ‖F ′(x)‖+ 1
≤ ‖s(λ;x)‖ ≤ λ‖F (x)‖ ∀λ > 0,

where ‖F ′(x)‖ is the operator norm of F ′(x).
Proof. Continuity s(λ) for λ ∈ (0,∞) follows from the fact that F ′(x) is positive

semidefinite. To simplify the proof, let s = s(λ;x). Using (77), the triangle inequality,
and the definition of operator norm, we conclude that

λ‖F (x)‖ ≤ ‖λF ′(x)s‖+ ‖s‖ ≤ (‖λF ′(x)‖+ 1)‖s‖,

and hence that the first inequality in (79) holds. To prove the second inequality,
we multiply both sides of (77) by s and use the Cauchy–Schwarz inequality and the
positive definiteness of F ′(x) to obtain

‖s‖2 ≤ λ〈s, F ′(x)s〉 + ‖s‖2 = −λ〈s, F (x)〉 ≤ λ‖s‖‖F (x)‖,

and hence the second inequality in (79) holds.
The following result establishes the existence of scalars λ satisfying (78) under

the mild assumption that F (x) �= 0. It also provides an explicit closed interval in
R++ which contains all the solutions of (78). This interval will be used as an initial
bracketing interval on a log-type bisection scheme (see Routine Step 1 below) for
computing a solution of (78).
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Proposition 7.7. Suppose that x ∈ R
n is such that F (x) �= 0 and let Ix be the

set of all λ > 0 satisfying (78). Then, Ix is nonempty and Ix ⊂ [ax, bx], where

(80) ax :=

√
2σ�

L1‖F (x)‖ , bx :=
2σu

L1‖F (x)‖‖F
′(x)‖+

√
2σu

L1‖F (x)‖ .

Proof. Suppose that x ∈ R
n is such that F (x) �= 0. By (79) and the fact that

F (x) �= 0, we easily see that limλ→0 λ‖s(λ;x)‖ = 0 and limλ→∞ λ‖s(λ;x)‖ = ∞.
This conclusion together with the continuity of the function λ → λ‖s(λ;x)‖ and the
assumption that σ� < σu implies that there exists λ satisfying (78), i.e., Ix �= ∅.

Assume now that λ ∈ Ix, and hence that (78) holds. The latter relation together
with (79) implies that

2σ�

L1
≤ λ2‖F (x)‖, λ2‖F (x)‖

λ‖F ′(x)‖+ 1
≤ 2σu

L1
.

The first inequality clearly implies ax ≤ λ. Multiplying the second inequality by
λ‖F ′(x)‖+1, we obtain a quadratic inequality in λ which, together with the inequality
(α2

1 +α2
2)

1/2 ≤ α1+α2 for α1, α2 > 0, implies that λ ≤ bx. We have thus proved that
Ix ⊆ [ax, bx].

Lemma 7.8. For every x ∈ R
n such that F (x) �= 0 and 0 < λ < λ̃, we have

(81) ‖s(λ;x)‖ < ‖s(λ̃;x)‖ ≤ λ̃

λ
‖s(λ;x)‖.

Proof. To simplify the notation, let s = s(λ;x) and s̃ = s(λ̃;x). Since by definition
s(λ;x) is the unique solution of (77), we easily see that

(82) F ′(x)(s̃− s) = λ−1s− λ̃−1s̃.

Noting that s �= 0 due to Proposition 7.6 and the assumption that F (x) �= 0, it follows
from (82) that s �= s̃. Moreover, (82) and the monotonicity of F ′(x) imply that

〈λ−1s− λ̃−1s̃, s̃− s〉 = 〈F ′(x)(s̃ − s), s̃− s〉 ≥ 0.

Multiplying this inequality by λ λ̃, we obtain after some straightforward algebraic
manipulations that

(λ̃− λ)〈s, s̃− s〉 ≥ λ‖s̃− s‖2.
Since λ̃−λ > 0 by assumption and s �= s̃, the above relation implies that 〈s, s̃−s〉 > 0,
and hence that ‖s̃‖2 > ‖s‖2. This proves the first inequality in (81). Also, the above
inequality, the Cauchy–Schwarz inequality, and the fact that ‖s̃− s‖ > 0 imply that

(λ̃− λ)‖s‖ ≥ λ‖s̃− s‖.
Adding λ‖s‖ to both sides of this inequality and using the triangle inequality for
norms, we obtain the second inequality in (81).

Corollary 7.9. For every x ∈ R
n such that F (x) �= 0, the set Ix is a closed

interval [λx,�, λx,u] such that

λx,u

λx,�
≥
√

σu

σ�
.
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Proof. Note that λ→ λ‖s(λ, x)‖ is a strictly increasing continuous function over
R++ due to the first inequality in (81). Also, by Proposition 7.6, we have limλ→0

λ‖s(λ;x)‖ = 0 and limλ→∞ λ‖s(λ;x)‖ = ∞. The above two observations clearly
imply that Ix is a closed interval, say Ix = [λx,�, λx,u], and

λx,�‖s(λx,�;x)‖ = 2σ�

L1
, λx,u‖s(λx,u;x)‖ = 2σu

L1
.

Moreover, the second inequality in (81) implies that

λx,u‖s(λx,u;x)‖ ≤
(
λx,u

λx,�

)2

λx,�‖s(λx,�;x)‖.

Combining the above relations, we obtain the desired conclusion.
With the aid of the above results, we can now show how the pair (λk, sk) can be

computed at step 1 of the NPE method. Using xk−1 as input on the following routine,
it then outputs the pair (λk, sk).
Routine Step 1:

Input: x ∈ R
n such that F (x) �= 0 and 0 < σ� < σu < 1.

0) Compute ax and bx as in (80) and set a← ax and b← bx.
1) Set λ =

√
ab and compute s = −(F ′(x) + λ−1I)F (x).

2) If 2σ�/L1 ≤ λ‖s‖ ≤ 2σu/L1, then output the pair (λ, s) and STOP.
3) If λ‖s‖ > 2σu/L1, then set b← λ; otherwise, set a← γ.
4) Go to step 1.

end
Let ε > 0 be given. We have seen in Proposition 7.4 that the NPE method finds

an iterate yi satisfying the termination criterion ‖F (x)‖ ≤ ε in at most O(L1d
2
0/ε).

Clearly, while computing such an iterate we may assume that ‖F (xk−1)‖ > ε every
time step 1 of the NPE method is executed since otherwise xk−1 itself would satisfy
the termination criterion ‖F (x)‖ ≤ ε. Moreover, (34) implies that ‖xk−1 − x0‖ ≤
2d0. Hence, it is sufficient to analyze the complexity of Routine Step 1 under the
assumption that its input x ∈ R

n satisfies ‖F (x)‖ > ε and ‖x − x0‖ ≤ 2d0. In
the following result, we also assume that the constants σ� and σu are such that
(log σu/σ�)

−1 = O(1), which allows us to express the complexities only in terms of
the quantities L1, ε, d0, and ‖F ′(x0)‖.

Proposition 7.10. Let ε > 0 be given. Then, for every x ∈ R
n such that

‖F (x)‖ > ε and ‖x − x0‖ ≤ 2d0, the number of iterations and arithmetic operations
performed by Routine Step 1 are bounded respectively by

(83) O
(
log log

(‖F ′(x0)‖√
L1ε

+

√
L1√
ε
d0

))
.

and

O
(
n3 + n2 log log

(‖F ′(x0)‖√
L1ε

+

√
L1√
ε
d0

))
.

Proof. Since logλ = (log a + log b)/2, it follows that, after k inner iterations of
the above implementation of step 1 of the NPE method, the scalars a and b at step 3
satisfy

(84) log
b

a
=

1

2k
log

bx
ax

.
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Assume now that the method does not stop at the kth iteration. Then, the values
of a and b in step 3 of this iteration satisfy Ix = [λx,�, λx,u] ⊆ [a, b], and hence

b/a ≥√σu/σ�, due to Corollary 7.9. This together with (84) implies that

1

2k
log

bx
ax
≥ 1

2
log

σu

σ�
,

and hence that

k ≤ 1 + log

(
log(bx/ax)

log(σu/σ�)

)
.

Since (80), assumption (D.2), and the assumptions that ‖F (x)‖ > ε and ‖x − x0‖ ≤
2d0 imply that

bx
ax

=

√
σu

σ�

(
1 +

√
2σu

L1‖F (x)‖ ‖F
′(x)‖

)
≤
√

σu

σ�

(
1 +

√
2

L1ε
(‖F ′(x0)‖+ 2L1d0)

)
,

we conclude that the number of iterations performed by Routine Step 1 is bounded
by (83). The bound on the number of arithmetic operations is due to the discussion
following Proposition 7.5.

8. Concluding remarks. We provide in this section some concluding remarks.
We start by summarizing the contribution of this paper as compared to [22],

where the HPE method was proposed. First, iteration-complexity analysis of the
HPE method is given here for the first time. Second, in contrast to our analysis,
[22] does not study the properties of the ergodic mean for the HPE method. Third,
the result that Korpelevich’s method is a special case of the HPE method is new.
Fourth, in contrast to rule (70), [22] chooses λk proportional to ‖F (xk)‖−1/2 in the
NPE method, and does not study the iteration complexity of the resulting method.

It is important to emphasize that all complexity bounds in section 5, with the
exception of the ones obtained in subsection 5.2, do not require boundedness of the
feasible set X . The bounds on these results are expressed in terms of the distance d0 of
the initial point to the solution set, instead of the diameter ofX . In the usual situation
where d0 is unknown, these complexity bounds have only theoretical value in the sense
that they cannot be used to terminate the method. Instead, our analysis provides
practical stopping rules to obtain (ρ, ε)-weak (resp., -strong) solutions by monitoring
the size of the pair (vk, εk) or the ergodic pair (v̄k, ε̄k) (or (v̂k, ε̄k)), both of which can
be easily computed. It should be observed that, to obtain an ε-weak/-strong solution,
it is necessary to have a (finite) bound on the diameter of the feasible set. But as we
observed after Definition 4, computation of (ρ, ε)-weak/-strong solutions is a natural
goal in the context of nonlinear complementarity and most likely VI problems as well.

The iteration-complexity analysis developed for the HPE method in this paper
was used to obtain iteration-complexity results for two specific algorithms, namely, the
Korpelevich and NPE methods. It would be interesting to derive iteration-complexity
results for other algorithms by viewing them as special cases of the HPE method.

Appendix A. Relationship between error measures. In this appendix, we
review other notions of error measures and discuss their relationship with the error
measures introduced in the main presentation of the paper.

It is well known that x is a solution of VIP(F,X) if and only if the quantity

(85) rc(x;F ) := c

[
x− PX

(
x− 1

c
F (x)

)]
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vanishes, where c > 0 is a scaling factor. The norm of rc(x;F ) is commonly used to
measure the quality of x as an approximate solution of VIP(F,X). Another measure
of the quality of x as an approximate solution of VIP(F,X) is the regularized gap
function (see [5]) defined as

θc(x;F ) := sup
y∈X
〈F (x), x − y〉 − c

2
‖y − x‖2.(86)

It is easy to see that θc is a nonnegative function whose set of zeros coincides with
the solution set of VIP(F,X) and that the unique optimal solution of (86) is

y = PX

(
x− 1

c
F (x)

)
.

Hence, in view of (85) we have

(87) θc(x, F ) =
1

c
〈F (x), rc(x;F )〉 − 1

2c
‖rc(x;F )‖2.

The following result provides a connection between the regularized gap function and
the notion of (ρ, ε)-strong solutions.

Theorem A.1. Let x ∈ X be given. If (r, ε) is a strong residual of x for
VIP(F,X), then

(88) θc(x;F ) ≤ 1

2c
‖r‖2 + ε.

Moreover, there exists a unique strong residual (r, ε) of x for which equality holds in
(88), namely,

(89) r = rc(x;F ), ε =
1

c

(〈F (x), rc(x;F )〉 − ‖rc(x;F )‖2) .
Proof. Fix x ∈ X . To prove the theorem, it suffices to show, in view of Proposi-

tion 3.2(b) and (87), that the solution of the problem

(90)
min

1

2c
‖r‖2 + ε

s.t. r ∈ (F +Nε
X)(x)

is unique and is given by (89). For any r, the smaller ε for which r ∈ F (x) +Nε(x)
is given by

sup
y∈X
〈r − F (x), y − x〉.

Hence, problem (90) is equivalent to

min
r

sup
y∈Y

1

2c
‖r‖2 + 〈r − F (x), y − x〉.

Since the above objective function is strongly convex, we conclude that the above
problem, and as a by-product problem (90), has a unique optimal solution. Note that
(88) follows from the fact that

θc(x;F ) = sup
y∈Y

inf
r

1

2c
‖r‖2 + 〈r − F (x), y − x〉 ≤ inf

r
sup
y∈Y

1

2c
‖r‖2 + 〈r − F (x), y − x〉
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and from the equivalence of the latter problem with (90). Clearly, in view of (89) and
(87), it follows that the objective function of (90) evaluated at the pair (r, ε) given
by (89) is equal to θc(x;F ). To conclude the proof, it suffices to show that this pair
also satisfies r ∈ (F +Nε

X)(x). Indeed, using (85), we obtain

PX

(
x− 1

c
F (x)

)
= x− 1

c
rc(x;F ).

Subtracting F (x) from both sides of (85) and using (39) and the above equation, we
conclude that

rc(x;F )− F (x) ∈ NX

(
x− 1

c
rc(x;F )

)
.

Using the above relation, Proposition 2.2(c) with f = δX , v = rc(x;F ) − F (x), and
y = x−c−1rc(x;F ), and relation (15), we then conclude that rc(x;F )−F (x) ∈ Nε

X(x)
with

ε =

〈
rc(x;F )− F (x) , x− 1

c
rc(x;F )− x

〉
=

1

c

(〈F (x), rc(x;F )〉 − ‖rc(x;F )‖2) .
The following result follows as an immediate consequence of the Theorem A.1.
Corollary A.2. Let x ∈ X be given. If x is a (ρ, ε)-strong solution of

VIP(F,X), then for any c > 0,

θc(x;F ) ≤ ρ2

2c
+ ε, ‖rc(x;F )‖ ≤

√
ρ2 + 2cε.

We now relate the notion of a weak solution with that of a strong solution.
Lemma A.3. If F is L-Lipschitz continuous in X, then for any x ∈ X,

θ2L(x;F ) ≤ θw(x;F ).

Proof. Using Definition 3 and the Lipschitz continuity of F , we have

θw(x;F ) = sup
y∈X
〈F (y), x− y〉 = sup

y∈X
〈F (x), x − y〉+ 〈F (y)− F (x), x − y〉

≥ sup
y∈X
〈F (x), x − y〉 − L‖x− y‖2 = θ2L(x;F ).

Theorem A.4. If F is L-Lipschitz continuous in X and x ∈ X is a (ρ, ε)-weak
solution of VIP(F,X), then x is (ρ̃, ε)-strong solution, where ρ̃ := ρ+ 2

√
Lε.

Proof. By the assumptions of the theorem, there exists r ∈ R
n such that ‖r‖ ≤ ρ

and θw(x, Fr) ≤ ε, where Fr(·) = F (·) − r. Using Lemma A.3, we conclude that
θ2L(x;Fr) ≤ ε. Moreover, by Theorem A.1, there exists a strong residual (r′, ε′) of x
for VIP(x;Fr) such that

1

4L
‖r′‖2 + ε′ = θ2L(x;Fr) ≤ ε.

This implies that θs(x;F − r − r′) = θs(x;Fr − r′) ≤ ε′ ≤ ε and

‖r + r′‖ ≤ ‖r‖ + ‖r′‖ ≤ ρ+ 2
√
Lε = ρ̃,

and hence that x is (ρ̃, ε)-strong solution of VIP(F,X).
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[3] R. S. Burachik, C. A. Sagastizábal, and B. F. Svaiter, ε-enlargements of maximal
monotone operators: Theory and applications, in Reformulation: Nonsmooth, Piecewise
Smooth, Semismooth and Smoothing Methods (Lausanne, 1997), Appl. Optim. 22, Kluwer
Academic Publishers, Dordrecht, The Netherlands 1999, pp. 25–43.

[4] R. S. Burachik and B. F. Svaiter, ε-enlargements of maximal monotone operators in Banach
spaces, Set-Valued Anal., 7 (1999), pp. 117–132.

[5] F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complemen-
tarity Problems, Vol. II, Springer-Verlag, New York, 2003.

[6] E. G. Gol
′
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