
Convergence rate of inexact proximal point methods

with relative error criteria for convex optimization

Renato D. C. Monteiro∗ B. F. Svaiter†

August 22, 2010 (Revised: December 21, 2011)

Abstract

In this paper, we consider a framework of inexact proximal point methods for convex optimiza-
tion that allows a relative error tolerance in the approximate solution of each proximal subproblem
and establish its convergence rate. We then show that the well-known forward-backward splitting
algorithm for convex optimization belongs to this framework. Finally, we propose and establish the
iteration-complexity of an inexact forward-backward splitting algorithm for solving optimization
problems whose objective functions are obtained by maximizing convex-concave saddle functions.

1 Introduction

In this paper, we consider a framework of inexact proximal point (IPP) methods for convex opti-
mization (CO) which allows a relative error tolerance in the approximate solution of each proximal
subproblem. This framework, which we refer to as the IPP-CO framework, is a subset of the hybrid
proximal extragradient (HPE) method introduced by Solodov and Svaiter in [19] (see also [20, 21, 22])
for solving monotone inclusion problems. Global convergence rate results for the HPE method have
been derived in [11] (see also [10]), and hence apply to the IPP-CO framework. However, by ex-
ploiting the special structure of convex optimization, convergence rate results stronger than those
obtained for the HPE method are derived for the IPP-CO framework.

We show, as illustration, that the well-known forward-backward splitting method for convex
optimization (see for example [5]) belongs to the IPP-CO framework and, as a consequence, we derive
iteration-complexity bounds similar to, but under more general assumptions than, those of Theorem 4
of [13]. More specifically, [13] assumes that the sublevel subsets of the objective function are bounded
and express the complexity bounds in terms of the diameter of the sublevel set corresponding to the
initial iterate. On the other hand, our results do not assume boundedness of the sublevel sets and
express the bounds in items of the distance of the initial iterate to the optimal solution set.

We also consider convex optimization problems whose objective functions are obtained by maxi-
mizing convex-concave saddle functions and propose an inexact forward-backward splitting algorithm

∗School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0205. (email:
monteiro@isye.gatech.edu). The work of this author was partially supported by NSF Grants CCF-0808863 and
CMMI-0900094 and ONR Grant ONR N00014-08-1-0033.

†IMPA, Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, Brazil (email: benar@impa.br). The work of this
author was partially supported by CNPq grants 480101/2008-6, 303583/2008-8, FAPERJ grant E-26/102.821/2008 and
PRONEX-Optimization

1

for solving them. The inexactness of the proposed method originates from the assumption that the
objective function and its gradient are approximately evaluated in the sense that the corresponding
saddle function maximization subproblem is solved inexactly. Iteration-complexity bounds are ob-
tained for the inexact forward-backward splitting algorithm by showing that it also belongs to the
IPP-CO framework.

This paper is organized as follows. Subsection 1.1 describes the notation and basic concepts
about convex analysis used in our presentation. Section 2 describes the IPP-CO framework and
derives general convergence rate results for it. Section 3 obtains iteration-complexity results for the
forward-backward splitting method by showing that it belongs to the IPP-CO framework. Section 4
proposes and establishes the iteration-complexity of an inexact forward-backward splitting method
for saddle-based convex optimization problems. Finally, Section 5 gives some concluding remarks.

1.1 Notation

Throughout this paper, X denotes a finite dimensional inner product real vector space with inner
product and induced norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. We let N denote the set of all
positive integers and R denote the set of real numbers. We let R+ and R++ denote the set of non-
negative and positive real numbers, respectively. For a nonempty closed convex set Ω ⊆ X, we denote
the projection operator onto Ω (with respect to 〈·, ·〉) by PΩ. The identity operator from X onto X

is denoted by I. The domain of definition of a point-to-point function F is denoted by Dom F .
For a scalar ε ≥ 0, the ε-subdifferential of a function f : X → R̄ is the point-to-set operator

∂εf : X ⇒ X defined as

∂εf(x) = {v | f(x̃) ≥ f(x) + 〈x̃− x, v〉 − ε, ∀x̃ ∈ X}, ∀x ∈ X. (1)

When ε = 0, the operator ∂εf is simply denoted by ∂f and is referred to as the subdifferential of f .
The operator ∂f is trivially monotone if f is proper. If f is a proper lower semi-continuous convex
function, then ∂f is maximal monotone [17].

The indicator function of a closed convex set X ⊆ X is the function δX : X→ R̄ defined as

δX(x) =

{
0, x ∈ X;
∞, otherwise.

2 A framework of inexact proximal point methods

In this section, we describe the IPP-CO framework of IPP methods for convex optimization. We
mention that the IPP-CO framework does not specify how its steps are implemented, and hence
the overall cost of an iteration of a specific instance of the IPP-CO framework. However, global
convergence rate results, and hence potential complexity bounds on the number of iterations, are
derived for the IPP-CO framework. Sections 3 and 4 describe two specific instances of the IPP-CO
framework for which the actual implementation of the steps are illustrated.

The optimization problem we consider in this section is

f∗ = inf{f(x) : x ∈ X}, (2)

where:

2

O.1) f : X→ R̄ is a proper closed convex function;

O.2) the set of optimal solutions X∗ := {x : f(x) = f∗} is nonempty.

We now state the IPP-CO framework for solving (2).

IPP-CO Framework:

0) Let x0 ∈ X and 0 ≤ σ < 1 be given and set k = 1;

1) choose λk > 0 and find xk ∈ X, σk ∈ [0, σ] and εk ≥ 0 such that

vk :=
1
λk

(xk−1 − xk) ∈ ∂εk
f(xk), 2λkεk ≤ σk‖xk − xk−1‖2 ; (3)

2) set k ← k + 1 and go to step 1.

end

We now make a few observations regarding the IPP-CO framework. First, the inclusion in step
1) can also be described as

xk ∈ (I + λk∂εk
f)−1(xk−1).

Second, if εk = 0 for every k ∈ N, the IPP-CO framework reduces to the exact proximal point
method [9, 18], which is known to be an important tool for the design and analysis of algorithms.
Hence, the IPP-CO framework may be regarded as an IPP method. Third, as opposed to the
inexactness allowed in the classical IPP method of [18], namely:

rk + xk ∈ (I + λk∂f)−1(xk−1),
∞∑

k=1

‖rk‖ <∞,

the IPP-CO framework allows an error in the subgradient inclusion by using the ε-subdifferential and
a relative error criterion, i.e., the second inequality in (3), instead of the summable error tolerance
criterion as above. Fourth, the advantage of allowing the error εk ≥ 0 and the relative error criterion
in the IPP-CO framework is that it contains important instances of convex optimization algorithms
(see Sections 3 and 4), including those for which only approximate gradients of the objective function
can be computed (see for example Section 4 and reference [4]). Fifth, the HPE algorithm for solving
(2) (see [19]) requires, instead of step 1) of the IPP-CO framework, that we find λk > 0, σk ∈ [0, σ],
x̃k ∈ X, vk ∈ X and εk ≥ 0 such that

vk ∈ (∂f)εk(x̃k), ‖λkvk + x̃k − xk−1‖2 + 2λkεk ≤ σk‖x̃k − xk−1‖2,
and then set

xk = xk−1 − λkvk,

where (∂f)εk is the ε-enlargement (see for example [2]) of the maximal monotone operator ∂f . Since
∂εf(x) ⊆ (∂f)ε(x) for every x ∈ X (see for example Lemma 3.4 and Theorem 3.5 in [23]), we easily
see that the IPP-CO framework is a special case of the HPE method by letting x̃k = xk.

In what follows, we will derive a convergence rate result (Theorem 2.5) for the IPP-CO framework.
First, we need to establish a few technical lemmas.

3

Lemma 2.1. For every k ∈ N,

f(x) ≥ f(xk) + 〈x− xk, vk〉 − σ

2
λk‖vk‖2, ∀x ∈ X. (4)

Proof. Using the fact that vk ∈ ∂εk
f(xk) by (3), and definition (1), we have

f(x) ≥ f(xk) + 〈x− xk, vk〉 − εk ≥ f(xk) + 〈x− xk, vk〉 − σ

2λk
‖xk − xk−1‖2, ∀x ∈ X,

where the last inequality is due to the assumption that σk ∈ [0, σ] and the inequality in (3). Now,
(4) follows from the above inequality and the definition of vk in (3).

Lemma 2.2. For every k ∈ N and x∗ ∈ X∗, we have:

f(xk−1) ≥ f(xk) +
(
1− σ

2

)
λk‖vk‖2, (5)

and
1
2
‖x∗ − xk−1‖2 ≥ 1

2
‖x∗ − xk‖2 +

1− σ

2
λ2

k‖vk‖2 + λk(f(xk)− f(x∗)). (6)

Proof. In view of the definition of vk in (3), inequality (5) follows immediately from (4) with x = xk−1.
Now, using again the definition of vk, we have

1
2
‖x∗ − xk−1‖2 =

1
2
‖x∗ − xk‖2 +

1
2
‖xk − xk−1‖2 + 〈x∗ − xk, xk − xk−1〉

=
1
2
‖x∗ − xk‖2 +

1
2
λ2

k‖vk‖2 + λk〈xk − x∗, vk〉.

Inequality (6) now follows by combining the latter inequality and (4) with x = x∗.

Lemma 2.3. Define

Λ0 = 0, Λk =
k∑

i=1

λi, ∀k ∈ N. (7)

Then, for any k ∈ N and x∗ ∈ X∗,

1
2
‖x∗ − xk−1‖2 + Λk−1(f(xk−1)− f∗)

≥ 1
2
‖x∗ − xk‖2 + Λk(f(xk)− f∗) +

1− σ

2
Λkλk‖vk‖2. (8)

Proof. By (5), we have

Λk−1(f(xk−1)− f∗) ≥ Λk−1

(
f(xk)− f∗ +

(
1− σ

2

)
λk‖vk‖2

)
.

The result now follows by adding this inequality to (6), using the fact that Λk = Λk−1 + λk and
1− σ/2 ≥ (1− σ)/2.

The following result follows by adding inequality (8) from 1 to k.

4

Lemma 2.4. For any k ∈ N and x∗ ∈ X∗,

1
2
‖x∗ − x0‖2 ≥ 1

2
‖x∗ − xk‖2 + Λk(f(xk)− f∗) +

1− σ

2

k∑
j=1

Λjλj‖vj‖2.

We are now ready to state the convergence rate result for the IPP-CO framework. Throughout
this paper, we denote the distance of x0 to X∗ by d0.

Theorem 2.5. For every k ∈ N, the following statements hold:

a) f(xk)− f∗ ≤ d2
0/(2Λk);

b) vk ∈ ∂εk
f(xk) and there exists i ≤ k such that

‖vi‖ ≤ d0

(1− σ)1/2Θ1/2
k

, εi ≤ σd2
0λi

2(1− σ)Θk
, (9)

where Λk is defined in (7) and Θk :=
∑k

j=1 λjΛj .

Proof. Fix k ∈ N. Let x∗ ∈ X∗ be such that ‖x∗ = x0‖ = d0. By Lemma 2.4 with such x∗ ∈ X∗, we
have

d2
0

2
≥ Λk(f(xk)− f∗) +

1− σ

2

k∑
j=1

Λjλj‖vj‖2,

which immediately implies a). To prove item b), let i be such that

i ∈ Argmin{‖vj‖ | j = 1, . . . , k}.
Using the previous inequality, the above definition and the definition of Θk, we conclude that

d2
0

2
≥ 1− σ

2

⎛
⎝ k∑

j=1

Λjλj

⎞
⎠ ‖vi‖2 =

1− σ

2
Θk‖vi‖2,

which clearly implies the first inequality in b). Moreover, by (3) and the assumption that σi ∈ [0, σ],
we have 2λiεi ≤ σ‖λivi‖2. Hence, εi ≤ λiσ‖vi‖2/2 and the second inequality in b) follows from the
first one in b). Since the inclusion in b) follows immediately from (3), the result follows.

In the remaining part of this section, we focus our attention on those instances of the IPP-
CO framework in which the sequence of stepsizes {λk} is constant. The first result below is a
specialization of Theorem 2.5 to these instances.

Corollary 2.6. Consider an instance of the IPP-CO framework with λk = λ > 0 for every k ∈ N.
Then, for every k ∈ N, the following statements hold:

a) f(xk)− f∗ ≤ d2
0/(2kλ);

b) vk ∈ ∂εk
f(xk) and there exists i ≤ k such that

‖vi‖ ≤
√

2d0

(1− σ)1/2λk
, εi ≤ σd2

0

(1− σ)λk2
.

5

Proof. This result follows immediately from Theorem 2.5 and the fact that Λk = kλ and Θk =
λ2k(k + 1)/2, which are due to the assumption that λk = λ for every k ∈ N.

We observe that the bounds on ‖vi‖ and εi implied by the analysis of the HPE method in [11] are
O(1/

√
k) and O(1/k), respectively. Hence, the bounds obtained in Corollary 2.6 for those instances

of the IPP-CO framework with constant stepsizes improve the ones implied by the analysis of [11].
Consider the natural goal of obtaining the following notion of approximate solution.

Definition 2.7. For a given tolerance pair (ρ̄, ε̄) ∈ R
2
++, x̄ ∈ X is called a (ρ̄, ε̄)-solution of (2) if

there exists a pair (v, ε) ∈ X× R+ such that

v ∈ ∂εf(x̄), ‖v‖ ≤ ρ̄, ε ≤ ε̄,

in which case (v, ε) is said to be a (ρ̄, ε̄)-residual for x̄.

Observe that a stopping condition based on the above notion of approximate solution has the
nice feature that it can be used for instances of (2) in which the effective domain of f is unbounded.

The following iteration-complexity result follows as an immediate consequence of Corollary 2.6(b).

Corollary 2.8. For a given tolerance pair (ρ̄, ε̄) ∈ R
2
++, an instance of the IPP-CO framework

with λk = λ > 0 for every k ∈ N, finds a (ρ̄, ε̄)-solution of (2), together with a corresponding
(ρ̄, ε̄)-residual, in at most

O

(
max

{⌈
d0

λρ̄

⌉
,

⌈
d0√
λε̄

⌉})
iterations.

We now discuss the complexity of computing and detecting an ε̄-solution of (2), i.e., a solution
x̄ such that f(x̄)− f∗ ≤ ε̄. Note that x̄ is ε̄-solution of (2) if, and only if, x̄ is a (0, ε̄)-solution of (2)
in the sense of Definition 2.7. Clearly, verification that an iterate is an ε̄-solution directly from its
definition is only possible for those instances of (2) in which f∗ is known.

Consider now those instances of (2) for which f∗ is not known. Corollary 2.6(a) provides one
trivial way of detecting an ε̄-solution based on the stopping criterion D2

0/(2kλ) ≤ ε̄, where D0 is a
known upper bound on d0. For example, when dom f is bounded and x0 ∈ dom f , then D0 can be
chosen to be a known upper bound on the diameter of dom f . Another possibility for detecting an
ε̄-solution is to use the stopping criterion

max {〈vk, xk − x〉+ εk : x ∈ C} ≤ ε̄, (10)

where C is a “simple” compact convex set containing the effective domain of f . Note that the validity
of (10) implies that xk is an ε̄-solution. Indeed, assuming (10) and using the fact that vk ∈ ∂εk

f(xk),
we conclude that

f(xk)− f∗ = f(xk)− f(x∗) ≤ 〈xk − x∗, vk〉+ εk ≤ ε̄,

where x∗ is an arbitrary optimal solution of (2). The following result describes the iteration-
complexity for finding an iterate satisfying (10), which is then a provably ε̄-solution of (2).

6

Corollary 2.9. Consider an instance of the IPP-CO framework with λk = λ > 0 for every k ∈ N,
applied to an instance of (2) in which dom f is bounded. Assume that a compact convex set C
containing dom f is given and let DC denote the diameter of C. Then, there exists an index

i = O

(⌈
d0DC

λε̄

⌉)

such that the iterate xi satisfies (10). As a consequence, for any k ≥ i, xk is an ε̄-solution of (2).

Proof. Let k̄ be the smallest k ∈ N satisfying
√

2DCd0

(1− σ)1/2λk
+

σd2
0

(1− σ)λk2
≤ ε̄.

In view of the definition of k̄, the fact that d0 ≤ DC and Corollary 2.6, there exists

i ≤ k̄ = O

(
max

{⌈
d0DC

λε̄

⌉
,

⌈
d0√
λε̄

⌉})
= O

(⌈
d0DC

λε̄

⌉)

such that

max {〈vi, xi − x〉+ εi : x ∈ C} ≤ DC‖vi‖+ εi ≤
√

2DCd0

(1− σ)1/2λk̄
+

σd2
0

(1− σ)λk̄2
≤ ε̄.

Thus, xi satisfies (10). Moreover, in view of (5) and the observation preceding Corollary 2.9, we
conclude that f(xk)− f∗ ≤ f(xi)− f∗ ≤ ε̄ for every k ≥ i.

Note that, under the assumption of Corollary 2.9, it is also possible to use the first stopping
criterion discussed above with D0 = DC , namely D2

C/(2kλ) ≤ ε̄. Clearly, the iteration-complexity
bound for IPP-CO framework based on this stopping criterion would be O(�D2

C/(λε̄)�), which is
substantially worse than the one stated in Corollary 2.9 when d0 << DC .

Finally, observe also that the above discussion would also hold had we only made the weaker
assumption that the compact convex set C is such that x0 ∈ C and C ∩X∗ �= ∅.

3 Application I: Forward-backward splitting method

In this section, we show that the well-known forward-backward splitting method (see for example
[5]) is a special case of the IPP-CO framework described in the previous section.

In this section, we assume that

S.1) h : X → R̄ is a proper closed convex function and p : X → R̄ is a proper function such that
dom p ⊇ dom h;

S.2) p is convex on dom h and there exists an L-Lipschitz function g : Dom g ⊂ X → X such that
Dom g ⊇ dom h and

0 ≤ p(x̃)− p(x)− 〈g(x), x̃− x〉 ≤ L

2
‖x̃− x‖2, ∀x, x̃ ∈ dom h; (11)

7

and consider the optimization problem (2) in which the objective function f is assumed to have the
following structure:

f(x) :=

{
p(x) + h(x), x ∈ dom h,

+∞, x /∈ dom h.
(12)

We now discuss Assumption S.2. If p is differentiable and convex on domh and ∇p is L-Lipschitz
continuous on domh, then g = ∇p satisfies S.2. However, the weaker assumption S.2 do not require
p to be differentiable on domh, and hence to be defined in a neighborhood of domh. This generality
will be particularly useful when dealing with the primal function of a convex-concave saddle function
(see Section 4). It can also be shown that the second inequality in (11) is implied by the other
conditions assumed in S.2, and hence can be dropped.

The following simple result, whose proof is given in the appendix, establishes the lower semi-
continuity of f .

Proposition 3.1. Under Assumptions S.1 and S.2, the function f defined in (12) is proper closed
convex.

We now state the algorithm we are interested in studying in this section.

Algorithm I (Forward-backward splitting algorithm for (2)-(12)):

0) Let x0 ∈ X and 0 ≤ σ < 1 be given and set λ = σ/L and k = 1;

1) compute xk ∈ X as
xk = (I + λ∂h)−1(xk−1 − λg(xk−1)); (13)

2) set k ← k + 1 and go to step 1.

end

We now explain the terminology “forward-backward splitting” used by Algorithm I. If p is a
differentiable convex function with L-Lipschitz continuous gradient, then (13) becomes

xk = (I + λ∂h)−1(xk−1 − λ∇p(xk−1)).

Note that in this case, this algorithm is a particular case of a more general method which iterates as

xk+1 = (I + λA)−1(xk−1 − λB(xk−1)) = (I + λA)−1(I − λB)(xk−1),

where A is a point-to-set maximal monotone operator and B is a point-to-point monotone map.
According to [3, 26, 5], the above method is called the forward-backward splitting method, and
converges to a solution of the inclusion 0 ∈ (A+B)(x), whenever B is L-co-coercive and 0 < λ < 1/L.
Its origin dates back to [7, 1, 8, 15] or even earlier (see [26] and the references therein). In addition
to convex optimization, this method has also been used to solve variational and complementarity
problems as far back as 1982 (see [14, 6, 25, 24]). According to [3, 5], the easily computable step

yk = (I − λB)(xk−1) = xk−1 − λB(xk−1),

is the “forward” step in the direction −B(xk−1), while the backward step is the evaluation of the
resolvent

xk = (I + λA)−1(yk).

8

In the remaining part of this section, we study the iteration-complexity of Algorithm I. Our first
goal is show that Algorithm I is a special instance of the IPP-CO framework. We start by stating
the following well-known transportation formula for the subgradient of a proper convex function.

Lemma 3.2. If φ : X→ R̄ be a proper convex function and x, x̃, v ∈ X are such that v ∈ ∂φ(x) and
φ(x̃) <∞, then v ∈ ∂εφ(x̃) for every ε ≥ φ(x̃)− [φ(x) + 〈x̃− x, v〉].

We are now ready to show that Algorithm I is a special case of the IPP-CO framework.

Theorem 3.3. Consider the sequence {xk} generated by Algorithm I and the sequences {hk}, {εk},
{σk} and {λk} defined for every k ∈ N as σk = σ, λk = λ,

hk :=
1
λ

(xk−1 − xk)− g(xk−1), εk := p(xk)− p(xk−1)− 〈g(xk−1), xk − xk−1〉.

Then, for every k ∈ N, (3) holds with f = p + h. As a consequence, Algorithm I is a special case of
the IPP-CO framework.

Proof. First note that (13) and the definition of hk imply that hk ∈ ∂h(xk). Now, consider the
function p̃ : X→ R̄ defined as

p̃(x) =

{
p(x), x ∈ dom h,

∞, x /∈ dom h.
(14)

Clearly, p̃ is a proper convex function, f = p̃ + h and, in view of the first inequality in (11),
g(x) ∈ ∂p̃(x) for every x ∈ dom h. Moreover, using the definition of εk and Lemma 3.2 with
(φ, x, x̃, v) = (p̃, xk−1, xk, g(xk−1)), we conclude that g(xk−1) ∈ ∂εk

p̃(xk), and hence that

xk−1 − xk

λk
= g(xk−1) + hk ∈ ∂εk

p̃(xk) + ∂h(xk) ⊆ ∂εk
(p̃ + h)(xk) = ∂εk

f(xk), (15)

where the first identity is due to the definition of hk and λk, and the last inclusion follows from a
well-known property about subgradients. Also, the second inequality in (11), the definition of εk, λk

and σk, and the assumption that λ = σ/L, imply that

2λkεk = 2λεk ≤ λL‖xk − xk−1‖2 = σk‖xk − xk−1‖2.
The complexity result below follows as a consequence of the above result and Corollary 2.6. A

similar result was obtained in Theorem 4 of [13] under the assumption that the sublevel sets of f are
bounded, and the bounds are expressed in terms of the diameter of the sublevel set determined by
the initial iterate. On the hand, the result below gives bounds in terms of d0 and does not assume
that the sublevel sets of f are bounded.

Corollary 3.4. Consider the sequence {xk} generated by Algorithm I and the sequences {hk} and
{εk} defined as in Theorem 3.3. Then, for every k ∈ N, the following statements hold:

a) f(xk)− f∗ ≤ Ld2
0/(2kσ);

b) g(xk−1) ∈ ∂εk
p(xk) and hk ∈ ∂h(xk), and hence g(xk−1) + hk ∈ ∂εk

f(xk); moreover, there
exists i ≤ k such that

‖g(xi−1) + hi‖ ≤
√

2
(1− σ)1/2σ

Ld0

k
, εi ≤ Ld2

0

(1− σ)k2
,

9

and

‖g(xi) + hi‖ ≤
√

2(1 + σ)
(1− σ)1/2σ

Ld0

k
.

Proof. By Theorem 3.3, Algorithm I is a special case of the IPP-CO framework with λk = λ for every
k ∈ N. This observation together with Corollary 2.6(a), and the assumption that λk = λ = σ/L
for every k ∈ N, immediately imply a). We now prove b). First note that the inclusions in b) have
already been shown in the proof of Theorem 3.3. The first two estimates in b) follow from Corollary
2.6(b), the assumption that λk = λ = σ/L for every k ∈ N, and the first identity in (15). Moreover,
the last estimate follows from the first one, the triangle inequality for norms, and the fact that, by
Assumption S.2 and the definition of hk and λ, we have

‖g(xi)− g(xi−1)‖ ≤ L‖xi − xi−1‖ = λL‖g(xi−1) + hi‖ = σ‖g(xi−1) + hi‖.
We end this section by making some remarks. First, when h = δX for some nonempty closed

convex set X ⊆ X, Algorithm I reduces to the classical projected gradient method, which is based
on the following recursive formula

xk = PX(xk−1 − λg(xk−1)). (16)

This is due to the fact that the resolvent (I+λ∂h)−1 of ∂h in expression (13) is exactly the projection
operator PX onto X. Second, all the analysis of this section holds for any L ≥ Lg, where Lg is the
smallest Lipschitz constant for the map g. If a constant L ≥ Lg is not known a priori, then we can
use the ideas of [13] for estimating such a constant. Third, in fact Algorithm I does not need to work
with a fixed stepsize λ = σ/L for some L ≥ Lg, but only with an adaptive stepsize λk > 0 such that

2λk [p(xk)− p(xk−1)− 〈xk − xk−1, g(xk−1)〉] ≤ σ‖xk − xk−1‖2.
where xk := (I + λk∂h)−1(I − λkg)(xk−1).

4 Application II: A saddle point problem

In this section, we consider an optimization problem of the form (2)-(12), where the function p
is assumed to be the primal function associated with a convex-concave saddle function. We then
develop an inexact forward-backward splitting method for solving it in which the gradient of p is
computed only in an approximate sense.

We will now describe the structure of the function p in detail. Let Y denote another finite
dimensional inner product space with inner product and associated norm also denoted by 〈·, ·〉 and
‖ · ‖, respectively. Let Ψ : Dom Ψ ⊆ X× Y→ R and convex sets X ⊆ X and Y ⊆ Y such that

X × Y ⊆ Dom Ψ, dom h ⊆ X (17)

be given. Assume that:

C.1) for every y ∈ Y , the function Ψ(·, y) is differentiable and convex on X;

C.2) there exist Lxx, Lxy ≥ 0 such that

‖∇xΨ(x′, y′)−∇xΨ(x, y)‖ ≤ Lxx‖x′ − x‖+ Lxy‖y′ − y‖, ∀(x, y), (x′, y′) ∈ X × Y ;

10

C.3) there exists β > 0 such that, for every x ∈ X, the function ΨY (x, ·) : X→ (−∞,∞] defined as

ΨY (x, y) =

{
Ψ(x, y), y ∈ Y,

−∞, y /∈ Y,

is an upper semi-continuous β-strongly concave function.

The function p : X→ R̄ is then defined as

p(x) :=
{

supy∈Y Ψ(x, y), if x ∈ X;
+∞, otherwise.

(18)

In view of conditions C.1 and C.3 and assumption (17), p is a proper convex function such that
dom p = X ⊇ dom h. This observation together with Proposition 4.1 below imply that the functions
p and h, and the map g : X → X defined as

g(x) = ∇xΨ(x, y(x)), ∀x ∈ X,

where
y(x) := arg max

y∈Y
Ψ(x, y), (19)

satisfy conditions S.1 and S.2 of Section 3. Hence, direct application of Algorithm I to problem
(2)-(12), with p of the form (18), requires the computation of the exact solution of an optimization
problem of the form (18) at every iteration in order to evaluate g(xk−1) in (13). However, such an
approach is only possible for those instances of (2)-(12)-(18) for which it is possible to compute y(x)
as in (19) for every x ∈ X. An natural idea to circumvent this drawback is to instead work with
approximate solutions of (18) which, in view of the result below, yield approximate subgradients of
p.

Proposition 4.1. Let η ≥ 0 and x̄ ∈ X be given. Assume that ȳ ∈ Y is such that

p(x̄)−Ψ(x̄, ȳ) ≤ η. (20)

and define ḡ := ∇xΨ(x̄, ȳ) and

L := 2

(
Lxx +

L2
xy

β

)
. (21)

Then, the following statements hold:

a) ḡ ∈ ∂ηp(x̄);

b) for every x ∈ X,

p(x) ≤ p(x̄) + 〈ḡ, x− x̄〉+ L

2
‖x− x̄‖2 + η; (22)

c) for every x̃ ∈ X, we have ḡ ∈ ∂η̃p(x̃), where

η̃ = η̃(x̃) := 2η +
L

2
‖x̃− x̄‖2.

11

Proof. a) Using (20), the definition of p and Assumption C.1, we conclude that

p(x)− p(x̄) ≥ p(x)−Ψ(x̄, ȳ)− η ≥ Ψ(x, ȳ)−Ψ(x̄, ȳ)− η

≥ 〈∇xΨ(x̄, ȳ), x− x̄〉 − η, ∀x ∈ X,

and hence that that ḡ ∈ ∂ηp(x̄).
b) Using Assumption C.3, Proposition B.2 with h = −ΨY (x̄, ·), and the fact that −p(x̄) =

min{−ΨY (x̄, y) : y ∈ Y}, we conclude that

−Ψ(x̄, y) ≥ −p(x̄) +
β

2

(
‖y − ȳ‖ −

√
2η
β

)2

, ∀y ∈ Y.

Also, by Assumptions C.1 and C.2 and the definition of ḡ, we have

Ψ(x̄, y)−Ψ(x, y)− 〈ḡ, x̄− x〉 ≥ 〈∇xΨ(x, y)−∇xΨ(x̄, ȳ), x̄− x〉
≥ −‖∇xΨ(x, y)−∇xΨ(x̄, ȳ)‖ ‖x − x̄‖
≥ − (Lxx‖x− x̄‖+ Lxy‖y − ȳ‖) ‖x− x̄‖, ∀(x, y) ∈ X × Y.

Adding these two inequalities, we then conclude that for every (x, y) ∈ X × Y ,

Ψ(x, y) ≤ p(x̄) + 〈ḡ, x− x̄〉+ Lxx‖x− x̄‖2 + Lxy‖y − ȳ‖ ‖x− x̄‖ − β

2

(
‖y − ȳ‖ −

√
2η
β

)2

≤ p(x̄) + 〈ḡ, x− x̄〉+ Lxx‖x− x̄‖2 + max
t∈R

{
Lxy‖x− x̄‖t− β

2

(
t−

√
2η
β

)2
}

= p(x̄) + 〈ḡ, x− x̄〉+
(

Lxx +
L2

xy

2β

)
‖x− x̄‖2 +

√
2η
β

Lxy‖x− x̄‖

≤ p(x̄) + 〈ḡ, x− x̄〉+
(

Lxx +
L2

xy

β

)
‖x− x̄‖2 + η.

Inequality (22) now follows from the definition of p and the previous relation.
c) Since ḡ ∈ ∂ηp(x̄), it follows that for any x ∈ X,

p(x) ≥ p(x̄) + 〈ḡ, x− x̄〉 − η = p(x̃) + 〈ḡ, x− x̃〉 − [η + p(x̃)− p(x̄)− 〈ḡ, x̃− x̄〉]

≥ p(x̃) + 〈ḡ, x− x̃〉 −
[
2η +

L

2
‖x̃− x̄‖2

]
≥ p(x̃) + 〈ḡ, x− x̃〉 − η̃.

Hence, ḡ ∈ ∂η̃p(x̃).

Our main goal now is to state an inexact version of Algorithm I for solving problem (2)-(12), with
function p given by (18). The method, which we refer to as the inexact forward-backward splitting
algorithm, is as follows.

12

Algorithm II (An inexact forward-backward splitting algorithm for (2)-(12)-(18)):

0) define L as in (21) and let x0 ∈ X, 0 ≤ σ < 1, λ ∈ (0, σ/L) and a tolerance pair (ρ̄, ε̄) ∈ R
2
++

be given; set k = 1 and

η := min
{

ρ̄2λ(σ − λL)
4

,
ε̄(σ − λL)

2σ

}
; (23)

1) use the black-box to compute yk ∈ Y such that

p(xk−1)−Ψ(xk−1, yk) ≤ max
{

η ,
(σ − λL)

4λ
‖xk(yk)− xk−1‖2

}
, (24)

and set xk = xk(yk), where

xk(y) := (I + λ∂h)−1(xk−1 − λ∇xΨ(xk−1, y)), ∀y ∈ Y; (25)

2) if
σ − λL

4λ
‖xk − xk−1‖2 ≤ η, (26)

then stop and output (xk, vk, εk), where

εk = 2max
{

η ,
(σ − λL)

4λ
‖xk − xk−1‖2

}
+

L

2
‖xk − xk−1‖2, vk :=

xk−1 − xk

λ
;

otherwise, set k ← k + 1 and go to step 1.

end

Note that step 2 of Algorithm II requires a subroutine that is able to obtain an approximate
solution xk of the problem min{−Ψ(xk−1, y) : y ∈ Y } in the sense that its functional error p(xk−1)−
Ψ(xk−1, yk) is bounded by an adaptive tolerance, i.e., the right hand side of (24), that has the
following properties: i) it is bounded below by η; ii) it is larger than η in those iterations for which
the stopping criterion (26) is not satisfied.

In what follows, we establish iteration-complexity bounds for Algorithm II by using the fact that
it is a special instance of the IPP-CO framework.

Lemma 4.2. The following statements hold:

a) vk ∈ ∂εk
p(xk) + ∂h(xk) ⊆ ∂εk

f(xk);

b) inequality (26) holds if, and only if, ‖vk‖ ≤ ρ̄ and εk ≤ ε̄.

As a consequence, if Algorithm II stops at step 2, then xk is a (ρ̄, ε̄)-solution of (2)-(12)-(18) and
(vk, εk) is a (ρ̄, ε̄)-residual at xk.

Proof. We first prove a). First, note that (24), Proposition 4.1(c) and the definition of εk imply that

∇xΨ(xk−1, yk) ∈ ∂εk
p(xk).

13

This inclusion, the definition of vk, and (25) with y = yk, then imply that

vk =
xk−1 − xk

λ
∈ ∇xΨ(xk−1, yk) + ∂h(xk)

∈ ∂εk
p(xk) + ∂h(xk) = ∂εk

[p + h](xk) = ∂εk
f(xk). (27)

We now prove b). Using the definition of vk, we easily see that ‖vk‖ ≤ ρ̄ if, and only if,

σ − λL

4λ
‖xk − xk−1‖2 ≤ ρ̄2λ(σ − λL)

4
.

Moreover, using the definition of εk, we easily see that εk ≤ ε̄ if, and only if,

σ − λL

4λ
‖xk − xk−1‖2 ≤ (σ − λL)

2
min

{
ε̄

σ
,

ε̄− 2η
Lλ

}
=

ε̄(σ − λL)
2σ

,

where the last equality follows from the fact that η ≤ ε̄(σ − λL)/(2σ), due to (23). In view of the
definition of η in (23), we have thus shown that (b) holds.

Lemma 4.3. If Algorithm II does not stop at the k-th iteration, then (3) holds with f = p + h,
σk = σ and λk = λ.

Proof. The assumption of the lemma implies that (26) does not hold. This together with the defini-
tion of εk then imply that

εk =
(σ − λL)

2λ
‖xk − xk−1‖2 +

L

2
‖xk − xk−1‖2 =

σ

2λ
‖xk − xk−1‖2,

which, together with (27), shows that (3) holds with f = p + h, σk = σ and λk = λ.

Theorem 4.4. Algorithm II terminates in at most

O

(
max

{⌈
d0

λρ̄

⌉
,

⌈
d0√
λε̄

⌉})
(28)

iterations with a (ρ̄, ε̄)-solution of (2)-(12)-(18) together with a corresponding (ρ̄, ε̄)-residual.

Proof. Assume that Algorithm II has not stopped at the k-th iteration. In view of Lemma 4.3, it
follows that Algorithm II (until the k-th iteration) is a special case of the IPP-CO framework in
which λi = λ for every i = 1, . . . , k. Hence, in view of Corollary 2.8, we conclude that k is bounded
above by (28). Thus, the conclusion of the theorem follows.

Note that checking whether (24) holds requires that p(·) be evaluated at xk−1, which is exactly
what the approach described in this section is trying to avoid. For the sake of shortness, let ηk denote
the right hand side of (24). Clearly, (24) is equivalent to the inclusion

0 ∈ ∂ηk
[−ΨY (xk−1, ·)](yk),

It turns out that we may instead use the checking criterion:

wk ∈ ∂τk
[−ΨY (xk−1, ·)](yk),

14

where (wk, τk) ∈ Y× R+ is a (small) residual pair. The result below shows that, as long as (wk, τk)
is sufficiently small, we can still guarantee that the first condition above holds. Moreover, it is
worth noting that, in view of Theorem 2.5(b) and/or Corollary 2.6(b), any instance of the IPP-CO
framework, and in particular Algorithm I, applied to the problem

min
y∈Y

(−ΨY)(xk−1, y) = max
y∈Y

Ψ(xk−1, y)

will eventually generate a pair as above, without any need to evaluate p.

Proposition 4.5. Let x ∈ X be given and assume that (y, ε, w) ∈ Y × R+ × Y satisfies

w ∈ ∂ε[−ΨY (x, ·)](y). (29)

Then,

p(x)−Ψ(x, y) ≤
(‖w‖√

2β
+
√

ε

)2

. (30)

Proof. Define the function φ := −ΨY (x, ·)−〈w, ·〉. Note that condition C.3 implies that φ is a proper
lower semi-continuous β-strongly convex function. Moreover, assumption (29) is equivalent to the
condition that 0 ∈ ∂εφ(y), or equivalently

φ(y)− φ∗ ≤ ε, (31)

where φ∗ := inf{φ(y′) : y′ ∈ Y}. Hence, it follows from Proposition B.2 that for every ỹ ∈ Y:

φ(ỹ) ≥ φ∗ +
β

2

(
‖ỹ − y‖ −

√
2ε
β

)2

≥ φ(y)− ε +
β

2

(
‖ỹ − y‖ −

√
2ε
β

)2

,

where the last inequality is due to (31). Noting the definition of φ and ΨY (x, ·), we easily see that
the above inequality implies that

Ψ(x, ỹ)−Ψ(x, y)− ε ≤ 〈w, ỹ − y〉 − β

2

(
‖ỹ − y‖ −

√
2ε
β

)2

≤ max

{
‖w‖‖y′ − y‖ − β

2

(
‖y′ − y‖ −

√
2ε
β

)2
}

=
√

2ε
β
‖w‖ +

‖w‖2
2β

, ∀ỹ ∈ Y.

This inequality together with (18) then imply that (30) holds.

In view of the above result, Algorithm II with step 1 replaced by the following alternative step
would still possess all the convergence properties of its original version.

Step 1’: Compute (yk, εk, wk) ∈ Y × R+ × Y such that

wk ∈ ∂εk
[−ΨY (xk−1, ·)](yk),

(‖wk‖√
2β

+
√

εk

)2

≤ max
{

η ,
(σ − λL)

4λ
‖xk(yk)− xk−1‖2

}
.

15

5 Concluding Remarks

After the release of the first version of this work, Devolder at al. released the paper [4], where un-
accelerated and/or accelerated inexact first-order (gradient) methods for convex optimization are
proposed. In particular, they discuss how their methods can be used to minimize primal func-
tions associated with convex-concave saddle-point problems, where the inner subproblems (needed
to evaluate the primal functions) are solved inexactly. Motivated by their work, we have added a new
section, namely Section 4, to the present version, dealing with the same type of saddle-based convex
minimization problems. However, we note that the class of saddle functions considered here, i.e.,
those satisfying conditions C.1-C.3 of Section 4, are more general than those considered in Section
3.2 of [4].

Observe that condition C.3 requires that the saddle function ΨY (x, ·) be β-strongly concave for
every x ∈ X. For saddle functions which satisfies C.1, C.2 and C.3 with β = 0, it is possible to
add, for some small μ > 0, a μ-strongly concave function on Y to Ψ to obtain a perturbed saddle
function satisfying C.1, C.2 and C.3 with β = μ > 0, to which Algorithm II can be applied. Under
the assumption that Y is a compact convex set and by properly choosing μ > 0, it is possible to
present an unaccelerated smoothing minimization scheme where the primal function of the perturbed
saddle function is minimized by an instance of the IPP-CO framework and the inner subproblems
solved inexactly instead of exactly as in the accelerated smoothing minimization scheme of [12]. For
the sake of shortness, we have omitted the details of the aforementioned smoothing minimization
scheme.

A Proof of Proposition 3.1

Our goal in this section is to establish Proposition 3.1.

Lemma A.1. Let φ : X → R̄ be a proper convex function such that φ restricted to its domain is
lower semi-continuous. Then, cl φ(x) = φ(x) for every x ∈ dom φ.

Proof. We know that (cl f)(x) = lim infy→x f(y) for every x ∈ X. Since, by assumption,

lim inf
y→x

y∈dom f

f(y) = f(x), ∀x ∈ X,

and f(y) =∞ for every y /∈ dom φ, the result follows.

Proof of Proposition 3.1. Consider the function p̃ defined according to (14). We know that p̃ is a
proper convex function and f = p̃ + h. Since dom p̃ = dom h �= ∅, it follows from Theorem 9.3 of
[16] and Assumption S.1 that cl f = cl p̃ + h. Moreover, since p̃ is continuous on its domain due
to (11), we conclude from Lemma A.1 that cl p̃ and p̃ coincide on dom p̃ = dom g. Based on these
observations, we can now easily see that cl f = f .

B A technical result on convex optimization

In this section, we establish a technical result, namely Proposition B.2, needed in the proof of
Proposition 4.1.

16

Proposition B.1. Let φ : X → (−∞,∞] be a proper lower semi-continuous β-strongly convex
function. Then, the problem

φ∗ := inf{φ(x) : x ∈ X} (32)

has a unique optimal solution x∗ ∈ X and

φ(x) ≥ φ∗ +
β

2
‖x− x∗‖2, ∀x ∈ X. (33)

Using the above proposition, we can now establish the following variant of the above result.

Proposition B.2. Let φ : X → (−∞,∞] be a proper lower semi-continuous β-strongly convex
function and assume that x̄ is a η-approximate solution of (32), i.e., it satisfies

φ(x̄)− φ∗ ≤ η. (34)

Then,

φ(x) ≥ φ∗ +
β

2

(
‖x− x̄‖ −

√
2η
β

)2

, ∀x ∈ X.

Proof. By (33) with x = x̄ and (34), we have

β

2
‖x̄− x∗‖2 ≤ φ(x̄)− φ∗ ≤ η.

This inequality together with (33) then imply that

φ(x)− φ∗ ≥ β

2
‖x− x∗‖2 ≥ β

2
(‖x− x̄‖ − ‖x̄− x∗‖)2 ≥ β

2

(
‖x− x̄‖ −

√
2η
β

)2

.

References

[1] R. E. Bruck, Jr. An iterative solution of a variational inequality for certain monotone operators
in Hilbert space. Bull. Amer. Math. Soc., 81(5):890–892, 1975.

[2] R. S. Burachik, Alfredo N. Iusem, and B. F. Svaiter. Enlargement of monotone operators with
applications to variational inequalities. Set-Valued Anal., 5(2):159–180, 1997.

[3] G. H.-G. Chen and R. T. Rockafellar. Convergence rates in forward-backward splitting. SIAM
J. Optim., 7(2):421–444, 1997.

[4] O. Devolder, F. Glineur, and Y. E. Nesterov. First-order methods of smooth convex optimiza-
tion with inexact oracle. Core discussion paper 2011/02, Center for Operations Research and
Econometrics (CORE), Catholic University of Louvain, December 2010.

[5] F. Facchinei and J.-S. Pang. Finite-dimensional variational inequalities and complementarity
problems, Volume II. Springer-Verlag, New York, 2003.

[6] D. Gabay. Applications of the method of multipliers to variational inequalities. In M. Fortin and
R. Glowinski, editors, Augmented Lagrangian Methods: Applications to the Numerical Solution
of Boundary-value Problems, Amsterdam, 1983. North-Holland Publishing Company.

17

[7] A. A. Goldstein. Convex programming in Hilbert space. Bull. Amer. Math. Soc., 70:709–710,
1964.

[8] P.-L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators. SIAM
J. Numer. Anal., 16(6):964–979, 1979.

[9] B. Martinet. Régularisation d’inéquations variationnelles par approximations successives. Rev.
Française Informat. Recherche Opérationnelle, 4(Ser. R-3):154–158, 1970.

[10] R. D. C. Monteiro and B. F. Svaiter. Complexity of variants of Tseng’s modified F-B splitting and
Korpelevich’s methods for generalized variational inequalities with applications to saddle point
and convex optimization problems. Manuscript, School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0205, USA, July 2010. To appear in SIAM
Journal on Optimization.

[11] R. D. C. Monteiro and B. F. Svaiter. On the complexity of the hybrid proximal extragradient
method for the iterates and the ergodic mean. SIAM J. Optim., 20(6):2755–2787, 2010.

[12] Y. E. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Programming,
103:127–152, 2005.

[13] Y. E. Nesterov. Gradient methods for minimizing composite objective function. Core discussion
paper 2007/96, Center for Operations Research and Econometrics (CORE), Catholic University
of Louvain, September 2007.

[14] J. S. Pang and D. Chan. Iterative methods for variational and complementarity problems. Math.
Programming, 24(3):284–313, 1982.

[15] G. B. Passty. Ergodic convergence to a zero of the sum of monotone operators in Hilbert space.
J. Math. Anal. Appl., 72(2):383–390, 1979.

[16] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.

[17] R. T. Rockafellar. On the maximal monotonicity of subdifferential mappings. Pacific J. Math.,
33:209–216, 1970.

[18] R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM J. Control
Optimization, 14(5):877–898, 1976.

[19] M. V. Solodov and B. F. Svaiter. A hybrid approximate extragradient-proximal point algorithm
using the enlargement of a maximal monotone operator. Set-Valued Anal., 7(4):323–345, 1999.

[20] M. V. Solodov and B. F. Svaiter. A hybrid projection-proximal point algorithm. J. Convex
Anal., 6(1):59–70, 1999.

[21] M. V. Solodov and B. F. Svaiter. An inexact hybrid generalized proximal point algorithm and
some new results on the theory of Bregman functions. Math. Oper. Res., 25(2):214–230, 2000.

[22] M. V. Solodov and B. F. Svaiter. A unified framework for some inexact proximal point algo-
rithms. Numer. Funct. Anal. Optim., 22(7-8):1013–1035, 2001.

18

[23] B. F. Svaiter. A family of enlargements of maximal monotone operators. Set-Valued Anal.,
8(4):311–328, 2000.

[24] P. Tseng. Further applications of a splitting algorithm to decomposition in variational inequal-
ities and convex programming. Math. Programming, 48(2, (Ser. B)):249–263, 1990.

[25] P. Tseng. Applications of a splitting algorithm to decomposition in convex programming and
variational inequalities. SIAM J. Control Optim., 29(1):119–138, 1991.

[26] C. Y. Zhu. Asymptotic convergence analysis of the forward-backward splitting algorithm. Math.
Oper. Res., 20(2):449–464, 1995.

19

