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COMPLEXITY OF VARIANTS OF TSENG’S MODIFIED F-B
SPLITTING AND KORPELEVICH’S METHODS FOR

HEMIVARIATIONAL INEQUALITIES WITH APPLICATIONS TO
SADDLE-POINT AND CONVEX OPTIMIZATION PROBLEMS∗
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Abstract. In this paper, we consider both a variant of Tseng’s modified forward-backward
splitting method and an extension of Korpelevich’s method for solving hemivariational inequalities
with Lipschitz continuous operators. By showing that these methods are special cases of the hybrid
proximal extragradient method introduced by Solodov and Svaiter, we derive iteration-complexity
bounds for them to obtain different types of approximate solutions. In the context of saddle-point
problems, we also derive complexity bounds for these methods to obtain another type of an approx-
imate solution, namely, that of an approximate saddle point. Finally, we illustrate the usefulness of
the above results by applying them to a large class of linearly constrained convex programming prob-
lems, including, for example, cone programming and problems whose objective functions converge to
infinity as the boundaries of their effective domains are approached.
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1. Introduction. A broad class of optimization, saddle-point (SP), equilibrium,
and variational inequality (VI) problems can be posed as the monotone inclusion
problem, namely, finding x such that 0 ∈ T (x), where T is a maximal monotone
point-to-set operator. The proximal point method, proposed by Rockafellar [18], is a
classical iterative scheme for solving the monotone inclusion problem which generates
a sequence {xk} according to

xk = (λkT + I)−1(xk−1).

It has been used as a generic framework for the design and analysis of several im-
plementable algorithms. The classical inexact version of the proximal point method
allows for the presence of a sequence of summable errors in the above iteration, i.e.,

‖xk − (λkT + I)−1(xk−1)‖ ≤ ek,

∞∑
k=1

ek <∞.

Convergence results under the above error condition have been established in [18] and
have been used in the convergence analysis of other methods that can be recast in the
above framework.
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New inexact versions of the proximal point method with relative error tolerance
were proposed by Solodov and Svaiter [19, 20, 22, 21]. Iteration-complexity results
for one of these inexact versions of the proximal point method introduced in [19],
namely, the hybrid proximal extragradient (HPE) method, were established in [9]. As
a consequence, iteration-complexity results for Korpelevich’s extragradient method for
VIs with Lipschitz continuous monotone operators, and a variant of Tseng’s modified
forward-backward splitting (MF-BS) method (see [24]) for finding a zero of the sum of
a monotone Lipschitz continuous map with an arbitrary maximal monotone operator
whose resolvent is assumed to be easily computable, were also derived by showing that
both methods are special cases of the HPE method. A nice feature of the analysis
in [9] is that, by working with some suitable termination criteria, it is shown that its
complexity results, as opposed to those in [10], also apply to VI and/or monotone
inclusion problems with unbounded feasible sets.

In this paper we continue along the same line of investigation as in our previous
paper [9], which is to use the HPE method as a general framework to derive iteration-
complexity results for specific algorithms for solving various types of structured mono-
tone inclusion problems. More specifically, we will derive iteration-complexity results
for an extension of Korpelevich’s extragradient method for hemivariational inequality
(HVI) problems and a variant of Tseng’s MF-FB method for the problem of finding
a zero of the sum of a maximal monotone operator and a monotone Lipschitz con-
tinuous map whose domain is not necessarily the whole space R

n, thereby relaxing
the conditions assumed in our first paper [9]. We also derive iteration-complexity
results for these two methods in the context of the SP problem using an error mea-
sure specifically tailored to it. In addition, we discuss applications, as well as the
complexity, of these two methods to the problem of minimizing the sum of a convex
function with Lipschitz continuous gradient and a closed convex (not necessarily dif-
ferentiable) function in an affine manifold. Finally, we point out how these methods
can be used to solve particular instances of the above problem, including one whose
objective function converges to infinity as the boundary of its domain is approached.

Previous papers dealing with iteration-complexity analysis of methods for VIs
are as follows. Nemirovski [10] studies the complexity of Korpelevich’s extragradient
method under the assumption that the feasible set is bounded and an upper bound
on its diameter is known. Nesterov [13] proposes a new dual extrapolation algorithm
for solving VI problems whose termination depends on the guess of a ball centered at
the initial iterate.

Asymptotic convergence rate results for extragradient-type methods are thor-
oughly discussed in [5, 7, 23]. The generalized Korpelevich’s method discussed in this
paper is well known (see, for example, Noor [14]), but to the best of our knowledge
its iteration complexity has not been studied so far. Konnov [6] also has proposed
a combined forward-backward splitting and hyperplane projection iteration method
closely related to Tseng’s MF-BS method in that they differ only in the stepsize used
in the extragradient step. In addition, Konnov has established linear convergence
rates under some strong regularity assumptions on the data functions.

This paper is organized as follows. Section 2 contains two subsections. Subsec-
tion 2.1 reviews some basic definitions and facts on convex functions and the definition
and some basic properties of the ε-enlargement of a point-to-set operator. Subsec-
tion 2.2 reviews the HPE method and its complexity results. Section 3 contains two
subsections. Subsection 3.1 reviews the HVI problem and associated error measures.
Subsection 3.2 discusses the generalized SP problem, an associated error measure,
and its relationship with the error measures of subsection 3.1. Section 4 contains
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two subsections. Subsection 4.1 discusses a generalization of Korpelevich’s method
to the context of the HVI problem and presents corresponding pointwise and ergodic
complexity results. Subsection 4.2 discusses a variant of Tseng’s MF-BS method and
derives complexity bounds for it. Section 5 discusses the specialization of Tseng’s MF-
BS algorithm and the generalized Korpelevich’s method to SP problems and derives
iteration complexity based on the error criterion for SP introduced in subsection 3.2.
Section 6 contains three subsections. The first two discuss ways of applying Tseng’s
MF-BS method to two possible reformulations of a certain structured convex opti-
mization problem and presents corresponding iteration-complexity results. Subsection
6.3 briefly discusses applications to some specific but important convex optimization
problems.

Notation. Throughout this paper, we let Rn denote an n-dimensional space with
inner product and induced norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. The domain
of a function F is denoted by DomF . The effective domain of a function f : Rn →
[−∞,∞] is defined as dom f := {x ∈ R

n : f(x) <∞}.
2. Technical background. This section contains two subsections. In the first

one, we review some basic definitions and facts about convex functions and ε-enlarge-
ment of monotone multivalued maps. This subsection also reviews the weak trans-
portation formula for the ε-subdifferentials of closed convex functions and the ε-
enlargements of maximal monotone operators, and establishes a weak transportation
formula for convex-concave saddle functions. The second subsection reviews the HPE
method and the basic complexity results obtained for it in [9].

2.1. The ε-subdifferential and ε-enlargement of monotone operators.
A point-to-set operator T : Rn ⇒ R

n is a relation T ⊆ R
n × R

n, and

T (x) = {v ∈ R
n | (x, v) ∈ T }.

Alternatively, one can consider T as a multivalued function of Rn into the family
℘(Rn) = 2(R

n) of subsets of Rn. Regardless of the approach, it is usual to identify T
with its graph defined as

Gr(T ) = {(x, v) ∈ R
n × R

n | v ∈ T (x)}.
The domain of T , denoted by DomT , is defined as

DomT := {x ∈ R
n : T (x) 
= ∅}.

An operator T : Rn ⇒ R
n is monotone if

〈v − ṽ, x− x̃〉 ≥ 0 ∀(x, v), (x̃, ṽ) ∈ Gr(T ),

and T is maximal monotone if it is monotone and maximal in the family of monotone
operators with respect to the partial order of inclusion, i.e., S : Rn ⇒ R

n monotone
and Gr(S) ⊇ Gr(T ) implies that S = T .

For a scalar ε ≥ 0, the ε-subdifferential of a function f : Rn → R̄ is the operator
∂εf : Rn ⇒ R

n defined as

(1) ∂εf(x) = {v | f(y) ≥ f(x) + 〈y − x, v〉 − ε ∀y ∈ R
n} ∀x ∈ R

n.

When ε = 0, the operator ∂εf is simply denoted by ∂f and is referred to as the
subdifferential of f . The operator ∂f is trivially monotone if f is proper. If f is a
proper lower semicontinuous convex function, then ∂f is maximal monotone [16].
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The conjugate f∗ of f is the function f∗ : Rn → [−∞,∞] defined as

f∗(s) = sup
x∈Rn

〈s, x〉 − f(x) ∀s ∈ R
n.

The following result lists some useful properties about the ε-subdifferential of a
proper convex function.

Proposition 2.1. Let f : Rn → R̄ be a proper convex function. Then,
(a) ∂εf(x) ⊆ (∂f)ε(x) for any ε ≥ 0 and x ∈ R

n;
(b) if v ∈ ∂f(x) and f(y) < ∞, then v ∈ ∂εf(y), where ε := f(y) − [f(x) +
〈y − x, v〉].

The indicator function of a set X ⊆ R
n is the function δX : Rn → R̄ defined as

δX(x) =

{
0, x ∈ X,

∞ otherwise,

and the normal cone operator of X is the point-to-set map NX : Rn ⇒ R
n given by

(2) NX(x) =

{
∅, x /∈ X,

{v ∈ R
n | 〈y − x, v〉 ≤ 0 ∀y ∈ X}, x ∈ X.

Clearly, the normal cone operator NX of X can be expressed in terms of δX as
NX = ∂δX .

In [3], Burachik, Iusem and Svaiter introduced the ε-enlargement of maximal
monotone operators. In [9] this concept was extended to a generic point-to-set op-
erator in R

n as follows. Given T : Rn ⇒ R
n and a scalar ε, define T ε : Rn ⇒ R

n

as

(3) T ε(x) = {v ∈ R
n | 〈x− x̃, v − ṽ〉 ≥ −ε ∀x̃ ∈ R

n, ∀ṽ ∈ T (x̃)} ∀x ∈ R
n.

The following result states two useful properties of the operator T ε that will be
needed in our presentation.

Proposition 2.2. Let T, T ′ : Rn ⇒ R
n. Then,

(a) T ε(x) + (T ′)ε
′
(x) ⊆ (T + T ′)ε+ε′(x) for every x ∈ R

n and ε, ε′ ∈ R;
(b) T is monotone if and only if T ⊆ T 0.

2.2. The hybrid proximal extragradient method. This subsection reviews
the HPE method and the basic complexity results obtained for it in [9].

Let T : Rn ⇒ R
n be a maximal monotone operator. The monotone inclusion

problem for T consists of finding x ∈ R
n such that

(4) 0 ∈ T (x) .

We also assume throughout this section that this problem has a solution, that is,
T−1(0) 
= ∅.

We next review the HPE method introduced in [19] for solving the above problem
and state the iteration-complexity results obtained for it in [9].
Hybrid Proximal Extragradient (HPE) Method:

(0) Let x0 ∈ R
n and 0 ≤ σ < 1 be given, and set k = 1.

(1) Choose λk > 0, and find x̃k, ṽk ∈ R
n, σk ∈ [0, σ], and εk ≥ 0 such that

(5) ṽk ∈ T εk(x̃k), ‖λkṽk + x̃k − xk−1‖2 + 2λkεk ≤ σ2
k‖x̃k − xk−1‖2.

(2) Define xk = xk−1 − λkṽk, set k← k + 1, and go to step (1).
end
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We now make several remarks about the HPE method. First, the HPE method
does not specify how to choose λk and how to find x̃k, ṽk, and εk as in (5). The
particular choice of λk and the algorithm used to compute x̃k, ṽk, and εk will depend
on the particular implementation of the method and the properties of the operator T .
Second, if x̃ := (λkT + I)−1xk−1 is the exact proximal point iterate or, equivalently,

ṽ ∈ T (x̃),(6)

λkṽ + x̃− xk−1 = 0(7)

for some ṽ ∈ R
n, then (x̃k, ṽk) = (x̃, ṽ) and εk = 0 satisfies (5). Therefore, the error

criterion (5) relaxes the inclusion (6) to ṽ ∈ T ε(x̃) and relaxes (7) by allowing a small
error relative to ‖x̃k − xk−1‖.

We now state a few results about the convergence behavior of the HPE method.
The proof of the following result can be found in Lemma 4.2 of [9].

Proposition 2.3. For any x∗ ∈ T−1(0), the sequence {‖x∗−xk‖} is nonincreas-
ing and

(8) ‖x∗ − x0‖2 ≥ (1− σ2)

∞∑
k=1

‖x̃k − xk−1‖2 .

The proof of the following result, which establishes the convergence rate of the
residual (ṽk, εk) of xk, can be found in Theorem 4.4 of [9].

Theorem 2.4. Let d0 be the distance of x0 to T−1(0). Then, for every k ∈ N,
ṽk ∈ T εk(x̃k) and there exists an index i ≤ k such that

(9) ‖ṽi‖ ≤ d0

√√√√1 + σ

1− σ

(
1∑k

j=1 λ
2
j

)
, εi ≤ σ2d20λi

2(1− σ2)
∑k

j=1 λ
2
j

.

Theorem 2.4 estimates the quality of the best among the iterates x̃1, . . . , x̃k.
We will refer to these estimates as the pointwise complexity bounds for the HPE
algorithm.

We will now describe alternative estimates for the HPE method which we refer
to as the ergodic complexity bounds. The idea of considering averages of the iterates
in the analysis of gradient-type and/or proximal-point–based methods for convex
minimization and monotone VIs goes back to at least the mid 1970s (see [2, 8, 12, 11])
and perhaps even earlier.

The sequence of ergodic means {x̃a
k} associated with {x̃k} is

(10) x̃a
k :=

1

Λk

k∑
i=1

λix̃i, where Λk :=

k∑
i=1

λi.

Define also

(11) ṽak :=
1

Λk

k∑
i=1

λiṽi, εak :=
1

Λk

k∑
i=1

λi(εi + 〈x̃i − x̃a
k, ṽi − ṽak〉).

The following result describes the convergence properties of the ergodic sequence
{x̃a}.



COMPLEXITY OF TSENG’S AND KORPELEVICH’S METHODS 1693

Theorem 2.5. For every k ∈ N,

(12) 0 ≤ εak ≤
1

2Λk

[
2〈x̃a

k − x0, xk − x0〉 − ‖xk − x0‖2
] ≤ 2ηkd

2
0

Λk
,

and

ṽak =
1

Λk
(x0 − xk) ∈ T εak(x̃a

k), ‖ṽak‖ ≤
2d0
Λk

,

where d0 is the distance of x0 to T−1(0), and

(13) ηk := 1 +
σ
√
τk√

(1 − σ2)
, τk = max

i=1,...,k

λi

Λk
≤ 1.

Proof. This result follows immediately from Proposition 4.6 and the proof of
Theorem 4.7 of [9].

3. HVI and SP problems. In this section, we describe the two classes of prob-
lems that we will deal with in this paper, namely, the HVI problem and the generalized
SP problem. We will also discuss error measures in the context of these problems that
will be used later in the complexity results of sections 4 and 5.

We first give two preliminary definitions.
Definition 3.1. For a constant L ≥ 0, the map F : DomF ⊆ R

n → R
n is said

to be L-Lipschitz continuous on Ω ⊆ DomF if ‖F (x) − F (x̃)‖ ≤ L‖x− x̃‖ for every
x, x̃ ∈ Ω. When Ω = DomF we simply say that F is L-Lipschitz continuous.

Definition 3.2. F : DomF ⊆ R
n → R

n is said to be monotone on Ω ⊆ DomF
if F |Ω is monotone in the sense of subsection 2.1, i.e., 〈F (x)− F (x̃), x− x̃〉 ≥ 0 for
every x, x̃ ∈ Ω. When Ω = DomF we simply say that F is monotone.

3.1. The HVI problem and associated error bounds. The HVI problem
consists of the inclusion problem

(14) 0 ∈ T (x) := (F + ∂g)(x),

where the following conditions are assumed to hold:
(K.1) g is a closed proper convex function g : Rn → [−∞,∞];
(K.2) F : Dom(F )→ R

n is monotone on cl(dom g) ⊆ DomF ;
(K.3) F is L-Lipschitz continuous on cl(dom g);
(K.4) the solution set of (14) is nonempty.

We now make a few observations about (14). First, the above assumptions to-
gether with Proposition A.1 imply that T : Rn ⇒ R

n is a maximal monotone operator.
Second, x ∈ R

n is solution of (14) if and only if x ∈ dom g and

(15) g(y)− g(x) + 〈y − x, F (x)〉 ≥ 0 ∀y ∈ R
n.

Due to the above interpretation, the inclusion problem (14) is also known as the
HVI problem associated with the pair (F, g). In the following, we will denote it by
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HV I(F, g). Third, under condition (K.2) and the condition that F is continuous on
its domain, (15) is known to be equivalent to

(16) g(y)− g(x) + 〈y − x, F (y)〉 ≥ 0 ∀y ∈ R
n.

Fourth, when g = δX for some nonempty closed convex set X ⊆ R
n, the above

problem reduces to the monotone VI problem V I(F ;X), i.e., the problem of finding
x ∈ X such that

〈y − x, F (x)〉 ≥ 0 ∀y ∈ X.

We will now discuss different notions of error measures for the above problem.
First, we introduce two notions of approximate solutions for problem (14) which are
essentially relaxations of the characterizations (15) and (16) of a solution of (14).

Definition 3.3. A point x ∈ dom g is an ε-strong solution of (14) if

(17) g(y)− g(x) + 〈y − x, F (x)〉 ≥ −ε ∀y ∈ dom g

and is an ε-weak solution of (14) if

(18) g(y)− g(x) + 〈y − x, F (y)〉 ≥ −ε ∀y ∈ dom g.

Define also θs(x;F, g) and θw(x;F, g) as the smallest ε satisfying (17) and (18),
respectively, namely,

θs(x;F, g) := sup
y∈dom g

g(x)− g(y) + 〈x− y, F (x)〉,(19)

θw(x;F, g) := sup
y∈dom g

g(x)− g(y) + 〈x− y, F (y)〉.(20)

Observe that if g = δX , then the above functions reduce to the gap function and
the absolute value of the dual gap function mentioned in [4]. Clearly, θs(x;F, g) and
θw(x;F, g) are nonnegative for every x ∈ dom(g). Note also that, under assumption
(K.2), we have 0 ≤ θw(x;F, g) ≤ θs(x;F, g) for every x ∈ dom g, and hence every ε-
strong solution is also an ε-weak solution. For a detailed discussion on error measures
for HVI, we refer the reader to Patriksson [15].

For variational inequalities V I(F,X), i.e., problem (14) with g = δX , with un-
bounded feasible sets X , the above notions of approximate solutions are too strong.
For example, if X = R

n, the set of ε-strong solutions agrees with the solution set.
The following definition relaxes the above notions.

Definition 3.4. A point x ∈ dom g is a (ρ, ε)-strong solution (resp., (ρ, ε)-weak
solution) of (14) if there exists r ∈ R

n such that ‖r‖ ≤ ρ and x is an ε-strong (resp.,
ε-weak) solution of HV I(F − r; g), that is,

(21) θs(x;F − r, g) ≤ ε, (resp., θw(x;F − r, g) ≤ ε) .

Moreover, any such pair (r, ε) will be called a strong (resp., weak) residual of x for
HV I(F, g).

Given x ∈ dom g and c > 0, define

rc(x;F, g) := c

[
x−

(
I +

1

c
∂g

)−1(
x− 1

c
F (x)

)]
,(22)

θc(x;F, g) := sup
y∈Rn

g(x)− g(y) + 〈x− y, F (x)〉 − c

2
‖y − x‖2.(23)
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It is well known that x ∈ R
n is a solution of (14) if and only if θc(x;F, g) = 0,

both of which are also equivalent to rc(x;F, g) = 0. Hence, θc(x;F, g), or the size
of rc(x;F, g), can be used as an error measure for x. Clearly, since g(y) = ∞ for all
y /∈ dom g, the above supremum can be equivalently taken with respect to y ∈ dom g.

The following result describes some important relationships between the different
error measures introduced in this section, as well as the ε-subdifferential of g and/or
the ε-enlargement of F + ∂g.

Proposition 3.5. Let x ∈ dom g. Then,
(a) (r, ε) is a strong residual of x for HV I(F, g) if and only if r ∈ F (x)+∂εg(x);
(b) if (r, ε) is a weak residual of x for HV I(F, g), then r ∈ (F + ∂g)ε(x);
(c) if r ∈ (F ε′ + ∂gε′′)(x) and ε′ + ε′′ ≤ ε, then (r, ε) is a weak residual of x for

HV I(F, g).
(d) if c ≥ 2L, then θc(x;F, g) ≤ θw(x;F, g).
(e) if (r, ε) is a strong residual of x for HV I(F, g), then, for any c > 0,

(24) θc(x;F, g) ≤ 1

2c
‖r‖2 + ε;

moreover, for any fixed c > 0, there exists a unique strong residual (r, ε) of
x for HV I(F, g) for which equality holds in (24), namely, the pair (r, ε) =
(rc(x;F, g), εc(x;F, g)), where

εc(x;F, g) := g(x)−g(yc)−〈x− yc, rc − F (x)〉 ≥ 0, yc := x−c−1rc(x;F, g).

Proof. See Propositions C.1 and C.2 and Theorem C.3 in Appendix C for a proof
of this result.

The following result shows that if one knows that x is a (ρ/
√
2, ε/2)-strong solution

of HV I(F, g) without an explicit certificate (r, ε) to back up this knowledge, then it
is possible to explicitly construct such a certificate for a slightly larger tolerance, i.e.,
(ρ, ε).

Proposition 3.6. If x ∈ dom g is a (ρ/
√
2, ε/2)-strong solution of HV I(F, g)

and c̄ := ρ2/(2ε), then the pair (rc̄(x;F, g), εc̄(x;F, g)) is a strong residual of x for
HV I(F, g) satisfying the estimates

‖rc̄(x;F, g)‖ ≤ ρ, εc̄(x;F, g) ≤ ε.

Proof. See Proposition C.4 in Appendix C for a proof of this result.
It follows from the observation in the paragraph following (20) that, under as-

sumption (K.2), every strong residual (r, ε) of x for HV I(F, g) is also a weak residual
of x for HV I(F, g). We will now state a sort of a converse of this claim whose proof
is given in Proposition C.5 in Appendix C.

Proposition 3.7. If condition (K.3) holds and (r, ε) is a weak residual of x for
HV I(F, g), then, for any positive scalar c ≥ 2L, the vector

rc := rc(x;F − r, g)

satisfies ‖rc‖ ≤
√
2cε, and the pair (r+rc, ε) is a strong residual of x for HV I(F, g).

We will now present a result which will be useful in obtaining sharper iteration-
complexity bounds for the sequence of ergodic means generated by the algorithms
discussed in section 4. First, we introduce the following constant associated with a
Lipschitz continuous map.
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Definition 3.8. For a map F : DomF ⊆ R
n → R

n which is monotone on
X ⊆ DomF , let N (F ;X) be the infimum of all L ≥ 0 such that there exist an L-
Lipschitz monotone map G : X → R

n and a monotone affine map A : Rn → R
n such

that

F (x) = G(x) +A(x) ∀x ∈ X.

We now make a few observations about the above definition. Clearly, if F is
a monotone affine map, then N (F ;X) = 0 for any X ⊆ R

n. Note also that if F
is monotone and L-Lipschitz on X , then N (F ;X) ≤ L. We note, however, that
N (F ;X) can be much smaller than L for many relevant instances. For example, if
F = G+μA, where μ ≥ 0, A is a monotone affine map, and the map G : DomG→ R

n

is monotone and L-Lipschitz on X ⊆ DomG, then we have N (F ;X) ≤ L. Hence, in
the latter case, N (F ;X) is bounded by a constant which does not depend on μ, while
the Lipschitz constant of F with respect to X converges to ∞ as μ → ∞, as long as
A is not constant.

We are now ready to state the aforementioned result.
Theorem 3.9. Assume that conditions (K.1)–(K.3) listed in subsection 4.1 hold.

Let xi, vi ∈ R
n and εi, αi ∈ R+, for i = 1, . . . , k, be such that

(25) vi ∈ (F + ∂εig)(xi), i = 1, . . . , k,
k∑

i=1

αi = 1,

and define
(26)

xa =

k∑
i=1

αixi, va =

k∑
i=1

αivi, εa =

k∑
i=1

αi[εi + 〈xi − xa, vi〉], F a :=

k∑
i=1

αiF (xi).

Then, the following statements hold:
(a) εa ≥ 0, and (va, εa) is a weak residual of xa for HV I(F, g);
(b) for every c ≥ 2N (F ; dom g), the vector rc := rc(x

a;F −va, g) satisfies ‖rc‖ ≤√
2εac, and the pair (va + rc, ε

a) is a strong residual of xa for HV I(F, g);
(c) if Ω is a closed convex set such that dom g ⊆ Ω ⊆ DomF , then, for every

c ≥ 2N (F ; Ω), the vector

(27) r̂c := rc(x
a;F − F a; δΩ) = c[xa − PΩ(x

a − c−1(F (xa)− F a))]

satisfies ‖r̂c‖ ≤
√
2εac, and the pair (va + r̂c, ε

a) is a strong residual of xa

for HV I(F, g).
In particular, there exists r ∈ R

n such that va + r ∈ (F + ∂εag)(x
a) and ‖r‖ ≤

2
√
εaN (F ; dom g).

3.2. The generalized SP problem and associated error bounds. In this
subsection, we describe the generalized SP problem and its reformulation as a problem
as in (14). Hence, the generalized Korpelevich’s extragradient method or the variant
of Tseng’s MF-BS algorithm can be used to approximately solve this problem and
iteration-complexity results similar to those derived at the beginning of this section
apply. In this subsection, we also describe a different notion of an approximate solution
for the generalized SP problem, i.e., that of an approximate saddle point, and establish
an iteration-complexity result to obtain such solution.
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We first introduce a few definitions. Let Ψ : domΨ ⊆ R
n ×R

m → R, and let two
proper closed convex functions gx : Rn → [−∞,∞] and gy : Rm → [−∞,∞] be such
that dom gx × dom gy ⊆ domΨ be given. Also, define

X := dom gx, Y := dom gy,

and the function Ψ̂ : Rn × R
m → [−∞,∞] as

(28) Ψ̂(x, y) =

⎧⎪⎨⎪⎩
Ψ(x, y) + gx(x) − gy(y), (x, y) ∈ X × Y,

∞, x /∈ X,

−∞, x ∈ X, y /∈ Y.

The generalized SP problem determined by the triple (Ψ; gx, gy), which we denote by
GSP (Ψ; gx, gy), consists of finding a pair (x, y) ∈ X × Y such that

Ψ̂(x, y′) ≤ Ψ̂(x, y) ≤ Ψ̂(x′, y) ∀(x′, y′) ∈ X × Y.

For a fixed map Ψ, each pair (gx, gy) determines a different SP problem. The case
where gx = δX and gy = δY yields the standard SP simply by SP (Ψ;X × Y ).

Definition 3.10. The pair (x, y) ∈ X × Y is called an ε-saddle point of
GSP (Ψ; gx, gy) if

θsp((x, y); Ψ, gx, gy) := sup{Ψ̂(x, y′)− Ψ̂(x′, y) : (x′, y′) ∈ X × Y } ≤ ε.

The function θsp(·; Ψ, gx, gy) is also known as the gap function associated with
SP (Ψ; gx, gy) in that it can be viewed as the difference between a primal function
p(·) = p(·; Ψ, gx, gy) : X → R and a dual function d(·) = d(·,Ψ; gx, gy) : Y → R

defined as

p(x) = sup
y′∈Y

Ψ(x, y′) + gx(x) − gy(y
′) ∀x ∈ X,

d(y) = inf
x′∈X

Ψ(x′, y) + gx(x
′)− gy(y) ∀y ∈ Y.

Clearly, (x, y) is an ε-saddle point of GSP (Ψ; gx, gy) if and only if (x, y) ∈ X ×Y

and (0, 0) ∈ ∂ε[Ψ̂(·, y) − Ψ̂(x, ·)](x, y). Moreover, θsp((x, y); Ψ, gx, gy) is the smallest
ε ≥ 0 satisfying one of these two equivalent conditions. More generally, we can
introduce the following more general definition of an approximate saddle point for
GSP (Ψ; gx, gy).

Definition 3.11. The pair (x, y) ∈ X × Y is called a (ρ, ε)-saddle point of
GSP (Ψ; gx, gy) if there exist a pair r = (rx, ry) ∈ R

n × R
m such that ‖r‖ ≤ ρ and

(x, y) is an ε-saddle point of GSP (Ψr; gx, gy), where Ψr : domΨ→ R is defined as

(29) Ψr(x
′, y′) = Ψ(x′, y′) +

〈
(−rx, ry), (x′, y′)

〉 ∀(x′, y′) ∈ domΨ.

Moreover, any such pair (r, ε) will be called an SP-residual of (x, y) for GSP (Ψr; gx, gy).
For the sake of future reference, we state the following simple result without proof.
Proposition 3.12. For a point (x, y) ∈ X × Y , the pair (r, ε) = ((rx, ry), ε)

is an SP-residual of (x, y) for GSP (Ψr; gx, gy) if and only if (rx, ry) ∈ ∂ε[Ψ̂(·, y) −
Ψ̂(x, ·)](x, y).

In the following, we will discuss the close connection between GSP (Ψ; gx, gy) and
a related HVI problem and, as a by-product, the specializations of the algorithms dis-
cussed in section 4 to GSP (Ψ; gx, gy). We first need to make some assumptions on Ψ:
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(S.1) domΨ is open, Ψ is differentiable, and domΨ ⊇ cl(X × Y );
(S.2) the function Ψ(·, y) − Ψ(x, ·) : cl(X × Y ) → R is convex for every (x, y) ∈

cl(X × Y );
(S.3) ∇Ψ is L-Lipschitz continuous.
Define the functions F : domΨ→ R and g : Rn × R

m → [−∞,∞] as

(30) F (x, y) := (∇xΨ(x, y),−∇yΨ(x, y)), g(x, y) = gx(x) + gy(y).

Proposition 3.13. Assume that Ψ satisfies conditions (S.1) and (S.2), and
consider the functions F and g defined according to (30). Then,

(31) θw((x, y);F, g) ≤ θsp((x, y); Ψ, gx, gy)) ≤ θs((x, y);F, g) ∀(x, y) ∈ X × Y.

Equivalently, every ε-strong solution (x, y) ∈ X×Y of HV I(F ; g) is an ε-saddle point
of GSP (Ψ; gx, gy), and the latter is always an ε-weak solution of HV I(F ; g).

Proof. To prove the first inequality in (31), assume that (x, y) is an ε-saddle point
of GSP (Ψ; gx, gy). Then, using relations (28) and (30) and the assumptions (S.1) and
(S.2), we conclude that for every (x′, y′) ∈ X × Y , we have

−ε ≤ Ψ̂(x′, y)− Ψ̂(x, y′) = [Ψ(x′, y) + gx(x
′)− gy(y)]− [Ψ(x, y′) + gx(x) − gy(y

′)]
= [Ψ(x′, y)−Ψ(x, y′)] + g(x′, y′)− g(x, y)

= [Ψ(x′, y′)−Ψ(x, y′)] + [(−Ψ)(x′, y′)− (−Ψ)(x′, y)] + g(x′, y′)− g(x, y)

≤ 〈∇xΨ(x′, y′), x′ − x
〉
+
〈−∇yΨ(x′, y′), y′ − y

〉
+ g(x′, y′)− g(x, y)

=
〈
F (x′, y′), (x′, y′)− (x, y)

〉
+ g(x′, y′)− g(x, y),

which clearly implies that (x, y) is an ε-weak solution of HV I(F ; g) in view of Defi-
nition 3.3.

To show the second inequality in (31), set ε = θs((x, y);F, g) and observe that
(0, 0) ∈ F (x, y) + ∂εg(x, y). Using the fact that

F (x, y) ∈ ∂[Ψ|X×Y (·, y)−Ψ|X×Y (x, ·)](x, y),

we then conclude that

(0, 0) ∈ ∂[Ψ|X×Y (·, y)−Ψ|X×Y (x, ·)](x, y) + ∂εg(x, y)

⊆ ∂ε[Ψ(·, y)−Ψ(x, ·) + g](x, y) = ∂ε[Ψ̂(·, y)− Ψ̂(x, ·)](x, y),

and hence that θsp((x, y); Ψ, gx, gy) ≤ ε = θs((x, y);F, g).

4. Variants of Korpelevich’s and Tseng’s MF-BS methods. In this sec-
tion, we present two algorithms for solving special types of monotone inclusion prob-
lems. The first, discussed in subsection 4.1, is an extension of Korpelevich’s method
for solving the inclusion problem (4), where T is the sum of a Lipschitz continuous
map and the subdifferential of a closed convex function. The second, discussed in
subsection 4.2, is a variant of Tseng’s MF-BS method for solving the inclusion prob-
lem (4), where T is the sum of a Lipschitz continuous map and a maximal monotone
operator. We show that both methods are special cases of the HPE method and, as a
consequence, derive both pointwise and ergodic iteration-complexity results for them
that follow naturally from the general convergence theory outlined in subsection 2.2
for the HPE method and the results derived in section 3.
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4.1. Generalized Korpelevich’s method for solving HVI problems. In
this subsection, we analyze a generalized version of Korpelevich’s method for solving
HVI (14). We note that this section closely parallels section 5 of [9]. However, the
technical tools developed in this paper to derive some of the results of this section are
much more sophisticated due not only to the generalization to HVIs but also to the
more general assumptions imposed.

We start by stating the method.
Generalized Korpelevich’s extragradient algorithm:

(0) Let x0 ∈ Dom(∂g) and σ ∈ (0, 1) be given, and set λ = σ/L and k = 1.
(1) Compute

(32)
x̃k = (I + λ∂g)−1(xk−1 − λF (xk−1)), xk = (I + λ∂g)−1(xk−1 − λF (x̃k)).

(2) Set k ← k + 1, and go to step 1.
Note that if xk−1 is in Dom(∂g), then, in view of Assumptions K.1 and K.2 and

the fact that Dom(∂g) ⊆ dom g, the quantities F (xk−1) and x̃k are well defined,
x̃k ∈ Dom(∂g), and the same holds for xk. Hence, the algorithm is well defined and
both sequences {xk} and {x̃k} are in Dom(∂g). Moreover, when g = δX for some
nonempty closed convex set X ⊆ R

n, the above algorithm reduces to Korpelevich’s
method for solving the monotone variational inequality problem V I(F ;X). We also
observe that the iterates x̃k and xk in (32) are also characterized as

x̃k = argmin〈F (xk−1), x〉+ g(x) +
1

2λ
‖x− xk−1‖2,

xk = argmin〈F (x̃k), x〉+ g(x) +
1

2λ
‖x− xk−1‖2.

The next result establishes that the generalized Korpelevich’s extragradient al-
gorithm is a special case of the HPE method. Its proof is quite similar to the one
given for Theorem 5.1 in [9], but, for sake of completeness, we include its proof in
Appendix B.

Proposition 4.1. Let {x̃k} be the sequence generated by the generalized Kor-
pelevich’s extragradient algorithm, and, for each k, define

qk =
1

λ
(xk−1 − xk)− F (x̃k), pk =

1

λ
(xk−1 − x̃k)− F (xk−1),(33)

εk = g(x̃k)− g(xk)− 〈x̃k − xk, qk〉, ṽk = F (x̃k) + qk.(34)

Then, for every k ∈ N

(a) qk ∈ ∂εkg(x̃k) and ṽk ∈ [F + ∂εkg](x̃k) ⊆ [F + ∂g]εk(x̃k);
(b) xk = xk−1 − λṽk;
(c) ‖λṽk + x̃k − xk−1‖2 + 2λεk ≤ σ2‖x̃k − xk−1‖2;
(d) pk ∈ ∂g(x̃k) and

(35) ‖F (x̃k) + pk‖ ≤ (1 + σ)L

σ
‖x̃k − xk−1‖.

As a consequence of (a)–(c), it follows that the generalized Korpelevich’s extragradient
algorithm is a special case of the HPE method.

Note that in view of Proposition 4.1(a), we have ṽk ∈ F (x̃k) + ∂εkg(x̃k) and, due
to the fact that the generalized Korpelevich’s algorithm is a special case of the HPE
method together with Theorem 2.4, we also have max{‖ṽi‖, εi} = O(1/

√
k) for some

i ≤ k. The following theorem provides a variant of this result where a vector close to
ṽk satisfies the above conclusions with εi = 0.
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Theorem 4.2. Let {x̃k} and {xk} be the sequences generated by the generalized
Korpelevich’s extragradient algorithm, and let {pk} be the sequence defined in (33).
Then, for every k ∈ N, F (x̃k) + pk ∈ [F + ∂g](x̃k), and there exists i ≤ k such that

‖F (x̃i) + pi‖ ≤ Ld0
σ

√
1 + σ

k(1− σ)
,

where d0 is the distance of x0 to the solution set of HV I(F, g).
Proof. The inclusion F (x̃k)+pk ∈ [F +∂g](x̃k) follows immediately from the first

part of Proposition 4.1(d). Also, by Proposition 4.1, we know that the generalized
Korpelevich’s extragradient method is a special case of the HPE framework and that,
for every k ∈ N, (35) holds. Hence, by Proposition 2.3, (8) holds and, as a consequence,

min
1≤i≤k

‖x̃i − xi−1‖2 ≤ 1

k

k∑
i=1

‖x̃i − xi−1‖2 ≤ d20
k(1− σ2)

.

The result now follows from the above inequality and (35).
We will now present ergodic complexity results for the generalized Korpelevich’s

method. These results use not only the general complexity results for the HPE method
but also some of the new results derived in subsection 3.1.

Theorem 4.3. Let {x̃k} and {xk} be the sequences generated either by the variant
of Tseng’s MF-BS method or by the generalized Korpelevich’s extragradient algorithm,
and for every k ∈ N, define

x̃a
k =

1

k

k∑
i=1

x̃i, ṽak =
1

kλ
(x0 − xk), F̃ a

k =

k∑
i=1

F (x̃i),(36)

ε̃ak =
1

2Λk

[
2〈x̃a

k − x0, xk − x0〉 − ‖xk − x0‖2
]
.(37)

Let d0 be the distance of x0 to the solution set of HV I(F, g). Then, for every k ∈ N,
(ṽak , ε̃

a
k) is a weak residual of x̃a

k for HV I(F, g), and

(38) ‖ṽak‖ ≤
2Ld0
kσ

, ε̃ak ≤
2Ld20η̄k
kσ

,

where

(39) η̄k := 1 +
σ√

k(1− σ2)
.

As a consequence, given tolerances ρ > 0 and ε > 0, an ergodic iterate x̃a
k with a

(easily computable) weak residual (ṽak , ε̃
a
k) satisfying ‖ṽak‖ ≤ ρ and ε̃ak ≤ ε will be

found in at most

O
(
max

{
Ld0
ρ

,
Ld20
ε

})
iterations.

Proof. By Proposition 4.1, the generalized Korpelevich’s method is a special case
of the HPEmethod with T = F+∂g. Hence, the first conclusion of the theorem follows
immediately from Theorem 2.5 with λk = σ/L for every k and Theorem 3.9(a) with
xi = x̃i, vi = ṽi, and αi = 1/k for i = 1, . . . , k. The last part of the theorem follows
immediately from the first one.
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Letting rk := ṽak + r2L(x̃
a
k;F − ṽak , g), we conclude from Proposition 3.7 that

(rk, ε̃
a
k) is a strong residual of x̃a

k such that

‖rk‖ ≤ ‖ṽak‖+ 2
√
Lε̃ak = O

(
Ld0√
k

)
.

This argument would yield a complexity bound of

O
(
max

{
L2d20
ρ2

,
Ld20
ε

})
iterations to find an ergodic iterate with a (ρ, ε)-strong residual (rk, ε̃

a
k).

The following result states that the factor L2 on the first term inside the max-
imand can actually be improved to LN (F ; dom g) if a different residual is used in
place of rk. Due to its level of difficulty, its proof will be given in Appendix E. We
note that for the particular case in which F is assumed to be monotone and Lipschitz
everywhere on �n, an easier version of this result is given in Theorem 5.5 of [9] in the
context of VI. Under the more general assumptions on (14) imposed here, the current
version heavily makes use of Theorem 3.9, which is derived for the first time in this
paper.

Theorem 4.4. Let (ρ, ε) ∈ R++ × R++, and define c̄ := ρ2/(2ε). Consider the
sequence of ergodic iterates {x̃a

k} generated by the generalized Korpelevich’s method.
Then, there exists an index

(40) k0 = O
(
max

[
Ld20
ε

,
Ld0
ρ

+
d20LN (F ; dom g)

ρ2

])
such that, for any k ≥ k0, the pair (rc̄(x̃

a
k;F, g), εc̄(x̃

a
k;F, g)) is a strong residual of

{x̃a
k} satisfying

(41) ‖rc̄(x̃a
k;F, g)‖ ≤ ρ, εc̄(x̃

a
k;F, g) ≤ ε.

As a consequence, any such ergodic iterate x̃a
k is a (ρ, ε)-strong solution of HV I(F, g).

4.2. A variant of Tseng’s MF-BS method. In this section, we analyze a
variant of Tseng’s MF-BS method [24] for solving the inclusion problem

(42) 0 ∈ T (x) := (F +B)(x),

where the following assumptions hold:
(T.1) B : Rn ⇒ R

n is maximal monotone;
(T.2) F : Dom(F )→ R

n is monotone on DomB ⊆ DomF ;
(T.3) F is L-Lipschitz continuous on a closed convex set Ω such that Dom(B) ⊆

Ω ⊆ Dom(F );
(T.4) the solution set of (42) is nonempty.
We observe that Tseng’s original assumptions (see [24]) are slightly more general

than the above assumptions in that the set Ω does not have to include DomB but
only a solution of (42). However, the above assumptions are more general than those
imposed in section 6 of [9], where the complexity of a special case of Tseng’s MF-BS
method is studied under the condition that Ω = �n.

We note also that, under the above assumptions, T = F + B is a maximal
monotone operator such that DomT = DomB ⊆ Ω (see Proposition A.1).

We now state the variant of Tseng’s MF-BS method studied in this paper.
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A variant of Tseng’s MF-BS method:
(0) Let x0 ∈ R

n and σ ∈ (0, 1) be given, and set λ = σ/L and k = 1.
(1) Compute

x′
k−1 = PΩ(xk−1),(43)

x̃k = (I + λB)−1(xk−1 − λF (x′
k−1)),(44)

xk = x̃k − λ(F (x̃k)− F (x′
k−1)).(45)

(2) Set k ← k + 1 and go to step 1.
Note that if Ω = R

n, then x′
k−1 = xk−1, and hence the above algorithm reduces

to a special case of Tseng’s MF-BS method, whose iteration complexity was studied
in [9]. We also note that, when Ω 
= R

n, the above algorithm is different from Tseng’s
MF-BS method.

The next result establishes that the above algorithm is a special case of the HPE
method in which εk = 0 for all k ∈ N.

Proposition 4.5. Let {xk}, {x′
k}, and {x̃k} be the sequences generated by the

variant of Tseng’s MF-BS method, and, for each k, define

bk =
1

λ
(xk−1 − x̃k)− F (x′

k−1),(46)

ṽk = F (x̃k) + bk.(47)

Then, for every k ∈ N

(a) bk ∈ B(x̃k) and ṽk ∈ [F +B](x̃k);
(b) xk = xk−1 − λṽk;
(c) ‖λṽk + x̃k − xk−1‖ ≤ σ‖x̃k − xk−1‖.

As a consequence of (a)–(c), it follows that the new variant of Tseng’s MF-BS method
is a special case of the HPE method in which εk = 0 for all k ∈ N.

Proof. The first inclusion in (a) follows from (44) and (46), while the second
inclusion follows from the first one and (47). Statement (b) follows from (45), (46),
and (47). For (c), note that relations (43), (46), and (47), the definition of λ, assump-
tion (T.3), and the fact that x̃k ∈ DomB ⊆ Ω and PΩ is a nonexpansive operator
imply

‖λṽk + x̃k − xk−1‖ = ‖λ(F (x̃k) + bk) + x̃k − xk−1‖ = ‖λ(F (x̃k)− F (x′
k−1)‖

≤ λL‖x̃k − x′
k−1‖ = σ‖PΩ(x̃k)− PΩ(xk−1)‖ ≤ σ‖x̃k − xk−1‖.

We will now state a result that follows as an immediate consequence of the pre-
vious proposition and Theorem 2.4.

Theorem 4.6. Let {x̃k} and {xk} be the sequences generated by the variant of
Tseng’s MF-BS algorithm, and let {bk} be the sequence defined in (46). Then, for
every k ∈ N, F (x̃k) + bk ∈ [F +B](x̃k), and there exists i ≤ k such that

‖F (x̃i) + bi‖ ≤ Ld0
σ

√
1 + σ

k(1− σ)
,

where d0 is the distance of x0 to the solution set of (42).
We end this section by making an observation about the ergodic behavior of the

variant of Tseng’s MF-BS algorithm. Assume that B = ∂g, where g is a closed proper
convex function. In this case, all the ergodic results stated in subsection 4.1, namely,
Theorems 4.3 and 4.4, hold for the variant of Tseng’s MF-BS algorithm as well.
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5. Applications to SP problems. In this section, we present specializations of
the generalized Korpelevich’s method and the variant of Tseng’s MF-BS method for
solving GSP (Ψ; gx, gy). They are essentially the generalized Korpelevich’s method
and the variant of Tseng’s MF-BS method described in subsection 4.1 applied to
HV I(F ; g) with F and g given by (30).

We start by stating the specializations of two methods discussed in section 4 in
the context of GSP (Ψ; gx, gy).
Generalized Korpelevich’s extragradient algorithm for GSP (Ψ; gx, gy):

(0) Let (x0, y0) ∈ Dom(∂gx)×Dom(∂gy) and σ ∈ (0, 1) be given, and set λ = σ/L
and k = 1.

(1) Compute

(x̃k, ỹk) = argmin

{ 〈
F (xk−1, yk−1), (x, y)

〉
+ gx(x) + gy(y)

+ 1
2λ‖(x− xk−1, y − yk−1)‖2

}
,

(xk, yk) = argmin

{ 〈
F (x̃k, ỹk), (x, y)

〉
+ gx(x) + gy(y)

+ 1
2λ‖(x− xk−1, y − yk−1)‖2

}
.

(2) Set k ← k + 1 and go to step 1.
To state the specialization of the variant of Tseng’s MF-BS method to the context

of GSP (Ψ; gx, gy), we first introduce one more assumption.
(S.4) There exist closed convex sets Ωx and Ωy such thatX×Y ⊆ Ωx×Ωy ⊆ domΨ.

Variant of Tseng’s MF-BS method for GSP (Ψ; gx, gy):
(0) Let (x0, y0) ∈ R

n × R
m and σ ∈ (0, 1) be given, and set λ = σ/L and k = 1.

(1) Compute

(x′
k−1, y

′
k−1) = (PΩx(xk−1), PΩy (yk−1)),

(x̃k, ỹk) = argmin

{〈
F (x′

k−1, y
′
k−1), (x, y)

〉
+ gx(x) + gy(y)

+ 1
2λ‖(x− xk−1, y − yk−1)‖2

}
,

(xk, yk) = (x̃k, ỹk)− λ[F (x̃k, ỹk)− F (x′
k−1, y

′
k−1)].

(2) Set k ← k + 1 and go to step 1.
Clearly, all the results derived in section 4 apply to the above two algorithms.

For the sake of brevity, we will not translate their statements to the context of
GSP (Ψ; gx, gy). However, we will show that Theorem 4.3 can be strengthened by
replacing the error measure θw with θsp (see inequality (31)).

Before doing so, we state the following technical result.
Proposition 5.1. Let X ⊆ R

n and Y ⊆ R
m be given convex sets, and let

Γ : X × Y → R be a function such that, for each pair (x, y) ∈ X × Y , the function
Γ(·, y)−Γ(x, ·) : X×Y → R is convex. Suppose that, for i = 1, . . . , k, (xi, yi) ∈ X×Y
and (vi, wi) ∈ R

n × R
m satisfy

(48) (vi, wi) ∈ ∂εi (Γ(·, yi)− Γ(xi, ·)) (xi, yi).

Let α1, . . . , αk ≥ 0 be such that
∑k

i=1 αi = 1, and define

(xa, ya) =
k∑

i=1

αi(xi, yi), (va, wa) =
k∑

i=1

αi(vi, wi),(49)

εa :=

k∑
i=1

αi[εi + 〈xi − xa, vi〉+ 〈yi − ya, wi〉].(50)



1704 RENATO D. C. MONTEIRO AND B. F. SVAITER

Then, εa ≥ 0 and

(51) (va, wa) ∈ ∂εa (Γ(·, ya)− Γ(xa, ·)) (xa, ya).

Proof. By (48), we have

Γ(x, yi)− Γ(xi, y) ≥ 〈vi, x− xi〉+ 〈wi, y − yi〉 − εi ∀(x, y) ∈ X × Y.

Using the assumption that Γ(x, ·) is concave and Γ(·, y) is convex for every (x, y) ∈
X × Y , the assumption that

∑k
i=1 αi = 1 and αi ≥ 0 for i = 1, . . . , k, and relations

(49) and (50), we conclude that

Γ(x, ya)− Γ(xa, y) ≥
k∑

i=1

αi[Γ(x, yi)− Γ(xi, y)]

≥
k∑

i=1

αi (〈vi, x− xi〉+ 〈wi, y − yi〉 − εi)

=

k∑
i=1

αi (〈vi, x− xa〉+ 〈wi, y − ya〉)

−
k∑

i=1

αi (〈vi, xi − xa〉+ 〈wi, yi − ya〉+ εi)

= 〈va, x− xa〉+ 〈wa, y − ya〉 − εa

for every (x, y) ∈ X × Y . We have thus shown that (51) holds. The nonnegativity of
εa follows from the above relation with (x, y) = (xa, ya).

We are now ready to give a stronger version of Theorem 4.3 based on the notion
of SP-residuals.

Theorem 5.2. Consider the sequences {(xk, yk)} and {(x̃k, ỹk)} generated by
either the variant of Tseng’s MF-BS method or the generalized Korpelevich’s method
for GSP (Ψ; gx, gy), and define

(52) (x̃a
k, ỹ

a
k) :=

1

k

k∑
i=1

(x̃i, ỹi), ṽak = (ṽax,k, ṽ
a
y,k) :=

1

kλ
[(x0, y0)− (xk, yk)]

and

ε̃ak :=
1

2kλ
[2〈x̃a

k − x0, xk − x0〉+ 2〈ỹak − y0, yk − y0〉 − ‖xk − x0‖2 − ‖yk − y0‖2].
(53)

Then, (ṽak , ε̃
a
k) is an SP-residual of (x̃a

k, ỹ
a
k) for GSP (Ψ; gx, gy), or, equivalently,

ṽak ∈ ∂ε̃a
k
[Ψ̂(·, ỹak)− Ψ̂(x̃a

k, ·)](x̃a
k, ỹ

a
k)

and

(54) ‖ṽak‖ ≤
2Ld0
kσ

, ε̃ak ≤
2Ld20η̄k
kσ

,

where η̄k are defined in (39) and d0 is the distance of (x0, y0) to the set of saddle-
points of GSP (Ψ; gx, gy). As a consequence, for every pair of positive scalars (ρ, ε),
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there exists an index

k0 = O
(
max

[
Ld20
ε

,
Ld0
ρ

])
such that, for any k ≥ k0, the pair (ṽak , ε̃

a
k) is an easily computable certificate that the

point (x̃a
k, ỹ

a
k) is a (ρ, ε)-saddle point of GSP (Ψ; gx, gy).

Proof. Clearly, the above two methods are the generalized Korpelevich’s method
and the variant of Tseng’s MF-BS method applied to HV I(F ; g), respectively, with
F and g given by (30). Hence, all the results derived earlier for these two methods
apply here as well. In particular, by Propositions 4.5 and 4.1, we conclude that there
exists εk ≥ 0 such that

ṽk =
1

λ
(xk−1 − xk, yk−1 − yk) ∈ (F + ∂εkg)(x̃k, ỹk),(55)

‖λṽk + (x̃k, ỹk)− (xk−1, yk−1)‖2 + 2λεk ≤ σ2‖(x̃k, ỹk)− (xk−1, yk−1)‖2.
Hence, using also definition (30), we conclude that

ṽk ∈ F (x̃k, ỹk) + ∂εkg(x̃k, ỹk) = (∇xΨ(x̃k, ỹk),−∇yΨ(x̃k, ỹk)) + ∂εkg(x̃k, ỹk)

⊆ ∂[Ψ|X×Y (·, ỹk)−Ψ|X×Y (x̃k, ·)](x̃k, ỹk) + ∂εkg(x̃k, ỹk)

⊆ ∂εk [Ψ̂(·, ỹk)− Ψ̂(x̃k, ·)](x̃k, ỹk),

where the latter identity follows from the definition of Ψ̂ in (28). Hence, it follows
from (12), (52), (55), and Proposition 5.1 that

ṽak = (ṽax,k, ṽ
a
y,k) ∈ ∂ε̃a

k
[Ψ̂(·, ỹak)− Ψ̂(x̃a

k, ·)](x̃a
k, ỹ

a
k),

or, equivalently, θsp((x̃a
k, ỹ

a
k); Ψ̂ṽa

k
, gx, gy) ≤ ε̃ak, in view of Proposition 3.12. Moreover,

the bounds (54) follow directly from Theorem 4.3.
An important observation about Theorem 5.2 is that the variant of Tseng’s MF-

BS method or the generalized Korpelevich’s algorithm for GSP (Ψ; gx, gy) can be used
to solve problems for which the gap function θsp(·; Ψv, gx, gy) cannot be easily eval-
uated for any perturbed function Ψv (see (29)), since the method can be terminated
whenever the computable quantities ṽak and εak defined in (52) and (53) are sufficiently
small. Moreover, this termination criterion does not depend on any knowledge of d0,
which is used only in the theoretical complexity bound for the algorithm.

The last result of this section considers the special case where X and Y are both
bounded sets and an explicit bound on the diameter of X × Y is given.

Proposition 5.3. Assume that X,Y are bounded sets, and let DXY denote the
diameter of X × Y . Then, for every k ∈ N, the point (x̃a

k, ỹ
a
k) defined in (52) is an

ε̂k-saddle point of GSP (Ψ, gx, gy), where

ε̂k := DXY ‖ṽak‖+ ε̃ak ≤
2Ld0
kσ

(DXY + d0η̄k);

η̄k, ṽ
a
k , and ε̃ak are defined in (39), (52) and (53), respectively; and d0 is the distance

of (x0, y0) to the set of saddle points of GSP (Ψ; gx, gy). As a consequence, for every
ε > 0, there exists an index

k0 = O
(
Ld0DXY

ε

)
such that, for any k ≥ k0, the point (x̃a

k, ỹ
a
k) is an ε-saddle point of GSP (Ψ; gx, gy).
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Proof. Use Theorem 5.2, Definitions 3.10 and 3.11, and the Cauchy–Schwarz
inequality.

6. Applications to convex optimization problems. In this section, we con-
sider applications of the theory developed in the previous section to the problem

(56) min{f(x) + h(x) : Ax = b},
where the following assumptions are made:
(O.1) A : Rn → R

m is a linear map and b ∈ R
m;

(O.2) f, h : Rn → [−∞,∞] are proper closed convex functions;
(O.3) dom(g) ⊆ dom(f), and there exists a point x̂ ∈ ri(dom g) ∩ ri(dom f) such

that Ax̂ = b;
(O.4) the solution set of (56) is nonempty.

We now make some observations. First, under the above assumptions, x∗ is an
optimal solution if and only if it satisfies the condition

(57) 0 ∈ ∂f(x) + ∂h(x) +NM(x),

whereM := {x ∈ R
n : Ax = b}. Second, the above assumptions also guarantee that

∂f + ∂g +NM is maximal monotone.
Clearly, when f has Lipschitz continuous gradient and the resolvent of the sum of

∂(h+δM) is easy to compute, we could apply the methods of section 4 directly to (57)
with F = ∇f and g = h + δM. However, for most practical problems, the resolvent
of ∂(h+ δM) is hard to compute, but the resolvent of ∂h can be easily computed. In
this section, we will consider specific reformulations of (56) which can be solved by
the algorithms of section 4 using only the resolvent of ∂h.

The following result motivates the aforementioned reformulations of (56).
Proposition 6.1. For a point x∗ ∈ R

n, the following conditions are all equiva-
lent:

(a) x∗ is a solution of (57);
(b) there exist y∗ ∈ R

m and s∗ ∈ ∂h(x∗) such that 0 ∈ ∂f(x∗) + A∗y∗ + s∗ and
Ax∗ = b;

(c) Ax∗ = b, and there exist w∗ ∈ R(A∗) and s∗ ∈ R
n such that x∗ ∈ ∂h∗(s∗)

and 0 ∈ ∂f(x∗) + w∗ + s∗.

6.1. Dualization approaches with respect to the affine constraint. In
this subsection we make the following additional assumption:
(O.5) f is differentiable on a closed convex set Ωx ⊇ dom(h), and ∇f is L-Lipschitz

continuous on Ωx.
Using the characterization of NM(x) given by

NM(x) =

{{A∗y : y ∈ R
m } if x ∈ M,

∅ otherwise,

we obtain the following primal-dual reformulation of (57):

(58) 0 ∈ ∇f(x) +A∗y + ∂h(x), 0 = b−Ax.
Given a pair of positive scalars (ρ, ε), we will examine in this subsection the complexity
of finding a pair (x, y) ∈ domh× R

m such that

(59) ‖Ax− b‖ ≤ ρ, 0 ∈ ∇f(x) +A∗y + ∂hε(x) +B(ρ),
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or, equivalently, a triple (x, y, s) ∈ domh× R
m × R

n such that

(60) ‖Ax− b‖ ≤ ρ, ‖∇f(x) +A∗y + s‖ ≤ ρ, s ∈ ∂εh(x).

Alternatively, we are also interested in the complexity of finding a pair (x, y) ∈ domh×
R

m satisfying

(61) ‖Ax− b‖ ≤ ρ, 0 ∈ ∂ε(f + h)(x) +A∗y +B(ρ).

Observe that if (x, y) satisfies (59), then it also satisfies (61).
In this subsection, we view (58) as being equivalent to the HVI problem

(62) 0 ∈ F (x, y) + ∂g(x, y),

where

(63) F (x, y) :=

( ∇f(x) +A∗y
b −Ax

)
, g(x, y) = h(x).

In order to apply the variant of Tseng’s MF-BS (and/or Korpelevich’s extragra-
dient) method to the above HVI problem, we need an upper bound on the Lipschitz
constant of F . The tighter this bound is, the larger will be the stepsize λ and hence,
the smaller the complexity bound. In the following result, we derive such an upper
bound.

Lemma 6.2. If G : Ω → R
n is monotone and L-Lipschitz continuous, b ∈ R

m,
and A : Rn → R

m is linear, then the operator

T (x, y) = (G(x) +A∗y, b−Ax)
is monotone and L̃-Lipschitz continuous in Ω× R

m, where

(64) L̃ :=
L+

√
L2 + 4‖A‖2
2

≤ L+ ‖A‖.

Proof. Let (u, v) = T (x, y)− T (x′, y′). Then,

‖u‖ ≤ L‖x− x′‖+ ‖A‖‖y − y′‖, ‖v‖ ≤ ‖A‖‖x− x′‖.
Therefore, (‖u‖2 + ‖v‖2) 1

2 ≤
∥∥∥∥ [ L ‖A‖
‖A‖ 0

](‖x− x′‖
‖y − y′‖

) ∥∥∥∥ .
To end the proof, note that L̃ is the spectral radius of the 2× 2 matrix on the right-
hand side of the above inequality.
Variant of Tseng’s MF-BS method for (62)–(63):

(0) Let (x0, y0) ∈ �n ×R
m and 0 < σ < 1 be given, and set λ = σ/L̃ and k = 1,

where L̃ is given by (64).
(1) Compute x′

k−1 = PΩx(xk−1),
(65)
x̃k = (I+λ∂h)−1(xk−1−λ(∇f(x′

k−1)+A∗yk−1)), ỹk = yk−1+λ(Ax′
k−1−b),

and
(66)
xk = x̃k−λ(∇f(x̃k)−∇f(x′

k−1)+A∗(ỹk−yk−1)), yk = ỹk+λA(x̃k−x′
k−1).

(2) Set k ← k + 1 and go to step 1.
end
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Due to the definition of the function F in (63), relations (65) and (66) are equiv-
alent to

(x̃k, ỹk) =(I + λ∂g)−1[ (xk−1, yk−1)− λF ◦ PΩ(xk−1, yk−1) ],

(xk, yk) =(x̃k, ỹk)− λ[F (x̃k, ỹk)− F ◦ PΩ(xk−1, yk−1)],

where Ω := Ωx ×R
m. Hence, the above algorithm is Tseng’s MF-BS method applied

to HV I(F, g) with F and g given by (63). Note that the sequence {x̃k} remains in
domh, while the sequence {xk} does not have to be in domh.

Theorem 6.3. Consider the sequences {(xk, yk)} and {(x̃k, ỹk)} generated by
Tseng’s MF-BS method for solving (62)–(63), and define for every k ∈ N

(67) pxk =
1

λ
[xk−1 − x̃k]− [∇f(x′

k−1) +A∗yk−1].

Then, for every k ∈ N, pxk ∈ ∂h(x̃k) and there exists i ≤ k such that∥∥∥∥( ∇f(x̃i) +A∗ỹi + pxi
b−Ax̃i

)∥∥∥∥ ≤ (L + ‖A‖)d0
σ

√
1 + σ

k(1− σ)
,

where d0 is the distance of (x0, y0) to the solution set of (58). As a consequence, for
any ρ > 0, there exists an index

k = O
(
(L+ ‖A‖)2d20

ρ2

)
such that the triple (x, y, s) = (x̃k, ỹk, p

x
k) satisfies (60) with ε = 0.

Proof. This result follows immediately from Theorem 4.6 and the fact that for F
and g as in (63) and B = ∂g, the vector bk in (46) is equal to the vector (pxk, 0).

Theorem 6.4. Consider the sequences {(xk, yk)} and {(x̃k, ỹk)} generated by
Tseng’s MF-BS method for solving (62)–(63). Define the sequences {(x̃a

k, ỹ
a
k)}, {ε̃ak},

and ṽak = {(ṽax,k, ṽay,k)} as in Theorem 5.2. Then, for every k ∈ N,

ṽax,k ∈ ∂ε̃a
k
(f + h)(x̃k) +A∗ỹak , ṽay,k = b−Ax̃a

k

and

‖ṽak‖ ≤
2(L+ ‖A‖)d0

kσ
, ε̃ak ≤

2(L+ ‖A‖)d20η̄k
kσ

,

where η̄k is given by (39) and d0 is the distance of (x0, y0) to the solution set of (58).
As a consequence, for any pair of positive scalars (ρ, ε), there exists an index

k0 = O
(
max

[
(L+ ‖A‖)d20

ε
,
(L+ ‖A‖)d0

ρ

])
such that (x̃a

k, ỹ
a
k) satisfies (61) for any k ≥ k0.

Proof. Define gx := h, gy ≡ 0, and Ψ : dom f ×�m → � as

Ψ(x, y) := f(x) + 〈y,Ax− b〉, (x, y) ∈ dom f × R
m.

Clearly, the above algorithm corresponds to the variant of Tseng’s MF-BS method
for GSP (Ψ; gx, gy) with Ωx as in assumption (O.5) and Ωy = R

m. The result now
follows from Theorem 5.2 and elementary rules of subdifferential calculus.
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Proposition 6.5. Let (ρ, ε) ∈ R++ × R++, and set c̄ := ρ2/(2ε). Consider
the sequence {(x̃a

k, ỹ
a
k)} of ergodic iterates defined in (52), where {(x̃k, ỹk)} is the

sequence generated by Tseng’s MF-BS method for solving (62)–(63). Moreover, for
every k ∈ N, define

uk := x̃a − 1

c̄
[∇f(x̃a

k) +A∗ỹak ] , qxk := c̄

[
uk −

(
I +

1

c̄
∂h

)−1

(uk)

]
.

Then, there exists an index

k0 = O
(
max

[
(L + ‖A‖)d20

ε
,
(L + ‖A‖)d0

ρ
+

d20(L+ ‖A‖)N (∇f ; domh)

ρ2

])
such that, for any k ≥ k0, the triple (x, y, s) = (x̃a

k, ỹ
a
k , q

x
k ) ∈ dom f×Rm×Rn satisfies

(60), where d0 is the distance of (x0, y0) to the solution set of (58).
Proof. This result follows immediately from (22), Definition 3.4, and Theorem

4.4 applied to HV I(F, g) with F and g given by (63).

6.2. Dualization approach with respect to h. In this subsection, in addition
to assumptions (O.1)–(O.4), we further assume that
(O.5′) f is differentiable onM and ∇f is L-Lipschitz continuous onM.
Using the fact that s ∈ ∂h(x) if and only if x ∈ ∂h∗(s), it follows that (57) is equivalent
to

(68) 0 ∈ ∇f(x) + s+NM(x), 0 ∈ −x+ ∂h∗(s).

Given a pair of positive scalars (ρ, ε), we will examine in this subsection the complexity
of finding a pair (x, s) ∈ M× R

n such that

(69) x ∈ ∂εh
∗(s) +B(ρ), 0 ∈ ∇f(x) + s+NM(x) +B(ρ),

or equivalently, a quadruple (x, x′, w, s) ∈ M× R
n ×R(A∗)× R

n such that

(70) x′ ∈ ∂εh
∗(s), ‖x′ − x‖ ≤ ρ, ‖∇f(x) + w + s‖ ≤ ρ.

Alternatively, we are also interested in the complexity of finding a pair (x, s) ∈M×�n

satisfying

(71) x ∈ ∂εh
∗(s) +B(ρ), 0 ∈ ∂εf(x) + s+R(A∗) +B(ρ).

Observe that if (x, s) satisfies (69), then it also satisfies (71). Observe also that for
any pair (x, s) satisfying the above conditions, we must have s ∈ domh∗.

In this subsection, we view (68) as being equivalent to the HVI problem

(72) 0 ∈ F (x, s) + ∂g(x, y),

where

(73) F (x, s) :=

( ∇f(x) + s
−x

)
, g(x, s) = δM(x) + h∗(s).

The following result follows as an immediate consequence of Lemma 6.2.
Proposition 6.6. The map F defined as above is (L+1)-Lipschitz continuous.
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Variant of Tseng’s MF-BS method for (72)–(73):
(0) Let (x0, s0) ∈ �n × �n and 0 < σ < 1 be given, and set λ = σ/(L + 1) and

k = 1.
(1) Compute x′

k−1 = PM(xk−1),
(74)
x̃k = PM

(
xk−1 − λ(∇f(x′

k−1) + sk−1)
)
, s̃k = (I+λ∂h∗)−1(sk−1+λx′

k−1),

and

(75) xk = x̃k−λ[∇f(x̃k)−∇f(x′
k−1)+ s̃k−sk−1]. sk = s̃k+λ(x̃k−x′

k−1).

(2) Set k ← k + 1 and go to step 1.
end

We now make a few observations regarding the above algorithm. First, we note
that the sequence {(x̃k, s̃k)} is in M× domh∗. Second, due to the definition of the
function F and g in (73), relations (74) and (75) are equivalent to

(x̃k, s̃k) = (I + λ∂g)−1( (xk−1, sk−1)− λF ◦ PΩ(xk−1, sk−1) ),

(xk, sk) = (x̃k, s̃k)− λ[F (x̃k, s̃k)− F ◦ PΩ(xk−1, sk−1) ],

where Ω :=M×�n. Hence, the above algorithm is Tseng’s MF-BS method applied to
the inclusion problem (72)–(73). Third, observe that the above method requires two
projections onto M and exactly one evaluation of the resolvent of h∗ per iteration.
Fourth, we also observe that the resolvent of h∗ can also be computed using the
resolvent of h according to

(I + λ∂h∗)−1(x) = x− λ[I + λ−1∂h]−1(λ−1x) ∀x ∈ R
n.

The following result follows as an immediate consequence of Theorem 4.2.
Theorem 6.7. Consider the sequences {(xk, sk)}, {(x̃k, s̃k)}, and {x′

k} generated
by Tseng’s MF-BS method for solving (72)–(73), and define for every k ∈ N

(76) pxk =
1

λ
[xk−1 − x̃k]− [∇f(x′

k−1) + sk−1], psk =
1

λ
[sk−1 − s̃k] + x′

k−1.

Then, for every k ∈ N, x̃k ∈ M and (pxk, p
s
k) ∈ R(A∗) × ∂h∗(s̃k), and there exists

i ≤ k such that ∥∥∥∥( ∇f(x̃i) + s̃i + pxi
−x̃i + psi

)∥∥∥∥ ≤ (L+ 1)d0
σ

√
1 + σ

k(1− σ)
,

where d0 is the distance of (x0, s0) to the solution set of (68). As a consequence, for
any ρ > 0, there exists an index

k = O
(
(L+ 1)2d20

ρ2

)
such that the quadruple (x, x′, w, s) = (x̃k, p

s
k, p

x
k, s̃k) satisfies (70) with ε = 0.

Theorem 6.8. Consider the sequences {(xk, sk)} and {(x̃k, s̃k)} generated by
Tseng’s MF-BS method for solving (72)–(73). Define the sequences {(x̃a

k, s̃
a
k)}, {ε̃ak},

and ṽak = {(ṽax,k, ṽas,k)} as in Theorem 5.2 with yk and ỹk replaced by sk and s̃k,
respectively. Then, for every k ∈ N, x̃a

k ∈M,

ṽax,k ∈ ∂ε̃a
k
f(x̃a

k) + s̃ak +R(A∗), ṽas,k ∈ −x̃a
k + ∂ε̃a

k
h∗(s̃ak),
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and

‖ṽak‖ ≤
2(L+ 1)d0

kσ
, ε̃ak ≤

2(L+ 1)d20η̄k
kσ

,

where η̄k is given by (39) and d0 is the distance of (x0, s0) to the solution set of (68).
As a consequence, for any pair of positive scalars (ρ, ε), there exists an index

k0 = O
(
max

[
(L + 1)d20

ε
,
(L+ 1)d0

ρ

])
such that (x̃a

k, s̃
a
k) satisfies (71) for any k ≥ k0.

Proof. Define gx := δM, gs := h∗, and Ψ : dom f × R
n → R as Ψ(x, s) =

f(x) + 〈x, s〉. Clearly, the above algorithm corresponds to the variant of Tseng’s
MF-BS method for GSP (Ψ; gx, gy). The result now follows from Theorem 5.2 and
elementary rules of subdifferential calculus.

Proposition 6.9. Let (ρ, ε) ∈ R++ × R++, and set c̄ := ρ2/(2ε). Consider
the sequence of ergodic iterates {(x̃a

k, s̃
a
k} generated by the variant of Tseng’s MF-BS

method for solving (72)–(73). Moreover, for every k ∈ N, define

qxk := −PR(A∗)(∇f(x̃a
k) + s̃ak), qsk := (c̄s̃ak + x̃a

k)− c̄

(
I +

1

c̄
∂h∗

)−1(
s̃ak +

1

c̄
x̃a
k

)
.

Let d0 be the distance of (x0, s0) to the solution set of (68). Then, there exists an
index

k0 = O
(
max

[
(L + 1)d20

ε
,
(L+ 1)d0

ρ
+

d20(L+ 1)N (∇f ;M)

ρ2

])
such that, for any k ≥ k0, the quadruple (x, x′, w, s) = (x̃a

k, q
s
k, q

x
k , s̃

a
k) satisfies (70).

6.3. Examples. In this subsection, we give two specific instances of optimiza-
tion problems which can be solved by the methods discussed in the previous two
subsections.

Consider first the case where h = δX for some closed convex set in R
n. In this

case, (56) becomes

min{f(x) : Ax = b, x ∈ X}.

Note that in this case the resolvent (I +λ∂h)−1, which needs to be evaluated at each
step of the methods described in subsections 6.1 and 6.2, reduces to the projection
map with respect to X for any λ > 0. Moreover, when X is a cone, the termination
criterion (60) reduces to

‖Ax− b‖ ≤ ρ, ‖∇f(x) +A∗y + s‖ ≤ ρ,

x ∈ X, −s ∈ X∗, 〈x,−s〉 ≤ ε,

where X∗ := {s ∈ R
n : 〈x, s〉 ≥ 0 ∀x ∈ X} is the dual cone of X .

We now consider the second case, where h is given by

h(x) =

{
−∑n

i=1 log xi if x > 0,

∞ otherwise.
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In this case, it is easy to see that evaluation of the resolvent of ∂h amounts to solving n
single-variable quadratic equations. Moreover, it is easy to verify that the termination
criteria (60) reduces to

‖Ax− b‖ ≤ ρ, ‖∇f(x) +A∗y + s‖ ≤ ρ,

x > 0, −s > 0, 〈x,−s〉 −
n∑

i=1

log(−xisi) + n ≤ ε.

It should be noted that the latter condition is approximately enforcing the condition
−xisi = 1 for every i = 1, . . . , n and that it is a well-known interiority condition in
the theory of interior-point methods.

We also note that we can apply the latter idea to the case when R
n is the set

of p × p symmetric matrices (and hence n = p(+1)/2), h(X) = − log detX when X
is positive definite, and +∞ otherwise. In this case, evaluation of the resolvent of h
amounts to computing a symmetric eigenvalue decomposition and the solution of p
single-variable quadratic equations.

Appendix A. Maximal monotonicity of the HVI problem.
Proposition A.1. If B : Rn ⇒ R

n is maximal monotone and F : Dom(F )→ R
n

is a map such that DomF ⊇ cl(DomB) and F restricted to cl(DomB) is monotone
and continuous, then F +B is maximal monotone.

Proof. Let C = cl(DomB). Since F := F |C is monotone and C is convex (see
Proposition 6.4.1 of [1]), F + NC is maximal monotone (see, for example, Proposi-
tion 12.3.6 of [4]). Using the fact that the sum of two maximal monotone operators
is also maximal monotone as long as the relative interiors of their domains intersect
(see Theorem 2 of [17]) and the relative interiors of the domains of B and F + NC

are identical, then it follows that F + NC + B is maximal monotone. Moreover, we
clearly have that B ⊆ NC +B. Since B is maximal monotone, we actually have that
B = NC + B, and hence F +NC + B = F + B = F + B. We have thus shown that
F +B is maximal monotone.

Appendix B. Proof of Proposition 4.1.
Proof. First observe that, in view of the definitions of xk and qk in (32) and (33),

respectively, we have qk ∈ ∂g(xk). Hence, it follows from Proposition 2.1(c) and the
definition of εk in (34) that the first inclusion in Proposition 4.1(a) holds. Letting
F̄ := F |cl(dom g), the latter inclusion and the definition of ṽk in (34) then imply that

ṽk = F (x̃k) + qk ∈ [F̄ + ∂εkg](x̃k) ⊆ [(F̄ )0 + (∂g)εk ](x̃k)

⊆ [F̄ + ∂g]εk(x̃k) = [F + ∂g]εk(x̃k),

where the two last inclusions follow from parts (a) and (b) of Proposition 2.2 and
Proposition 2.1(a). We have thus shown that Proposition 4.1(a) holds.

Statement (b) of Proposition 4.1 follows immediately from the definition of qk
and ṽk in (33) and (34), respectively.

We now show (c) and (d). First note that the definitions of x̃k and pk in (32) and
(33), respectively, imply that pk ∈ ∂g(x̃k). This fact, together with the definition of
εk in (33), yields the estimate

εk = −[g(xk)− g(x̃k)− 〈pk, xk − x̃k〉] + 〈pk − qk, x̃k − xk〉 ≤ 〈pk − qk, x̃k − xk〉,
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which, together with statement (b), then implies that

‖λṽk + x̃k − xk−1‖2 + 2λεk = ‖x̃k −xk‖2 +2λεk ≤ ‖x̃k − xk‖2 +2λ〈pk − qk, x̃k − xk〉
= ‖λ(pk − qk) + x̃k − xk‖2−λ2‖pk − qk‖2
≤ ‖λ(pk − qk) + x̃k − xk‖2
= ‖λ(F (xk−1)− F (x̃k))‖2 ≤ (λL‖xk−1 − x̃k‖)
≤ σ2‖xk−1 − x̃k‖2,

where the last equality follows from the definitions of pk and qk in (33), and the last
two inequalities are due to assumption (K.3) and the assumption that λ ≤ σ/L. It
remains to show that (35) holds. Indeed, the definition of pk in (33), the triangle
inequality for norms, assumption (K.3), and the identity λ = σ/L imply that

‖F (x̃k) + pk‖ =
∥∥∥∥F (x̃k)− F (xk−1) +

1

λ
(xk−1 − x̃k)

∥∥∥∥
≤ ‖F (x̃k)− F (xk−1‖+ 1

λ
‖xk−1 − x̃k‖

≤
(
L+

1

λ

)
‖xk−1 − x̃k‖ = (1 + σ)L

σ
‖x̃k − xk−1‖.

Appendix C. Proofs of the results in subsection 3.1.
In this section we assume that assumptions (K.1)–(K.3) of section 4.1 hold. The

proof of Proposition 3.5 will be divided into three parts.
Proposition C.1. Let x ∈ dom g. Then
(a) (r, ε) is a strong residual of x for HV I(F, g) if and only if r ∈ F (x)+∂εg(x);
(b) if (r, ε) is a weak residual of x for HV I(F, g), then r ∈ (F + ∂g)ε(x);
(c) if r ∈ (F ε′ + ∂gε′′)(x) and ε′ + ε′′ ≤ ε, then (r, ε) is a weak residual of x for

HV I(F, g).
Proof. (a) Using the definition (1) of the ε-subdifferential and relations (19) and

(21), we conclude that (r, ε) is a strong residual of x for HV I(F, g) if and only if
r − F (x) ∈ ∂εg(x).

(b) Suppose that (r, ε) is a weak residual of x for HV I(F, g). Then, using (21),
(20), and the fact that the domain of ∂g is contained in dom g, we conclude that, for
every y ∈ Dom ∂g and u ∈ ∂g(y),

ε ≥ g(x)− g(y) + 〈x − y, F (y)− r〉
= g(x)− g(y)− 〈x− y, u〉+ 〈x− y, F (y) + u− r〉 ≥ 〈x− y, F (y) + u− r〉.

Hence, it follows from definition (3) that r ∈ (F + ∂g)ε(x).
(c) Suppose now that r ∈ (F ε′ +∂gε′′)(x) and ε′+ ε′′ ≤ ε. Hence, there exist r′ ∈

F ε′(x) and r′′ ∈ ∂ε′′g(x) such that r′ + r′′ = r. Hence, for any y ∈ dom(g) ⊆ DomF ,
we have

〈y − x, F (y)− r′〉 ≥ −ε′, g(y) ≥ g(x) + 〈y − x, r′′〉 − ε′′.

Adding these two inequalities and using the fact that r = r′ + r′′ and ε′ + ε′′ ≤ ε, we
then conclude that

g(y) ≥ g(x) + 〈y − x, r − F (x)〉 − ε ∀y ∈ dom g

and hence that (r, ε) is a weak residual of x for HV I(F, g), due to (20) and (21).
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Proposition C.2. If x ∈ dom g and c ≥ 2L, then θc(x;F, g) ≤ θw(x;F, g).
Proof. Let x ∈ dom g and c ≥ 2L be given. Then, in view of (20), (23), the

assumption that c ≥ 2L, and assumption (K.3), we have

θw(x;F, g) = sup
y∈dom g

g(x)− g(y) + 〈x− y, F (y)〉

≥ sup
y∈dom g

g(x)− g(y)− 〈y − x, F (x)〉 − ‖F (x)− F (y)‖ ‖y − x‖

≥ sup
y∈Rn

g(x)− g(y)− 〈y − x, F (x)〉 − L‖y − x‖2 ≥ θc(x;F, g).

The following result establishes a relationship between θc and strong residuals.
Theorem C.3. Let x ∈ dom g and c > 0 be given. If (r, ε) is a strong residual

of x for HV I(F, g), then, for any c > 0,

(77) θc(x;F, g) ≤ 1

2c
‖r‖2 + ε;

moreover, for any fixed c > 0, there exists a unique strong residual (r, ε) of x for
HV I(F, g) for which equality holds in (77), namely, (r, ε) = (rc(x;F, g), εc(x;F, g)),
where

(78) εc(x;F, g) := g(x)−g(yc)−〈x − yc, rc − F (x)〉 ≥ 0, yc := x− c−1rc(x;F, g).

Proof. To simplify notation, let (rc, εc) := (rc(x;F, g), εc(x;F, g)). By Defini-
tion 3.4, (r, ε) is a strong residual of x for HV I(F, g) if and only if θs(x;F − r, g) :=
supy g(x) − g(y) + 〈x− y, F (x)− r〉 ≤ ε. This observation together with definition
(23) of θc(·;F, g) then implies that

inf

{
ε+

1

2c
‖r‖2 : (r, ε) strong residual of x for HV I(F, g)

}
= inf

r
sup
y

g(x)− g(y) + 〈x− y, F (x)− r〉+ 1

2c
‖r‖2

≥ sup
y

inf
r
g(x)− g(y) + 〈x− y, F (x)− r〉+ 1

2c
‖r‖2

= sup
y

g(x)− g(y) + 〈x− y, F (x)〉 − c

2
‖x− y‖2 = θc(x;F, g),

which proves the first claim of the theorem.
We now prove the second claim. Using (78) and (22) we conclude that

yc =

(
I +

1

c
∂g

)−1(
x− 1

c
F (x)

)
.

Therefore, from the optimality conditions for the maximization problem (23), we
conclude that its maximizer is yc and

θc(x;F, g) = g(x)− g(yc) + 〈x− yc, F (x)〉 − c

2
‖yc − x‖2,(79)

rc − F (x) = c(x− yc)− F (x) ∈ ∂g(yc).(80)

Moreover, (80) and Proposition 2.1(c) imply that εc ≥ 0 and rc − F (x) ∈ ∂εcg(x).
Hence, in view of Proposition C.1(a), (rc, εc) is a strong residual of x for HV I(F, g).
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To end the proof, use (78) and (79) to conclude that (77) holds as an equality for
(rc, εc).

The following result follows as a consequence of Theorem C.3.
Proposition C.4. If x ∈ dom g is a (ρ/

√
2, ε/2)-strong solution of HV I(F, g)

and c̄ := ρ2/(2ε), then the pair (rc̄(x;F, g), εc̄(x;F, g)) is a strong residual of x for
HV I(F, g) satisfying the estimates

‖rc̄(x;F, g)‖ ≤ ρ, εc̄(x;F, g) ≤ ε.

Proof. To simplify notation, denote (rc̄(x;F, g), εc̄(x;F, g)) simply by (rc̄, εc̄).
Since x is a (ρ/

√
2, ε/2)-strong solution of HV I(F, g), there exists r ∈ R

n such that
‖r‖ ≤ ρ/

√
2 and (r, ε/2) is a strong residual of x for HV I(F, g). Hence, it follows

from Theorem C.3 with c = c̄ := ρ2/(2ε) that

1

2c̄
‖rc̄‖2 + εc̄ = θc̄(x;F, g) ≤ 1

2c̄
‖r‖2 + ε

2
≤ ρ2

4c̄
+

ε

2
= ε,

which clearly implies that εc̄ ≤ ε and ‖rc̄‖ ≤
√
2c̄ ε = ρ.

The following result also follows as a consequence of Theorem C.3.
Proposition C.5. If condition (K.3) holds and (r, ε) is a weak residual of x for

HV I(F, g), then, for any positive scalar c ≥ 2L, the vector

(81) rc := rc(x;F − r, g)

satisfies ‖rc‖ ≤
√
2cε, and the pair (r+rc, ε) is a strong residual of x for HV I(F, g).

Proof. Assume that c ≥ 2L is given. By definition, the second assumption of the
proposition means that θw(x;F − r, g) ≤ ε. This together with condition (K.3) and
Proposition C.2 implies that θc(x;F − r, g) ≤ ε. Hence, considering the pair (rc, εc)
with rc defined by (81) and εc := εc(x;F−r, g) (see (78)), it follows from Theorem C.3
that (rc, εc) is a strong residual of x for HV I(x;F − r, g) and

1

2c
‖rc‖2 + εc = θc(x;F − r, g) ≤ ε,

from which the conclusion of the proposition immediately follows.
The following result shows that near a point x ∈ dom g, it is always possible to

construct a point y(x) with strong residual (r, ε) = (r, 0) such that ‖y(x) − x‖ ≤
‖rc(x;F, g)‖/c and ‖r‖ ≤ ‖rc‖(1 + L/c).

Proposition C.6. Assume that F : DomF ⊆ R
n satisfies assumption (K.3),

and let x ∈ dom g be given. Then, for every c > 0, the vectors yc defined in (78) and

(82) r̂c := F (yc)− F (x) + rc

satisfy

(83) ‖yc − x‖ = 1

c
‖rc‖, r̂c ∈ (F + ∂g)(yc), ‖r̂c‖ ≤

(
1 +

L

c

)
‖rc‖,

where rc := rc(x;F, g). Moreover, if, in addition, x is a (ρ, ε)-strong solution, then

‖yc − x‖ ≤
√
ρ2 + 2cε

c
, ‖r̂c‖ ≤

(
1 +

L

c

)√
ρ2 + 2cε ∀c > 0.
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Proof. The equality in (83) follows immediately from the definition of yc in
(78), and the inclusion in (83) follows from (80) and (82). Moreover, using (82) and
assumption (K.3), we have

‖r̂c‖ ≤ ‖F (yc)− F (x)‖ + ‖rc‖ ≤ L‖yc − x‖+ ‖rc‖ ≤
(
1 +

L

c

)
‖rc‖.

The last claim of Proposition C.6 follows immediately from the first one and Propo-
sition C.4.

Appendix D. Proof of Theorem 3.9.
In this appendix, we provide the proof of Theorem 3.9. We first state the following

well-known technical result.
Proposition D.1. Assume that g : �n → [−∞,∞] is a proper closed convex

function. Let xi, vi ∈ R
n and εi, αi ∈ R+, for i = 1, . . . , k, be such that

vi ∈ ∂εig(xi), i = 1, . . . , k,

k∑
i=1

αi = 1,

and define

xa :=

k∑
i=1

αixi, va :=

k∑
i=1

αivi,

εa :=
k∑

i=1

αi[εi + 〈xi − xa, vi − va〉] =
k∑

i=1

αi[εi + 〈xi − xa, vi〉].

Then, εa ≥ 0 and va ∈ ∂εag(x
a).

We are now ready to give the proof of Theorem 3.9.
Proof of Theorem 3.9. (a) Note that, by (25), we have vi − F (xi) ∈ ∂εig(xi) for

every i = 1, . . . , k. Defining

(84) εa0 :=

k∑
i=1

αi

[
εi +

〈
xi − xa, vi − F (xi)

〉]
,

it then follows from the definitions of va and F a in (26) and Proposition D.1 that
εa0 ≥ 0 and va − F a ∈ ∂εa0g(x

a). Moreover, defining

εa1 :=

k∑
i=1

αi〈xi − xa, F (xi)− F a〉 =
k∑

i=1

αi〈xi − xa, F (xi)〉,

it follows from Corollary 2.4 of [9] that εa1 ≥ 0 and F a ∈ F εa1 (xa). Hence, it fol-
lows that va ∈ [F εa1 + ∂εa0 g](x

a). Noting that εa = εa0 + εa1 , we then conclude from
Proposition 3.5(c) that (va, εa) is a weak residual of xa for HV I(F, g).

(b) The function F can be decomposed as F = G+A, where G is anN (F ; dom g)-
Lipschitz monotone map and A is an affine monotone map. Define

Aa =

k∑
i=1

αiA(xi), ε̂a1 :=

k∑
i=1

αi〈xi − xa,A(xi)〉,(85)

Ga =

k∑
i=1

αiG(xi), ε̂a2 :=

k∑
i=1

αi[εi + 〈xi − xa , vi −A(xi) 〉 ,(86)
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and note that εa = ε̂a1 + ε̂a2 in view of (26). Since A is an affine monotone map,
we have Aa = A(xa) and ε̂a1 ≥ 0, and hence εa ≥ ε̂a2 . By (25) and the fact that
F = G+A, we have

vi −A(xi) ∈ (G+ ∂εig)(xi), i = 1, . . . , k.

Using the definitions of va, Aa, and ε̂a2 in (26), (85), and (86), respectively, and
statement (a) with F = G and vi = vi − A(xi), we then conclude that the pair
(va − Aa, ε̂a2), and hence (va − A(xa), εa), is a weak residual of xa for HV I(G, g).
Now, the identity

rc := rc(x
a;F − va) = rc(x

a;G− (va −Aa)),

which is due to definition (22), and the identity F (xa) = G(xa)+A(xa) = G(xa)+Aa,
the fact that G is N (F ; dom g)-Lipschitz continuous, and Proposition 3.7 imply that,
for any c ≥ 2N (F ; dom g), ‖rc‖ ≤

√
2cεa and the pair (va −Aa + rc, ε

a) is a strong
residual of xa for HV I(G, g). Since by definition this means that

va −Aa + rc ∈ G(xa) + ∂εag(x
a)

or, equivalently, va + rc ∈ F (xa) + ∂εa(x
a), we conclude that (va + r, εa) is a strong

residual of xa for HV I(F, g).
(c) Since 0 ∈ NΩ(xi), and hence F (xi) ∈ F (xi) +NΩ(xi), for every i = 1, . . . , k,

it follows from statement (b) with g = δΩ, vi = F (xi), and εi = 0 that, for every
c ≥ N (F ; Ω), the vector r̂c defined in (27) satisfies

(87) r̂c + F a ∈ F (xa) +N
εa1
Ω (xa), ‖r̂c‖ ≤

√
2εa1c,

where F a is defined in (26) and

(88) εa1 :=
k∑

i=1

αi

〈
xi − xa, F (xi)

〉 ≥ 0.

On the other hand, we know from the proof of statement (a) that va−F a ∈ ∂εa0 g(x
a),

where εa0 ≥ 0 is defined in (84). Combining this last observation with (87), we then
conclude that

r̂c + va − F (xa) ∈ ∂εa0 g(x
a) +N

εa1
Ω (xa) ⊆ ∂εa0+εa1

(g + δΩ)(x
a) = ∂εag(x

a),

where the last identity follows from the definition of εa, εa0 , and εa1 in (26), (84), and
(88), respectively, and the fact that dom g ⊆ Ω by assumption. Statement (c) now
immediately follows from the latter conclusion, Proposition 3.5(a), the inequality in
(87), and the fact that εa1 ≤ εa.

The last claim of the theorem follows from (b) with c = 2N (F ; dom g).

Appendix E. Proof of Theorem 4.4.
Before giving the proof of Theorem 4.4, we first establish the following result.
Theorem E.1. Let {x̃k} and {xk} be the sequences generated by the generalized

Korpelevich’s extragradient algorithm, and consider the ergodic sequences {x̃a
k}, {ṽak},

and {ε̃ak} defined according to (36) and (37), and the sequence {F̃ a
k } defined as

(89) F̃ a
k =

k∑
i=1

F (x̃i).

Let d0 be the distance of x0 to the solution set of HV I(F, g). Then, for every k ∈ N,
the following statements hold:
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(a) If a positive scalar c ≥ 2N (F ; dom g) is known and we define

(90) v̂ak := ṽak + rc(x̃
a
k;F − ṽak , g),

then (v̂ak , ε̃
a
k) is a strong residual of x̃a

k for HV I(F, g) and

(91) ‖v̂ak‖ ≤
2Ld0
kσ

+ 2d0

√
cLη̄k
kσ

.

(b) Alternatively, if a closed convex set Ω ⊆ R
n such that dom g ⊆ Ω ⊆ DomF

and a positive constant c ≥ 2N (F ; Ω) are known and we define

(92) v̌ak := ṽak + rc(x̃
a
k;F − F̃ a

k , δΩ),

then (v̌ak , ε̃
a
k) is a strong residual of x̃a

k for HV I(F, g), and v̌ak also satisfies
(91) with v̂ak replaced by v̌ak .

As a consequence, if a constant c > 0 satisfying 2N (F ; dom g) ≤ c = O(N (F ; dom g))
is known, then for every pair of positive scalars (ρ, ε), there exists an index

(93) k0 = O
(
max

[
Ld20
ε

,
Ld0
ρ

+
d20LN (F ; dom g)

ρ2

])
such that, for any k ≥ k0, the pair (v̂ak , ε̃

a
k) is an easily computable certificate that the

point x̃a
k is a (ρ, ε)-strong solution of HV I(F, g).

Proof. By Proposition 4.5 (resp., Proposition 4.1), the variant of Tseng’s MF-BS
method (resp., the generalized Korpelevich’s method) is a special case of the HPE
method with T = F + ∂g, and, for every k ∈ N, ṽk ∈ [F + ∂εkg](x̃k), where εk = 0
(resp., εk is given by (34)). Hence, statements Theorem E.1(a), (b), and (c) follow
immediately from Theorem 2.5 with λk = σ/L for every k and Theorem 3.9 with
xi = x̃i, vi = ṽi, and αi = 1/k for i = 1, . . . , k. The last part of Theorem E.1 follows
from statement (b) and some straightforward arguments.

We now make a few observations regarding the last result. First, note that the
complexity bound in Theorem E.1(a) can be significantly better than that obtained in
Theorem 4.2, namely, when the constant c � L. Second, in the case where Ω = R

n,
the vector v̌ak reduces to

v̌ak = ṽak + F (x̃a
k)− F̃ a

k ,

which does not depend on c. Hence, in this case, knowledge of a constant c ≥
N (F ; dom g) is not required. Moreover, when F is affine and we choose Ω = R

n,
(91) holds for any c > 0 = N (F ; dom g), from which we conclude that

‖v̌ak‖ ≤
2Ld0
kσ

,

and hence that (93) also holds also when N (F ; dom g) = 0. Third, Theorem E.1(a)
with Ω = R

n and g being an indicator function reduces to Theorem 5.5 of [9]. Fourth,
the main drawback about the last statement of Theorem E.1 is the fact that a constant
c ≥ N (F ; dom g) such that c = O(N (F ; dom g)) must be known. The natural question
then arises as to whether it is possible to compute a certificate that x̃a

k is a (ρ, ε)-
strong solution of V I(F,X) within a number of iterations bounded by (93), without
any knowledge of a constant c as above.
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An affirmative answer to the latter question is given by Theorem 4.4, whose proof
we now give.

Proof of Theorem 4.4. Consider the sequences {x̃a
k} and {ε̃ak} defined in (36)

and (37), and the sequence {v̂ak} defined in (90) with c = 2N (F ; dom g). Then, by
Theorem E.1 the pair (v̂ak , ε̃

a
k) is a strong residual of x̃a

k for HV I(F, g) satisfying the
estimates (38) and (91) with c = 2N (F ; dom g). Hence, we easily conclude that there
exists k0 such that (40) holds and x̃a

k is a (ρ/
√
2, ε/2)-strong solution of HV I(F, g)

for any k ≥ k0. This conclusion together with Proposition 3.6(b) then implies that
the pair (rc̄(x̃

a
k;F, g), εc̄(x̃

a
k;F, g)) is a strong residual of x̃a

k for HV I(F, g) satisfying
(41).
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