
A �rst-order block-decomposition method for solving

two-easy-block structured semide�nite programs

Renato D.C Monteiro∗ Camilo Ortiz† Benar F. Svaiter‡

July 27, 2012

Abstract

In this paper, we consider a �rst-order block-decomposition method for minimizing the sum of a convex
di�erentiable function with Lipschitz continuous gradient, and two other proper closed convex (possibly,
nonsmooth) functions with easily computable resolvents. The method presented contains two important
ingredients from a computational point of view, namely: an adaptive choice of stepsize for performing an
extragradient step; and the use of a scaling factor to balance the blocks. We then specialize the method to
the context of conic semide�nite programming (SDP) problems consisting of two easy blocks of constraints.
Without putting them in standard form, we show that four important classes of graph-related conic SDP
problems automatically possess the above two-easy-block structure, namely: SDPs for θ-functions and
θ+-functions of graph stable set problems, and SDP relaxations of binary integer quadratic and frequency
assignment problems. Finally, we present computational results on the aforementioned classes of SDPs
showing that our method outperforms the three most competitive codes for large-scale conic semide�nite
programs, namely: the boundary point (BP) method introduced by Povh et al., a Newton-CG augmented
Lagrangian method, called SDPNAL, by Zhao et al., and a variant of the BP method, called the SPDAD
method, by Wen et al.

1 Introduction

Let R denote the set of real numbers, Rn denote the n-dimensional Euclidean space, Rn
+ denote the cone of

nonnegative vectors in Rn, Sn denote the set of all n×n symmetric matrices and Sn
+ denote the cone of n×n

symmetric positive semide�nite matrices. Let X and W be �nite dimensional vector spaces and consider the
conic programming problem

min{c(x) : Ax = b, x ∈ K}, (1)

where A : X → W and c : X → R are linear mappings, b ∈ W, c ∈ X and K ⊂ X is a closed convex
cone. Several papers [8, 9, 20, 10, 19] in the literature discuss methods/codes for solving large-scale conic
semide�nite programming problems, i.e., special cases of (1) in which

X = Rnu+nl × Sns , W = Rm, K = Rnu × Rnl
+ × S

ns
+ . (2)

Presently, the most e�cient methods/codes for solving large-scale conic SDP problems are the �rst-order
projection-type discussed in [9, 20, 10, 19] (see also [14] for a slight variant of [9]).
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More speci�cally, augmented Lagrangian approaches have been proposed for the dual formulation of (1)
with X , W and K as in (2) for the case when m, nu and nl are large (up to a few millions) and ns is moderate
(up to a few thousands). In [9, 14], a boundary point method for solving (1) is proposed which can be viewed as
variants of the alternating direction method of multipliers introduced in [6, 7] applied to the dual formulation
of (1). In [20], an inexact augmented Lagrangian method is proposed which solves a reformulation of the
augmented Lagrangian subproblem via a semismooth Newton approach combined with the conjugate gradient
method. Using the theory developed in [11], an implementation of a �rst-order block-decomposition (BD)
algorithm, based on the hybrid proximal extragradient (HPE) method [17], for solving standard form conic
SDP problems is discussed in [10], and numerical results are presented showing that it generally outperforms
the methods of [9, 20]. In [19], an e�cient variant of the BP method is discussed and numerical results are
presented showing its impressive ability to solve important classes of large-scale graph-related SDP problems.
It should be observed though that the implementation in [19] is very speci�c in the sense that a di�erent
code is developed for each SDP class taking advantage of its special structure, without bringing the SDPs to
standard form as in the approaches of [9, 20, 10].

Our goal in this paper is to study the performance of a BD method based on the BD-HPE framework in [11]
for solving conic optimization problems, not necessarily in standard form, with two �easy� blocks of constraints.
We will simply say that these problems have the �two-easy-block� structure. We �rst present a �rst-order BD
method for minimizing the sum of a convex di�erentiable function with Lipschitz continuous gradient, and two
other proper closed convex (possibly, nonsmooth) functions with easily computable resolvents. The method
presented contains two important ingredients from a computational point of view, namely: an adaptive choice
of stepsize for performing an extragradient step; and the use of a scaling factor to balance the blocks. We
discuss its specialization to the context of conic SDP problems possessing the �two-easy-block� structure.
Then, we apply it to solve four important classes of graph-related conic SDP problems which have the two-
easy-block structure, namely: SDPs for θ-functions and θ+-functions of graph stable set problems, and SDP
relaxations of binary integer quadratic and frequency assignment problems. Finally, we present computational
results on several instances of the aforementioned classes of conic SDPs showing that our method substantially
outperforms the codes in [10, 19, 20]. Since the code in this paper works directly in the conic optimization
problem as given, and hence works with a formulation with less number of variables, it is not surprising that
it also outperforms the BD method of [10], which in contrast requires as input an SDP problem in standard
form.

Our paper is organized as follows. Section 2 reviews some facts about the ε-subdi�erential of a convex
function and the ε-enlargement of a monotone operator. Section 3 presents an adaptive block-decomposition
HPE (A-BD-HPE) framework in the context of block-structured monotone inclusion problems, similar to the
one presented in [11], but with an adaptive choice of stepsize for performing the extragradient step. Section
4 presents a �rst-order instance of the A-BD-HPE framework, and corresponding complexity results, for
solving a minimization problem whose objective function is the sum of a �nite everywhere convex function
with Lipschitz continuous gradient and two proper closed convex (possibly, nonsmooth) functions with easily
computable resolvents. Section 5 discusses the specialization of the method of Section 4 to the context of conic
optimization problems with a two-easy-block structure. Section 6 describes a generic stopping criterion and
a practical variant of the BD method of Section 5 which incorporates a dynamic update of the scaling factor
to balance the blocks. Section 7 presents numerical results comparing the latter variant of the BD method to
the method discussed in [19] . Section 8 brie�y compares this variant of the BD method with the methods in
[10] and [20]. Finally, Section 9 presents some �nal remarks.

2 The ε-subdi�erential and ε-enlargement of monotone operators

In this section, we review some properties of the ε-subdi�erential of a convex function and the ε-enlargement
of a monotone operator.

Let Z denote a �nite dimensional inner product space with inner product and associated norm denoted by
〈·, ·〉Z and ‖·‖Z . A point-to-set operator T : Z ⇒ Z is a relation T ⊆ Z ×Z and

T (z) = {v ∈ Z | (z, v) ∈ T}.
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Alternatively, one can consider T as a multi-valued function of Z into the family ℘(Z) = 2(Z) of subsets of Z.
Regardless of the approach, it is usual to identify T with its graph de�ned as

Gr(T ) = {(z, v) ∈ Z × Z | v ∈ T (z)}.

The domain of T , denoted by DomT , is de�ned as

DomT := {z ∈ Z : T (z) 6= ∅}.

An operator T : Z ⇒ Z is a�ne if its graph is an a�ne manifold. An operator T : Z ⇒ Z is monotone if

〈v − ṽ, z − z̃〉Z ≥ 0, ∀(z, v), (z̃, ṽ) ∈ Gr(T ),

and T is maximal monotone if it is monotone and maximal in the family of monotone operators with respect
to the partial order of inclusion, i.e., S : Z ⇒ Z monotone and Gr(S) ⊃ Gr(T ) implies that S = T .

In [1], Burachik, Iusem and Svaiter introduced the ε-enlargement of maximal monotone operators. In [12]
this concept was extended to a generic point-to-set operator in Z as follows. Given T : Z ⇒ Z and a scalar
ε, de�ne T ε : Z ⇒ Z as

T ε(z) = {v ∈ Z | 〈z − z̃, v − ṽ〉Z ≥ −ε, ∀z̃ ∈ Z, ∀ṽ ∈ T (z̃)}, ∀z ∈ Z. (3)

We now state a few useful properties of the operator T ε that will be needed in our presentation.

Proposition 2.1. Let T, T ′ : Z ⇒ Z. Then,

a) if ε1 ≤ ε2, then T ε1(z) ⊆ T ε2(z) for every z ∈ Z;

b) T ε(z) + (T ′)ε′(z) ⊆ (T + T ′)ε+ε′(z) for every z ∈ Z and ε, ε′ ∈ R;

c) T is monotone if, and only if, T ⊆ T 0;

d) T is maximal monotone if, and only if, T = T 0;

We refer the reader to [2, 18] for further discussion on the ε-enlargement of a maximal monotone operator.
For a scalar ε ≥ 0, the ε-subdi�erential of a function f : Z → [−∞,+∞] is the operator ∂εf : Z ⇒ Z

de�ned as
∂εf(z) = {v | f(z̃) ≥ f(z) + 〈z̃ − z, v〉Z − ε, ∀z̃ ∈ Z}, ∀z ∈ Z. (4)

When ε = 0, the operator ∂εf is simply denoted by ∂f and is referred to as the subdi�erential of f . The
operator ∂f is trivially monotone if f is proper. If f is a proper lower semi-continuous convex function, then
∂f is maximal monotone [16].

The conjugate f∗ of f is the function f∗ : Z → [−∞,∞] de�ned as

f∗(v) = sup
z∈Z
〈v, z〉Z − f(z), ∀v ∈ Z.

The following result lists some useful properties about the ε-subdi�erential of a proper convex function.

Proposition 2.2. Let f : Z → (−∞,∞] be a proper convex function. Then,

a) ∂εf(z) ⊆ (∂f)ε(z) for any ε ≥ 0 and z ∈ Z;

b) if f is closed, then ∂ε(f∗) = (∂εf)−1 for any ε ≥ 0;

c) if v ∈ ∂f(z) and f(z̃) <∞, then v ∈ ∂εf(z̃), where ε := f(z̃)− [f(z) + 〈z̃ − z, v〉].
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The indicator function of a closed convex set Z ⊆ Z is the function δZ : Z → [0,∞] de�ned as

δZ(z) =

{
0, z ∈ Z,

∞, otherwise.

For a closed convex cone K ⊆ Z, we have the following characterization about the conjugate and ε-
subdiferential of δK.

Proposition 2.3. Let K ⊆ Z be a (nonempty) closed convex cone. Then, the following statements hold:

a) (δK)∗ = δ−K∗ , where K∗ is dual cone of K de�ned as

K∗ := {w ∈ Z : 〈z, x〉 ≥ 0, ∀x ∈ K};

b) for any ε ≥ 0, the pair (z, w) ∈ Z × Z satis�es w ∈ −∂εδK(z) if, and only if, z ∈ K, w ∈ K∗ and
〈z, w〉Z ≤ ε.

We �nish the section by stating the weak transportation formula for the ε-subdi�erential whose proof can
be found for example in Lemma 3.4 of [18].

Proposition 2.4. Suppose that f : Z ⇒ [−∞,∞] is a closed proper convex function. Let zi, vi ∈ Z and
εi, αi ∈ R+, for i = 1, . . . , k, be such that

vi ∈ ∂εi
f(zi), i = 1, . . . , k,

k∑
i=1

αi = 1,

and de�ne

za :=
∑k

i=1 αizi, va :=
∑k

i=1 αivi,

εa :=
∑k

i=1 αi [εi + 〈zi − za, vi − va〉Z ] =
∑k

i=1 αi [εi + 〈zi − za, vi〉Z ] .

Then, εa ≥ 0 and va ∈ ∂εaf(za).

3 The A-BD-HPE framework

In this section, we review the A-BD-HPE framework with adaptive stepsize for solving a special type of
monotone inclusion problem consisting of the sum of a continuous monotone map and a point-to-set maximal
monotone operator with a separable two-block-structure.

Let U and V be �nite dimensional inner product spaces with associated inner products denoted by 〈·, ·〉U
and 〈·, ·〉V , respectively, and associated norms denoted by ‖ ·‖U and ‖ ·‖V , respectively. We endow the product
space U × V with the canonical inner product 〈·, ·〉U,V and associated canonical norm ‖ · ‖U,V de�ned as

〈(u, v), (u′, v′)〉U,V := 〈u, u′〉U + 〈v, v′〉V , ‖(u, v)‖U,V :=
√
〈(u, v), (u, v)〉U,V , (5)

for all (u, v), (u′, v′) ∈ U × V.
Our problem of interest in this section is the monotone inclusion problem of �nding (u, v) ∈ U × V such

that
(0, 0) ∈ [F + H1 ⊗H2](u, v), (6)

where
F (u, v) = (F1(u, v), F2(u, v)) ∈ U × V, (H1 ⊗H2)(u, v) = H1(u)×H2(v) ⊆ U × V

and the following conditions are assumed:
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A.1) H1 : U ⇒ U and H2 : V ⇒ V are maximal monotone;

A.2) F : Dom F ⊆ U × V → U × V is a continuous map such that DomF ⊃ cl(Dom H1)× V;

A.3) F is monotone on cl(Dom H1)× cl(Dom H2);

A.4) there exists Luv > 0 such that

‖F1(u, v′)− F1(u, v)‖U ≤ Luv‖v′ − v‖V , ∀u ∈ Dom H1, ∀v, v′ ∈ V. (7)

It is trivial to check that H1⊗H2 is maximal monotone. Moreover, in view of the proof of Proposition A.1 of
[13], it follows that F + H1 ⊗H2 is maximal monotone. Note that problem (6) is equivalent to

0 ∈ F1(u, v) + H1(u), 0 ∈ F2(u, v) + H2(v),

We now state the A-BD-HPE framework.

Adaptive block-decomposition HPE (A-BD-HPE) framework:

0) Let (u0, v0) ∈ U × V, σ ∈ [0, 1], σu, σv ∈ [0, 1) and σ̃u ∈ [0, σu] be given and set k = 1;

1) choose λ̃k > 0 such that

σk :=
{

max eig
([

σ2
u λ̃kσ̃uLuv

λ̃kσ̃uLuv σ2
v + λ̃2

kL2
uv

])}1/2

≤ σ, (8)

where max eig stands for the maximum eigenvalue;

2) compute ũk, ak ∈ U and ε′k ≥ 0 such that

ak ∈ H
ε′k
1 (ũk), ‖λ̃k[F1(ũk, vk−1) + ak] + ũk − uk−1‖2U + 2λ̃kε′k ≤ σ2

u‖ũk − uk−1‖2U , (9)

‖λ̃k[F1(ũk, vk−1) + ak] + ũk − uk−1‖U ≤ σ̃u‖ũk − uk−1‖U ; (10)

3) compute ṽk, bk ∈ V and ε′′k ≥ 0 such that

bk ∈ H
ε′′k
2 (ṽk), ‖λ̃k[F2(ũk, ṽk) + bk] + ṽk − vk−1‖2V + 2λ̃kε′′k ≤ σ2

v‖ṽk − vk−1‖2V ; (11)

4) choose λk as the largest λ > 0 such that∥∥∥∥λ(F1(ũk, ṽk) + ak

F2(ũk, ṽk) + bk

)
+
(

ũk

ṽk

)
−
(

uk−1

vk−1

)∥∥∥∥2

U,V
+ 2λ(ε′k + ε′′k) ≤ σ2

∥∥∥∥(ũk

ṽk

)
−
(

uk−1

vk−1

)∥∥∥∥2

U,V
; (12)

5) set
(uk, vk) = (uk−1, vk−1)− λk[F (ũk, ṽk) + (ak, bk)], (13)

k ← k + 1, and go to step 1.

end

The following result is proved in Proposition 3.1 of [11] (see also Proposition 3.1 of [10]).

Proposition 3.1. Consider the sequences {λk} and {λ̃k} generated by the A-BD-HPE framework. Then, for
every k ∈ N, λ = λ̃k satis�es (12). As a consequence λk ≥ λ̃k.

We now review two convergence results (see Theorems 3.2 and 3.3 of [10]) for the A-BD-HPE framework.
The �rst one, referred to as the pointwise convergence result, is about the sequence {(ũk, ṽk)}, while the
second one, referred to as the ergodic convergence result, is about an ergodic sequence obtained by averaging
{(ũk, ṽk)} using the sequence of stepsizes {λk} as weights.
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Theorem 3.2. Assume that σ < 1 and consider the sequences {(ũk, ṽk)}, {(ak, bk)}, {λk} and {(ε′k, ε′′k}
generated by the A-BD-HPE framework and let d0 denote the distance of the initial point (u0, v0) ∈ U × V to
the solution set of (6). Then, for every k ∈ N, there exists i ≤ k such that

‖F (ũi, ṽi) + (ai, bi)‖U,V ≤ d0

√√√√1 + σ

1− σ

(
1

λi

∑k
j=1 λj

)
, ε′i + ε′′i ≤

σ2d2
0

2(1− σ2)
∑k

j=1 λj

. (14)

We now state the ergodic convergence result, which is specialized to the the case where the map F is a�ne.

Theorem 3.3. In addition to conditions A.1-A.4, assume that F is an a�ne map. Let d0 denote the distance
of the initial point (u0, v0) ∈ U × V to the solution set of (6). Consider the sequences {(ũk, ṽk)}, {(ak, bk)},
{λk} and {(ε′k, ε′′k)} generated by the A-BD-HPE framework and de�ne for every k ∈ N:

Λk :=
k∑

i=1

λi, (ũa
k, ṽa

k) =
1

Λk

k∑
i=1

λi(ũi, ṽi), (aa
k, ba

k) =
1

Λk

k∑
i=1

λi(ak, bk) (15)

and

εa
1,k :=

1
Λk

k∑
i=1

λi (ε′i + 〈ũi − ũa
k, ai〉U ) ≥ 0,

εa
2,k :=

1
Λk

k∑
i=1

λi (ε′′i + 〈ṽi − ṽa
k , bi〉V) ≥ 0.

Then, for every k ∈ N, (aa
k, ba

k) ∈ H
εa
1,k

1 (ũa
k)×H

εa
2,k

2 (ṽa
k) and

‖F (ũa
k, ṽa

k) + (aa
k, ba

k)‖U,V ≤
2d0

Λk
, εa

1,k + εa
2,k ≤

2d2
0

Λk
(1 + η),

where

η :=
2
√

2σ

1−max{σu, σv}

(
1 +

1
(1− σv)2

)1/2

.

4 A BD algorithm for a class of structured convex optimization

This section presents a �rst-order BD algorithm, and corresponding complexity results, for solving a mini-
mization problem whose objective function is the sum of a �nite everywhere convex function with Lipschitz
continuous gradient and two proper closed convex (possibly, nonsmooth) functions with easily computable
resolvents.

Throughout this section, X denotes a �nite dimensional inner product space with corresponding inner
product and norm denoted by 〈·, ·〉 and ‖ · ‖, respectively. We are concerned with the optimization problem

min f(x) + h1(x) + h2(x)
s.t. x ∈ X ,

(16)

where:

B.1) f, h1, h2 : X → R ∪ {+∞} are convex lower semicontinuous proper functions;

B.2) f is di�erentiable on X and its gradient is L-Lipschitz continuous, that is,

‖∇f(x)−∇f(x′)‖ ≤ L ‖x− x′‖ , ∀x, x′ ∈ X ;
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B.3) the intersection of the relative interiors of the e�ective domains of h1 and h2 is non-empty.

In view of the above assumptions and [15, , Theorem 23.8], we have ∂(f + h1 + h2) = ∇f + ∂h1 + ∂h2.
Therefore, x∗ is an optimal solution of (16) if, and only if,

0 ∈ ∇f(x∗) + ∂h1 (x∗) + ∂h2 (x∗) . (17)

Using Proposition 2.2(b), it then follows that x∗ is an optimal solution of (16) if, and only if, there exists
y∗ ∈ Rn such that

0 ∈ ∇f(x∗) + ∂h1 (x∗) + y∗, 0 ∈ ∂h∗2 (y∗)− x∗.

It is interesting to note that the above inclusion problem is associated with the Lagrangian L : X × X →
[−∞,∞] de�ned as

L(x, y) = f(x) + h1(x) + 〈x, y〉 − h∗2(y), ∀(x, y) ∈ X × X ,

in that it can be simply expressed as

0 ∈ ∂xL(x, y), 0 ∈ ∂y(−L)(x, y), (18)

where the two partial derivatives are with respect to the same inner product 〈·, ·〉 on X . Although one can
apply the A-BD-HPE framework directly to the above system with H1 = ∂(f + h1) and H2 = ∂h∗2, and
F (x, y) = (y,−x) for all (x, y) ∈ X × X , it is more e�cient from a computational point of view to introduce
a scale factor to balance the two inclusions in (18).

Indeed, let θ > 0 be given and consider the scaled inner product 〈·, ·〉θ in X de�ned as

〈x, x′〉θ := θ−1〈x, x′〉, ∀x, x′ ∈ X , (19)

and observe that the associated inner product norm, denoted by ‖ · ‖θ, satis�es

‖ · ‖θ =
1√
θ
‖ · ‖. (20)

Also, denote the gradient and ε-subdi�erential of an arbitrary function φ : X → R∪{∞} with respect to 〈·, ·〉θ
by ∇θφ and ∂θ

εφ, respectively. It is trivial to see that

∇θφ = θ(∇φ), ∂θ
εφ = θ(∂εφ). (21)

It turns out that the monotone inclusion problem (18) is equivalent to

0 ∈ ∂θ
xL(x, y), 0 ∈ ∂y (−L(x, y)) , (22)

or equivalently,
0 ∈ θ

(
∇f(x) + ∂h1 (x) + y

)
,

0 ∈ ∂h∗2 (y)− x.
(23)

We note that the use of (18), or more generally (23), as a way of solving (17) is well known (see for example
the methods described in [8, 4, 11]).

The above system is determined by L and the inner product norm on X × X de�ned as

‖(x, y)‖θ,1 =
√
‖x‖2θ + ‖y‖2, ∀(x, y) ∈ X × X . (24)

Note that this norm is the one given by (5) when U = V = X and ‖ · ‖U = ‖ · ‖θ and ‖ · ‖V = ‖ · ‖. Note also
that the inclusion system (23) is a special case of the monotone inclusion problem (6) with

U = X , 〈·, ·〉U = 〈·, ·〉θ, V = X , 〈·, ·〉V = 〈·, ·〉, (25)

and F : U × V → U × V, H1 : U ⇒ U , and H2 : V ⇒ V de�ned as

F (x, y) := (θy,−x), H1(x) := ∂θ(f + h1)(x) = θ(∇f(x) + ∂h1(x)), H2(y) := ∂h∗2(y). (26)

The following simple result summarizes the main properties of the scaled reformulation (23) (or equivalently,
(22)) of (17).
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Proposition 4.1. The inner product spaces U and V de�ned by (25), and the map F and operators H1 and H2

de�ned by (26), satisfy conditions A.1-A.4 with Luv =
√

θ. Moreover, the inclusion problem (23) is equivalent
to the inclusion problem

(0, 0) ∈ [F + H1 ⊗H2](x, y).

Our goal now will be to state an instance of the A-BD-HPE framework for solving (23) under the assumption
that the resolvents of both ∂h1 and ∂h2, that is, the maps (I + λ∂hi)−1 for every λ > 0 and i = 1, 2, can be
computed exactly. In other words, we assume that minimization subproblems of the form

min
x∈X

hi(x) +
1
2λ
‖x− x0‖2

can be exactly solved for any x0 ∈ X , λ > 0 and i = 1, 2.
We now state the aforementioned instance of A-BD-HPE framework for solving (23).

Algorithm 1 : Scaled A-BD-HPE method for (16)

0) Let (x0, y0) ∈ X × U , θ > 0, σ1 ∈ (0, 1) and σ ∈ [σ1, 1] be given, and set k = 1 and

λ̃ := min
{

σ2
1

θL
,

σ√
θ

}
; (27)

1) set x̃k :=
(
I + λ̃θ∂h1

)−1 (
xk−1 − λ̃θ (∇f(xk−1) + yk−1)

)
;

2) set ỹk := (I + λ̃∂h∗2)
−1(yk−1 + λ̃x̃k);

3) choose λk to be the largest λ > 0 such that

‖λ(θr1,k, r2,k) + (x̃k, ỹk)− (xk−1, yk−1)‖2θ,1 + 2λkεk ≤ σ2‖(x̃k, ỹk)− (xk−1, yk−1)‖2θ,1, (28)

where

r1,k :=
1
θλ̃

(xk−1 − x̃k) + (ỹk − yk−1) , r2,k :=
1
λ̃

(yk−1 − ỹk), εk :=
L

2
‖x̃k − xk−1‖2; (29)

4) set (xk, yk) = (xk−1, yk−1)− λk(θr1,k, r2,k) and k ← k + 1, and go to step 1.

We now make a remark about Algorithm 1. Note that the formula for computing ỹk in step 2 of Algorithm
1 involves the resolvent of ∂h∗2, instead of ∂h2. Using Moreau's formula below and Proposition 2.2(b) with
f = h2 and ε = 0, it can be easily seen that ỹk can also be computed as

ỹk = yk−1 + λ̃x̃k − λ̃
(
I + λ̃−1∂h2

)−1 (
λ̃−1yk−1 + x̃k

)
. (30)

Clearly, depending on the function h2, one of these resolvents might be easier to compute than the other
one, and hence is the better one for computing ỹk. Using Moreau's formula below, it is also possible to give
an expression for computing x̃k in terms of the resolvent of ∂h∗1. Again, which one to use computationally
will depend on the function h1. We have chosen the formulae in steps 1 and 2 of Algorithm 1 due to their
symmetry and the fact that they are more convenient for our theoretical presentation.

We now state Moreau's identity in the following result.

Lemma 4.2. [Moreau's identity; see Lemma 6.3 in [11]] Let λ > 0, a ∈ Rn and A : Rn ⇒ Rn be a point to
set maximal monotone operator. Then,

a = (I + λA)−1 (a) + λ
(
I + λ−1A−1

)−1 (
λ−1a

)
.
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The following result shows that Algorithm 1 is a special instance of the A-BD-HPE framework applied to
(22).

Lemma 4.3. Let σu := σ1, and σ̃u := 0 and σv := 0 and let inner products 〈·, ·〉U and 〈·, ·〉V and operators F ,
H1 and H2 be de�ned according to (25) and (26). Consider the sequences {(xk, yk)}, {(x̃k, ỹk)}, {(r1,k, r2,k)}
and {εk} generated by Algorithm 1 and, for every k ∈ N, de�ne λ̃k := λ̃,

uk = xk, ũk := x̃k, ak :=
xk−1 − x̃k

λ̃
− θyk−1, ε′k := εk (31)

and

vk = yk, ṽk := ỹk, bk :=
yk−1 − ỹk

λ̃
+ x̃k, ε′′k := 0. (32)

Then, the following statements hold for every k ∈ N:

a) λ̃k satis�es (8);

b) λ̃k, uk−1 and the triple (ũk, ak, ε′k) satis�es (9) and (10) and

θ−1ak = ∇f(xk−1) + ∂h1(x̃k) ∈ (∂ε′k
f + ∂h1)(x̃k); (33)

c) λ̃k, vk−1 and the triple (ṽk, bk, ε′′k) satis�es (11), and

bk ∈ ∂h∗2(ỹk); (34)

d) (θr1,k, r2,k) = F (x̃k, ỹk) + (ak, bk).

Proof. Statement a) follows immediately from condition (27), the de�nition of σu, σ̃u, σv and λ̃k in the
statement of the lemma, and the fact that Luv =

√
θ and σ1 ≤ σ, in view of Proposition 4.1.

Now, it follows from (31), (32) and the de�nition of F in (26) that

λ̃k[F1(ũk, vk−1) + ak] + ũk − uk−1 = λ̃k[θvk−1 + ak] + ũk − uk−1 = λ̃[θyk−1 + ak] + x̃k − xk−1 = 0

and
λ̃k[F2(ũk, ṽk) + bk] + ṽk − vk−1 = λ̃k[−ũk + bk] + ṽk − vk−1 = λ̃[−x̃k + bk] + ỹk − yk−1 = 0.

Clearly, the �rst identity and the fact that σ̃u = 0 imply that λ̃k, uk−1 and (ũk, ak, ε′k) satisfy (10), and also

the inequality in (9), due to the fact that the de�nition of ε′k, εk, σu and λ̃k, and relations (20) and (27),
imply that

2λ̃kε′k = 2λ̃εk = Lλ̃‖x̃k − xk−1‖2 ≤
σ2

1

θ
‖x̃k − xk−1‖2 = σ2

u‖x̃k − xk−1‖2θ.

Moreover, the second identity and the fact that ε′′k = 0 and σv = 0 imply that λ̃k, vk−1 and (ṽk, bk, ε′′k) satisfy
the inequality in (11). We will now show that the inclusions in (9) and (11) hold. Indeed, Assumption B.2
easily implies that

f(x̃k)− f(xk−1)− 〈∇f(xk−1), x̃k − xk−1〉 ≤
L

2
‖x̃k − xk−1‖2 = εk = ε′k,

where the last two equalities follow from the de�nition of ε′k and εk. Using the last conclusion, the fact that
∇f(xk−1) ∈ ∂f(xk−1), Lemma 2.2(c) with v = ∇f(xk−1), z = xk−1 and z̃ = x̃k, we then conclude that
∇f(xk−1) ∈ ∂ε′k

f(x̃k). Now, using the de�nition of x̃k in step 1 of Algorithm 1, ak in (31), and H2 in (26),
the last conclusion, relations (21) and (26), and Proposition 2.2(a), we conclude that

ak ∈ θ[∇f(xk−1) + ∂h1(x̃k)] ∈ θ(∂ε′k
f + ∂h1)(x̃k) ⊆ θ

[
∂ε′k

(f + h1)(x̃k)
]

= ∂θ
ε′k

(f + h1)(x̃k) ⊆ [∂θ(f + h1)]ε
′
k(x̃k) = (H1)ε′k(x̃k),
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which shows that (33) and the inclusion in (9) hold. Also, the de�nition of ỹk in step 2 of Algorithm 1, bk in
(32), and H1 in (26), the fact that ε′′k = 0, and Proposition 2.1(d), imply that

bk ∈ ∂h∗2(ỹk) = H2(ỹk) = H
ε′′k
2 (ỹk),

which shows that (34) and the inclusion in (11) hold. We have thus shown statements b) and c).
Statement d) follow immediately from the de�nition of F , ak and bk in (26), (31) and (32), respectively,

and the de�nition of r1,k and r2,k in (29).

It follows from Lemma 4.3 that Algorithm 1 is a special instance of the A-BD-HPE framework. Hence,
the convergence results described in Theorems 3.2 and 3.3 apply to it. In what follows, we will describe the
implications of these two results towards the behavior of Algorithm 1.

However, we �rst make some observations regarding the distance of the initial point (x0, y0) to the solution
set of (22) with respect to the norm ‖(·, ·)‖θ,1. First observe that the solution sets of (18) and (22) are the
same. Second, by the saddle-point theory, this set is of the form X∗ × Y ∗ ⊆ X ×X . Third, the distance dθ

0 of
the initial point (x0, y0) to the solution set of (22) with respect to the norm ‖(·, ·)‖θ,1 can be expressed as

dθ
0 :=

√
θ−1d2

1,0 + d2
2,0, (35)

where
d1,0 := min{‖x− x0‖ : x ∈ X∗}, d2,0 := min{‖y − y0‖ : y ∈ Y ∗}.

Theorem 4.4. Consider the sequences {(xk, yk)}, {(x̃k, ỹk)}, {(r1,k, r2,k)} and {εk} generated by Algorithm
1 under the assumption that σ < 1. Then, for every k ∈ N,

r1,k ∈ ∇f(xk−1) + ∂h1(x̃k) + ỹk ∈ ∂εk
f(x̃k) + ∂h1(x̃k) + ỹk, (36)

r2,k ∈ ∂h∗2(ỹk)− x̃k, (37)

and there exists i ≤ k such that

√
θ‖r1,i‖2 + ‖r2,i‖2 ≤ max

{
1
σ

,
L
√

θ

σ2
1

}(√
θ√
k

)√(
1 + σ

1− σ

)(
θ−1d2

1,0 + d2
2,0

)
,

εi ≤ max

{
1
σ

,
L
√

θ

σ2
1

}(√
θ

k

)
σ2(θ−1d2

1,0 + d2
2,0)

2(1− σ2)
.

Proof. Consider the sequences {ak} and {bk} de�ned in (31) and (32), respectively. It follows from the
de�nition of r1,k and r2,k in (29) that

r1,k = ỹk + θ−1ak = θ−1[F1(x̃k, ỹk) + ak], r2,k = −x̃k + bk = F2(x̃k, ỹk) + bk. (38)

Now, (36) and (37) follow from the above two identities and relations (33) and (34). Moreover, the above two
identities together with Theorem 3.2 imply the existence of i ≤ k such that

‖(θr1,i, r2,i)‖θ,1 ≤ d0

√√√√1 + σ

1− σ

(
1

λi

∑k
j=1 λj

)
≤
√

1 + σ

1− σ

d0

λ̃
√

k

and

εi ≤
σ2d2

0

2(1− σ2)
∑k

j=1 λj

≤ σ2d2
0

2(1− σ2)λ̃k
,
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where the second and fourth inequality follow from Proposition 3.1 and the fact that λ̃k = λ̃ for all k ∈ N.
Using the de�nition of ‖ · ‖θ and ‖(·, ·)‖θ,1 in (20) and (24), respectively, identity (35), and the fact that (27)
implies that

λ̃−1 =
√

θ max

{
1
σ

,

√
θL

σ2
1

}
, (39)

we easily see that the last two estimates imply the two bounds in the conclusion of the theorem.

Theorem 4.5. Consider the sequences {(xk, yk)}, {x̃k, ỹk)} and {εk} generated by Algorithm 1 and the
sequences of residuals {r1,k} and {r1,k} de�ned in (29). For every k ∈ N, de�ne

Λk =
k∑

i=1

λi, (x̃a
k, ỹa

k) = Λ−1
k

k∑
i=1

λi(x̃i, ỹi), (ra
1,k, ra

2,k) := Λ−1
k

k∑
i=1

λi(r1,k, r2,k) (40)

and

εa
1,k := Λ−1

k

k∑
i=1

λi[εk + 〈r1,i − ỹi, x̃i − x̃a
k〉], εa

2,k := Λ−1
k

k∑
i=1

λi〈r2,i + x̃i, ỹi − ỹa
k〉, εa

k := εa
1,k + εa

2,k. (41)

Then, for every k ∈ N,

(ra
1,k, ra

2,k) ∈
[
∂εa

1,k
(f + h1 + 〈ỹa

k , ·〉) (x̃a
k)
]
×
[
∂εa

2,k
(h∗2 − 〈x̃a

k, ·〉) (ỹa
k)
]

⊆ ∂εa
k
[L(·, ỹa

k)− L(x̃a
k, ·)](x̃a

k, ỹa
k) (42)

and √
θ‖ra

1,k‖2 + ‖ra
2,k‖2 ≤ max

{
1
σ

,

√
θL

σ2
1

}(
2
√

θ

k

)√
θ−1d2

1,0 + d2
2,0, (43)

εa
k ≤ max

{
1 ,

√
θLσ

σ2
1

}[
8
√

θ

(1− σ1)k

] (
θ−1d2

1,0 + d2
2,0

)
. (44)

Proof. Consider the sequences {ak} and {bk} de�ned in (31) and (32), respectively, and the sequences {(aa
k, ba

k)}
de�ned in (15). Note that by (38) and the de�nition of 〈·, ·〉θ, we have

εa
1,k := Λ−1

k

k∑
i=1

λi[εk + 〈ai, x̃i − x̃a
k〉θ], εa

2,k := Λ−1
k

k∑
i=1

λi〈bi, ỹi − ỹa
k〉.

Hence, it follows from Proposition 3.1, Theorem 3.3, and relations (26) and (38), that

‖(θra
1,k, ra

2,k)‖θ,1 = ‖(θỹk,−x̃k) + (ãa
k, b̃a

k)‖θ,1 = ‖F (x̃a
k, ỹa

k) + (ãa
k, b̃a

k)‖θ,1 ≤ 2
dθ
0

Λk
≤ 2

dθ
0

kλ̃
,

and

εa
k = εa

1,k + εa
2,k ≤

(
8σ

1− σ1

)
(dθ

0)
2

Λk
≤
(

8σ

1− σ1

)
(dθ

0)
2

kλ̃

Using the de�nition of ‖(·, ·)‖θ,1, identities (35) and (39), we easily see that the above two inequalities imply
(43) and (44). Now, (36), (37), (41) and Proposition 2.4 imply that

ra
1,k ∈ ∂εa

1,k
(f + h1)(x̃a

k) + ỹa
k , ra

2,k ∈ ∂εa
2,k

(h∗2)(ỹ
a
k)− x̃a

k.

and hence that
ra
1,k ∈ (∂x,εa

1,k
L)(x̃a

k, ỹa
k), ra

2,k ∈ (∂yL)(x̃a
k, ỹa

k).

These inclusions are easily seen to imply (42).
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5 Specialization of Algorithm 1 to conic optimization

In this section, we discuss the specialization of Algorithm 1 to the context of conic optimization problems
possessing the two-easy-block structure.

More speci�cally, let X be as in Section 4 and, for i = 1, 2, let Wi be an inner product space whose inner
product and associated norm is denoted by 〈·, ·〉Wi

and ‖·‖Wi
. We consider the conic optimization problem of

the form

z∗P := min 〈c, x〉
s.t. A1x− b1 ∈ K1 (45)

A2x− b2 ∈ K2,

where c ∈ X , b1 ∈ W1, b2 ∈ W2, A1 : X → W1 and A2 : X → W2 are linear maps, and K1 ⊆ W1 and K2 ⊆ W2

are nonempty closed convex cones. Observe that (45) is a special of (16) in which

f(·) = 〈c, ·〉 , hi(·) = δMi
(·) = δKi

(Ai(·)− bi), i = 1, 2, (46)

and
Mi := {x ∈ X : Aix− bi ∈ Ki} , i = 1, 2. (47)

Throughout this section, we make the following assumptions on (45):

C.1) (45) has an optimal solution, and hence z∗P ∈ R;

C.2) (45) has a Slater point, i.e., there exists x ∈ X such that Aix− bi ∈ riKi for i = 1, 2;

C.3) the resolvent of hi = δMi , or equivalently, the projection ontoMi, is easy to evaluate for i = 1, 2.

The dual of (45) is the conic optimization problem given by

z∗D := max 〈b1, w1〉W1
+ 〈b2, w2〉W2

s.t. A∗1w1 +A∗2w2 = c (48)

w1 ∈ K∗1, w2 ∈ K∗2,

where A∗i is the adjoint of Ai and K∗i is the dual cone of Ki, i = 1, 2. It is well-known that assumptions C.1
and C.2 imply that the dual of (45) has an optimal solution and that z∗P = z∗D.

Although not apparent in the discussion of Section 4, it will be shown in Theorem 5.2 below that Algorithm
1 applied to (45) generates a dual sequence {(w1,k, w2,k)} which solves the dual problem (48) in the limit.
We start by stating the following result which shows that assumption C.3, i.e., the ability to compute the
projection ontoMi, provides meaningful dual information.

Lemma 5.1. Let hi : U → [−∞,∞] be de�ned as in (46), and assume that Ai : X → Wi is such that
Ai(X ) ∩ riKi 6= ∅. Then, the following statements hold:

a) for any ε ≥ 0, (x, yi) ∈ X × X satis�es yi ∈ ∂εhi(x) if, and only if, x ∈ Mi and there exists wi ∈ Wi

such that
wi ∈ K∗i , 〈wi,Aix− bi〉Wi

≤ ε, A∗i wi = −yi;

b) for any λ > 0, (x, pi) ∈ X × X satis�es x = (I + λ∂hi)−1pi if, and only if, x ∈ Mi and there exists
wi ∈ Wi such that

wi ∈ K∗i , 〈wi,Aix− bi〉Wi = 0, A∗i wi =
x− pi

λ
. (49)

Proof. We �rst prove a). Since hi = δKi(Ai(·)−bi), it follows from a well-known property of the subdi�erential
and the assumption Ai(X )∩riKi 6= ∅ that ∂hi(x) = A∗i ∂δKi(Aix−bi). Hence, yi ∈ ∂hi(x) if, and only if, there
exists wi ∈ −∂δKi(Aix − bi) such that A∗i wi = −yi. The lemma now follows Proposition 2.3(b). Statement
b) follows trivially from a) with ε = 0.
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We observe that the condition Ai(X )∩ riKi 6= ∅ in the statement of Lemma 5.1 is implied by Assumption
C.2.

The following result shows precisely how Algorithm 1 is solving the dual problem (48) in the limit.

Theorem 5.2. Consider the sequences {(x̃k, ỹk)} and {(xk, yk)} generated by Algorithm 1 with f , h1 and h2

given by (46) and under the assumption that σ < 1. Then, for every k ∈ N, the following statements hold:

a) A1x̃k − b1 ∈ K1, A2(x̃k + r2,k)− b2 ∈ K2 and there exists (w1,k, w2,k) ∈ K∗1 ×K∗2 such that

c−A∗1w1,k −A∗2w2,k = r1,k, A∗2w2,k = −ỹk,

〈w1,k,A1x̃k − b1〉W1 = 0, 〈w2,k,A2(x̃k + r2,k)− b2〉W2 = 0;

b) the duality gap dgk := 〈c, x̃k〉 − (〈b1, w1,k〉W1 + 〈b2, w2,k〉W2) can be alternatively computed as

dgk = 〈r1,k, x̃k〉+ 〈r2,k, ỹk〉;

c) there exists i ≤ k such that

max
{√

θ‖r1,i‖ , ‖r2,i‖
}
≤
√

θ

σ
√

k

√(
1 + σ

1− σ

)(
θ−1d2

1,0 + d2
2,0

)
.

Proof. In view of step 1 of Algorithm 1 and Lemma 5.1(b) with i = 1, λ = λ̃θ, x = x̃k and p1 = xk−1− λ̃θ(c+
yk−1), we conclude that A1x̃k − b1 ∈ K1 and there exists w1,k ∈ K∗1 such that

〈w1,k,A1x̃k − b1〉W1 = 0, A∗1w1,k =
x̃k − [xk−1 − λθ(c + yk−1)]

λ̃θ
= c− r1,k + ỹk,

where the last equality follows from (29). Moreover, it follows from (30) and (29) that

x̃k + r2,k ∈ (I + λ̃−1∂h2)−1(λ̃−1yk−1 + x̃k).

Hence, it follows from Lemma 5.1(b) with i = 2, λ = λ̃−1, x = x̃k + r2,k and p2 = λ̃−1yk−1 + x̃k that
A2(x̃k + r2,k)− b2 ∈ K2 and there exists w2,k ∈ K∗2 such that

〈w2,k,A2(x̃k + r2,k)− b2〉W2 = 0, A∗2w2,k = λ̃r2,k − yk−1 = −ỹk,

where the last equality is due to (29). We have thus shown a) and b). Statement c) follows from Theorem 4.4
and the fact that now L = 0.

We now make some observations about Theorem 5.2. First, although Theorem 5.2 shows how to generate
a dual sequence {(w1,k, w2,k)} which solves the dual problem (48) in the limit, it is important to note that
Algorithm 1 applied to (45) can be implemented without ever generating such a sequence. Second, Theorem
5.2(a) shows that x̃k and its perturbation x̃k + r2,k exactly satisfy the �rst and second blocks A1x− b1 ∈ K1

and A2x− b2 ∈ K2, respectively. Third, in regards to the �rst observation, statements a) and b) of Theorem
5.2 show that the quantities c−A∗1w1,k −A∗2w2,k and 〈c, x̃k〉 − (〈b1, w1,k〉W1 + 〈b2, w2,k〉W2), commonly used
in stopping criteria presented in the literature, can be computed in terms of x̃k and ỹk, and hence their
computation do not require (w1,k, w2,k). In view of the latter observation, we can check whether an iterate
of Algorithm 1 applied to (45) satis�es the usual stopping criteria in terms of the duality gap measure and
violations to the constraints in (45) and (48) without the need of generating (w1,k, w2,k). Fourth, the inner
products 〈·, ·〉W1

and 〈·, ·〉W2
play no role in the actual implementation of Algorithm 1 applied to (45). In

fact, they are only used to construct the dual problem (48) and, if necessary, the dual sequence {(w1,k, w2,k)}.
Fifth, Theorem 5.2(c) sheds light on how the scaling parameter θ might a�ect the sizes of the residuals r1,k
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and r2,k. Roughly speaking, viewing all quantities in the bound of Theorem 5.2(c), with the exception of θ,
as constants, we see that

‖r1,k‖ = O
(
max

{
1, θ−1/2

})
, ‖r2,k‖ = O

(
max

{
1, θ1/2

})
.

Hence, the ratio ‖r2,k‖/‖r1,k‖ can grow signi�cantly as θ →∞, while it can become very small as θ → 0. This
suggests that this ratio increases (resp., decreases) as θ increases (resp., decreases). In fact, we have observed
in our computational experiments that this ratio behaves just as described.

6 A practical dynamically scaled BD method

In this section, we describe three measures that quantify the optimality of an approximate solution of (45),
namely: the primal infeasibility measure; the dual infeasibility measure; and the relative duality gap. We also
describe two important re�nements of Algorithm 1 for solving (45), whose goal is to balance the magnitudes
of the primal and dual infeasibility measures. More speci�cally, we describe: i) a scheme for choosing the
initial scaling parameter θ; and ii) a procedure for dynamically updating the scaling parameter θ to balance
the sizes of the primal and dual infeasibility measures as the algorithm progresses.

Let X be as in Section 4. For the purpose of describing a generic stopping criterion for Algorithm 1, let
‖·‖′Wi

be a given norm in the inner product space Wi and de�ne the distance di(·) as

di(w) = min
{
‖w − w̃‖′Wi

: w̃ ∈ Ki

}
∀w ∈ Wi.

We can de�ne the primal infeasibility measure as

εP (x) :=
√

d1 (A1x− b1)
2 + d2 (A2x− b2)

2
, ∀x ∈ X . (50)

Also, for a pre-speci�ed scalar µ > 0, de�ne the dual infeasibility measure as

εD(w1, w2) :=
1
µ
‖c−A∗1w1 −A∗2w2‖ , ∀(w1, w2) ∈ W1 ×W2. (51)

Note that, in view of (20), εD(w1, w2) is the magnitude of the dual residual c−A∗1w1 −A∗2w2 in terms of the
norm ‖·‖θ, where θ = µ2. Clearly, an arbitrary norm on X could be used in place of the latter norm to de�ne
εD(w1, w2), but this norm su�ces for the sake of our discussion. Finally, de�ne the relative duality gap as

εG(x,w1, w2) :=
〈c, x〉 − (〈b1, w1〉+ 〈b2, w2〉)

|〈c, x〉|+ |〈b1, w1〉+ 〈b2, w2〉|+ 1
, ∀x ∈ X , ∀(w1, w2) ∈ W1 ×W2. (52)

Observe that if εP,k, εD,k and εG,k denote the values of (50), (51) and (52) evaluated at x = x̃k and
(w1, w2) = (w1,k, w2,k), respectively, then, in view of Theorem 5.2, we have

εP,k = d2 (A2x̃k − b2) ≤ ‖(A2x̃k − b2)− (A2 (x̃k + r2,k)− b2)‖′W2
≤ ‖A2r2,k‖′W2

, (53)

εD,k =
1
µ
‖r1,k‖ , (54)

εG,k =
〈r1,k, x̃k〉+ 〈r2,k, ỹk〉

|〈c, x̃k〉|+ |〈r1,k, x̃k〉+ 〈r2,k, ỹk〉 − 〈c, x̃k〉|+ 1
. (55)

Given a tolerance ε̄ > 0, a suitable stopping criterion for Algorithm 1 applied to (45) would be

max {εP,k, εD,k, εG,k} ≤ ε̄. (56)

We now discuss two important re�nements of Algorithm 1 for solving (45), whose goal is to balance the
magnitudes of the primal and dual infeasibility measures εP,k and εD,k. First note that (53) and (54) implies
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that εP,k/εD,k = O (‖r2,k‖/‖r1,k‖). Hence, in view of the last observation in the paragraph immediately after
Theorem 5.2, the latter ratio can grow signi�cantly as θ →∞, while it can become very small as θ → 0. This
suggests that this ratio increases (resp., decreases) as θ increases (resp., decreases). Indeed, our computational
experiments indicate that the ratio εP,k/εD,k behaves in this manner.

In the following, let θk denotes the dynamic value of θ at the kth iteration of Algorithm 1. Observe that,
in view of (53), (54) and (29), the measures εP,k and εD,k depend on x̃k and ỹk, whose values in turn depend
on the choice of θk, in view of steps 1 and 2 of Algorithm 1. Hence, these two measures are indeed functions
of θ, which are denoted as εP,k(θ) and εD,k(θ) .

We �rst describe a scheme for choosing the initial scaling parameter θ1. Let a constant ρ > 1 be given and
set θ = 1. If εP,1(θ)/εD,1(θ) > ρ (resp., εP,1(θ)/εD,1(θ) < ρ−1), we successively divide (resp., successively
multiply) the current value of θ by 2 until εP,1(θ)/εD,1(θ) ≤ ρ (resp., εP,1(θ)/εD,1(θ) ≥ ρ−1) is satis�ed, and
set θ1 = θ∗1 , where θ∗1 is the last value of θ. Since there is no guarantee that this procedure will terminate, we
specify an upper bound on the number of times that θ can be updated. In our implementation, we set this
upper bound to be 20.

We next describe a procedure for dynamically updating the scaling parameter θ to balance the sizes of the
two measures εP,k(θ) and εD,k(θ) as the algorithm progresses. As in [10], we use the heuristic of changing θ
every time a speci�ed number of iterations have been performed. More speci�cally, given an integer k̄ ≥ 1,
and scalars γ > 1 and 0 < τ < 1, we use the following dynamic scaling procedure for updating θk,

θk =


θk−1, k 6≡ 0 mod k̄ or γ−1 ≤ ε̄P,k−1/ε̄D,k−1 ≤ γ

τ2θk−1, k ≡ 0 mod k̄ and ε̄P,k−1/ε̄D,k−1 > γ

τ−2θk−1, k ≡ 0 mod k̄ and ε̄P,k−1/ε̄D,k−1 < γ−1

, ∀k ≥ 2, (57)

where

ε̄P,k−1 =

 k−1∏
i=k−k̄

εP,i

1/k̄

, ε̄D,k−1 =

 k−1∏
i=k−k̄

εD,i

1/k̄

, ∀k > k̄. (58)

Roughly speaking, the above dynamic scaling procedure changes the value of θ at most a single time in the
right direction, so as to balance the sizes of the residuals based on the information provided by their values at
the previous k̄ iterations. We observe that a dynamic scaling procedure using εP,k−1 and εD,k−1 in place of
ε̄P,k−1 and ε̄D,k−1 in (57), respectively, is proposed in [10]. However, the more conservative procedure based
on the aggregated measures in (58) have performed better in our computational experiments.

In our computational experiments, we will refer to the variant of Algorithm 1 in which the two schemes
described above are incorporated into as the two-easy-block-decomposition HPE (2EBD-HPE) method. To
illustrate the importance of the above two schemes, we have chosen an instance of a conic optimization
problem to compare the performance of the 2EBD-HPE method against the performance of the 2EBD-HPE
method without incorporating exactly one of the schemes above. Figure 1 compares the performance of the
2EBD-HPE method against its variant (VAR1) in which θ1 is initialized as 1 instead of θ∗1 . Figure 2 compares
the performance of the 2EBD-HPE method against the its variant (VAR2) in which dynamic scaling is removed
(i.e., θk set to θ∗1 , for every k ≥ 1). In addition, in order to illustrate the importance of making an adaptive
choice of stepsize in Algorithm 1, Figure 3 compares the performance of the 2EBD-HPE method against the
its variant (VAR3) in which the stepsize λk is chosen to be λ̃ = σ√

θk
for every k ≥ 1. Figure 4 compares the

performance of the 2EBD-HPE method against the following three variants: i) (VAR2) the one that removes
the dynamic scaling (i.e., set θk = θ∗1 , for every k ≥ 1); ii) (VAR4) the one that removes the dynamic scaling
and the initialization scheme for θ1 (i.e., set θk = 1, for every k ≥ 1); and iii) (VAR5) the one that removes
these latter two re�nements and the use of adaptive stepsize (i.e., set θk = 1 and λk = λ̃ = σ, for every k ≥ 1).

7 Numerical results: part I

In this section, we compare the 2EBD-HPE method described in Section 6 with a variant of the boundary
point method, namely SDPAD, presented in [19]. More speci�cally, we compare these two methods on four
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Figure 1: This example (BIQ-be200.8.8) illustrates how

the scheme for choosing the initial scaling parameter θ1 can

help Algorithm 1 to start with an error at least 2 orders of

magnitude smaller.

Figure 2: This example (BIQ-be200.8.8) illustrates how

the dynamic scaling improves the performance of Algorithm 1

considerably.
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Figure 3: This example (BIQ-be200.8.8) illustrates how

the adaptive stepsize improves the performance of Algorithm

1 considerably.

Figure 4: This example (BIQ-be200.8.8) illustrates how all

the re�nements made in the application of the BD-HPE frame-

work to conic optimization helped improve the performance of

the algorithm.
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important classes of graph-related SDP problems, namely: SDP relaxations of binary integer quadratic (BIQ)
and frequency assignment (FAP) problems, and SDPs for θ-functions and θ+-functions of graph stable set
problems. This section contains three subsections. The �rst subsection considers SDP relaxations of BIQ
problems, the second one deals with SDP relaxations of FAPs, and the third one discusses SDPs corresponding
to the θ-functions and θ+-functions of graph stable set problems.

We have implemented the 2EBD-HPE method for solving (45) in a Matlab code which requires the user
to provide their own projection subroutines onto the setsMi, i = 1, 2, de�ned in (47).

For the 2EBD-HPE method, the computational results for the SDP relaxations of BIQs and FAPs were
obtained on a server with 2 Xeon X5460 processors at 3.16GHz and 32GB RAM, and the ones for the SDPs
corresponding to the θ-functions and θ+-functions of graph stable set problems were obtained on a single
core of a server with 2 Xeon X5520 processors at 2.27GHz and 48GB RAM. On the other hand, for the
SDPAD method we were able to obtain computational results for all instances of the above SDP classes only
on a laptop with an Intel Core 2 Duo processor and 4GB RAM, since it was the only machine we had at
our disposal which was compatible with this code. The use of two di�erent machines is not an issue due to
the following reasons: i) our benchmark is based solely on the total number of iterations; and ii) the work
per iteration for the two methods are almost identical. Moreover, we should note that the stopping criteria
used by our method for solving the di�erent classes of conic SDP problems are the same as the ones used by
SDPAD. The stopping criterion used for each one of the above classes of conic SDP problems will be described
separately in each one of the subsections below. Even though we have our own reservations in regards to the
stopping criteria used for the SDP relaxations of BIQ and the θ+-function SDP problems in that they omit the
amount of violation to the nonnegative orthant, we have decided to adopt them anyways for the purpose of
performing this benchmark. Thus, we have decided to preserve the integrity of SDPAD instead of modify its
stopping criterion and possibly its dynamic update of the penalty parameter. The only change we have made
on SDPAD is that we have eliminated the possibility of its stopping based on stagnation, i.e., little progress
from one iteration to the next one (see Subsection 3.4 of [19]).

We now make some general remarks about how the results are reported on the tables given below. Tables
1, 2, 5, 7 and 9 compare our method against SDPAD. For every instance, we stop both methods when they
have reached an accuracy of 10−6 (i.e., ε̄ = 10−6 in relation (56)) according to the stopping criteria used
for its corresponding problem class. The number of iterations performed by any of the two methods for any
particular instance is marked in red, and also with an asterisk (*), whenever it cannot solve the instance by
the required accuracy, in which case the residual (i.e., the maximum between the infeasibility measures and
the relative duality gap) reported is the one obtained at the last iteration of the method. Also, the number
of iterations marked in blue in a row is the best one among the ones listed in that row with the convention
that, when a method cannot solve the instance, the corresponding number of iterations is assumed to be ∞.
Tables 3, 4, 6, 8 and 10 report more detailed computational results obtained by our method 2EBD-HPE.

Finally, Figures 5, 6, 7 and 8 plot the performance pro�les (see [5]) of 2EBD-HPE and SDPAD methods
for each of the four problem classes. We recall the following de�nition of a performance pro�le. For a given
instance, a method A is said to be at most x times slower than method B, if the number of iterations performed
by method A is at most x times the number of iterations performed by method B. A point (x, y) is in the
performance pro�le curve of a method if it can solve exactly (100y)% of all the tested instances x times slower
than any other competing method.

7.1 Binary integer quadratic problems

This subsection compares the performance of our method 2EBD-HPE with that of SDPAD on a collection of
SDP relaxations of BIQ problems.

The SDP relaxation of the BIQ problem can be described as follows (see for example Section 7 in [20]).
Given an n× n symmetric matrix Q, the BIQ problem can be formulated as

min
{
zT Qz : z ∈ {0, 1}n

}
.

By representing the binary set {0, 1}n as
{
z ∈ Rn|z2

i − zi = 0
}
, we obtain the following SDP relaxation
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Figure 6: Performance pro�les of 2EBD-HPE and SDPAD

for solving 7 SDP relaxations of FAPs with accuracy ε̄ = 10−6.
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Figure 8: Performance pro�les of 2EBD-HPE and SDPAD

for solving 59 θ+(G) problems with accuracy ε̄ = 10−6.
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min Q • Z

s.t. x :=
[

Z z
zT α

]
� 0, (59a)

diag(Z)− z = 0, α = 1, Z ≥ 0, z ≥ 0, (59b)

where Z ∈ Sn, z ∈ Rn and α ∈ R.
There is more than one way of viewing (59) as a special case of the two-easy-block structure formulation

(45). In our current implementation, we considered the following formulation. Let X = W1 := Sn+1,

W2 = Rn×R×Sn×Rn, K1 = Sn+1
+ and K2 = 0n×01×Rn(n+1)/2

+ ×Rn
+, where 0n denotes an n dimensional

vector of all zeros. Also, endow X with the Frobenius inner product. With these de�nitions, we can easily see
that we can view (59) as having the two-easy-block structure (45) if we let (59a) asM1 and (59b) asM2.

In order to agree with the scaling of the data and error measures adopted by SDPAD for (59), we measure
the primal infeasibility measure εP as

εP (x) =

√
2
3 ‖diag(Z)− z‖2F + (α− 1)2

2
, (60)

and the dual infeasibility measure εD as in (51) with µ = 1+2 ‖C‖F , where ‖·‖F is the Frobenius norm de�ned
as

‖A‖F :=

√√√√ m∑
i=1

n∑
j=1

A2
ij ∀A ∈ Rm×n. (61)

Note that the above primal infeasibility measure is not a special case of (50) since it does not take into
consideration the violations with respect to the constraints Z ≥ 0, z ≥ 0 and x � 0. We observe also that,
in view of the �rst inclusion in Theorem 5.2(a), the constraint x � 0 is always satis�ed by 2EBD-HPE, while
SDPAD approaches it in the limit. Also, with respect to the other constraints Z ≥ 0 and z ≥ 0, both methods
approach them only in the limit.

Tables 1 and 2 compare the two methods on a collection of 134 SDP relaxations of BIQ problems using
the tolerance ε̄ = 10−6. For the purpose of this comparison, we considered 2EBD-HPE with σ = 0.99 and the
values of γ, τ and k̄ in the dynamic scaling rule (57) set to γ = 1.5, τ = 0.9 and k̄ = 10.

Tables 3 and 4 give more detailed computational results obtained by our method 2EBD-HPE, such as the
primal and dual objective function values, number of iterations, the primal and dual infeasibility measures as
described above, and the relative duality gap. Since our implementation of 2EBD-HPE is based on εP in order
to conform with the stopping criterion of SDPAD and, as observed above, εP does not take into consideration
the violations with respect to the constraints Z ≥ 0, z ≥ 0, we also include in Tables 3 and 4 a column with
the minimum value of all entries of x. Figure 5 plots the performance pro�les of both methods.

Note that 2EBD-HPE solves 132 (out of a total of 134) problems faster than SDPAD. Moreover, 2EBD-
HPE solves about 7 of them at least 3.5 times faster than SDPAD. Note also that 2EBD-HPE is able to solve
all instances while SDPAD fails to solve one of them, namely gka9b.

7.2 Frequency assignment problems

This subsection compares the performance of our method 2EBD-HPE with that of SDPAD on a collection of
SDP relaxations of FAPs.

The SDP relaxation of the FAP can be described as follows (see for example Subsection 2.4 in [3]). Given
a network represented by a graph G with n nodes and an edge-weight matrix W , the frequency assignment
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Table 1: Comparison of the methods on BIQ problems
Problem max{εP , εD, εG} Iterations

Instance ns|m 2EBD-HPE SDPAD 2EBD-HPE SDPAD

be100.1 101|5252 9.70 -7 9.98 -7 1511 3200
be100.10 101|5252 9.63 -7 9.96 -7 1111 1394
be100.2 101|5252 9.69 -7 9.98 -7 1200 2945
be100.3 101|5252 9.91 -7 9.99 -7 1531 3630
be100.4 101|5252 9.99 -7 9.95 -7 1500 2879

be100.5 101|5252 9.98 -7 9.98 -7 1215 2508
be100.6 101|5252 9.95 -7 9.97 -7 1470 2578
be100.7 101|5252 9.94 -7 9.98 -7 1279 2619
be100.8 101|5252 9.98 -7 9.27 -7 1246 2027
be100.9 101|5252 9.93 -7 9.99 -7 1168 1615

be120.3.1 121|7502 9.96 -7 9.98 -7 1535 3038
be120.3.10 121|7502 9.97 -7 9.93 -7 1373 2080
be120.3.2 121|7502 9.99 -7 1.00 -6 1721 3491
be120.3.3 121|7502 9.95 -7 9.25 -7 1527 1765
be120.3.4 121|7502 9.90 -7 9.47 -7 1660 2287

be120.3.5 121|7502 9.99 -7 1.00 -6 2015 5094
be120.3.6 121|7502 9.99 -7 9.98 -7 2047 4457
be120.3.7 121|7502 9.99 -7 1.00 -6 3229 7395
be120.3.8 121|7502 9.99 -7 9.98 -7 2405 6362
be120.3.9 121|7502 9.96 -7 1.00 -6 2370 7724

be120.8.1 121|7502 9.92 -7 9.97 -7 1165 1754
be120.8.10 121|7502 9.97 -7 1.00 -6 1513 3254
be120.8.2 121|7502 1.00 -6 1.00 -6 2246 5942
be120.8.3 121|7502 9.94 -7 9.99 -7 1632 3276
be120.8.4 121|7502 1.00 -6 9.98 -7 1802 2843

be120.8.5 121|7502 9.97 -7 1.00 -6 1662 4076
be120.8.6 121|7502 9.98 -7 9.99 -7 1357 3161
be120.8.7 121|7502 9.97 -7 9.24 -7 1682 2252
be120.8.8 121|7502 9.99 -7 9.53 -7 1278 1429
be120.8.9 121|7502 9.91 -7 9.14 -7 1196 1371

be150.3.1 151|11627 9.98 -7 1.00 -6 2104 2894
be150.3.10 151|11627 9.99 -7 1.00 -6 2573 5580
be150.3.2 151|11627 9.96 -7 1.00 -6 2063 3175
be150.3.3 151|11627 9.95 -7 9.98 -7 1715 2240
be150.3.4 151|11627 9.98 -7 9.99 -7 2007 2885

be150.3.5 151|11627 9.99 -7 9.96 -7 1878 2259
be150.3.6 151|11627 9.93 -7 9.99 -7 1619 3384
be150.3.7 151|11627 9.98 -7 9.96 -7 1997 2905
be150.3.8 151|11627 9.97 -7 1.00 -6 2294 4535
be150.3.9 151|11627 9.96 -7 9.95 -7 1323 1753

be150.8.1 151|11627 9.99 -7 9.75 -7 1477 1856
be150.8.10 151|11627 9.97 -7 9.99 -7 1720 2947
be150.8.2 151|11627 9.98 -7 9.96 -7 1431 2451
be150.8.3 151|11627 1.00 -6 9.91 -7 1768 2266
be150.8.4 151|11627 9.97 -7 9.99 -7 1691 3564

be150.8.5 151|11627 9.96 -7 9.98 -7 1930 3131
be150.8.6 151|11627 9.99 -7 9.97 -7 1649 4075
be150.8.7 151|11627 1.00 -6 9.99 -7 2184 3819
be150.8.8 151|11627 9.99 -7 1.00 -6 2137 5844
be150.8.9 151|11627 9.99 -7 9.96 -7 2066 5793

be200.3.1 201|20502 1.00 -6 9.98 -7 2023 2383
be200.3.10 201|20502 9.99 -7 9.99 -7 2287 4532
be200.3.2 201|20502 9.98 -7 9.97 -7 2304 2803
be200.3.3 201|20502 9.97 -7 1.00 -6 3167 7002
be200.3.4 201|20502 9.98 -7 9.99 -7 2316 3574

be200.3.5 201|20502 9.98 -7 1.00 -6 2882 5825
be200.3.6 201|20502 9.99 -7 9.99 -7 2126 2443
be200.3.7 201|20502 9.98 -7 9.82 -7 2689 2827
be200.3.8 201|20502 9.97 -7 9.94 -7 2265 2323
be200.3.9 201|20502 9.98 -7 1.00 -6 3787 6942

be200.8.1 201|20502 9.98 -7 9.99 -7 2620 5078
be200.8.10 201|20502 9.97 -7 9.99 -7 2074 2639
be200.8.2 201|20502 1.00 -6 9.97 -7 1769 2264
be200.8.3 201|20502 9.99 -7 1.00 -6 2309 4468
be200.8.4 201|20502 1.00 -6 9.93 -7 2104 2436

be200.8.5 201|20502 1.00 -6 9.99 -7 1965 3648
be200.8.6 201|20502 9.78 -7 9.91 -7 2451 3071
be200.8.7 201|20502 9.97 -7 9.87 -7 2118 2506
be200.8.8 201|20502 9.99 -7 9.96 -7 2079 2420
be200.8.9 201|20502 9.97 -7 1.00 -6 2310 4097

be250.1 251|31877 9.98 -7 9.99 -7 3638 5923
be250.10 251|31877 9.99 -7 1.00 -6 4220 10957
be250.2 251|31877 1.00 -6 1.00 -6 3643 5404
be250.3 251|31877 9.97 -7 9.99 -7 3297 3647
be250.4 251|31877 1.00 -6 1.00 -6 5779 12310

be250.5 251|31877 9.99 -7 9.98 -7 3560 6326
be250.6 251|31877 9.99 -7 1.00 -6 3570 4319
be250.7 251|31877 9.98 -7 9.98 -7 3321 6136
be250.8 251|31877 9.99 -7 9.91 -7 3502 4292
be250.9 251|31877 9.97 -7 9.98 -7 3947 6531
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Table 2: Comparison of the methods on BIQ problems
Problem max{εP , εD, εG} Iterations

Instance ns|m 2EBD-HPE SDPAD 2EBD-HPE SDPAD

bqp100-1 101|5252 9.98 -7 9.98 -7 1291 1667
bqp100-10 101|5252 9.99 -7 9.96 -7 1977 6585
bqp100-2 101|5252 9.98 -7 1.00 -6 2742 5004
bqp100-3 101|5252 1.00 -6 1.00 -6 3505 14426
bqp100-4 101|5252 9.98 -7 1.00 -6 2596 6059

bqp100-5 101|5252 1.00 -6 1.00 -6 2248 8264
bqp100-6 101|5252 9.97 -7 9.95 -7 1237 2393
bqp100-7 101|5252 9.95 -7 9.82 -7 1775 1831
bqp100-8 101|5252 9.94 -7 9.99 -7 2307 7462
bqp100-9 101|5252 9.99 -7 9.99 -7 2156 5770

bqp250-1 251|31877 1.00 -6 9.99 -7 3484 5572
bqp250-10 251|31877 1.00 -6 1.00 -6 2922 3326
bqp250-2 251|31877 9.98 -7 9.99 -7 3591 6082
bqp250-3 251|31877 9.91 -7 9.98 -7 3877 3513
bqp250-4 251|31877 1.00 -6 9.97 -7 2972 3465

bqp250-5 251|31877 1.00 -6 1.00 -6 4962 9768
bqp250-6 251|31877 9.98 -7 1.00 -6 3663 7066
bqp250-7 251|31877 9.98 -7 9.99 -7 3509 4398
bqp250-8 251|31877 9.98 -7 1.00 -6 2729 3364
bqp250-9 251|31877 9.99 -7 1.00 -6 3530 5097

bqp500-1 501|126252 9.99 -7 1.00 -6 6542 7964
bqp500-10 501|126252 9.99 -7 1.00 -6 6967 7833
bqp500-2 501|126252 9.99 -7 1.00 -6 7129 8611
bqp500-3 501|126252 9.99 -7 9.99 -7 6947 7795
bqp500-4 501|126252 9.99 -7 1.00 -6 6991 7741

bqp500-5 501|126252 9.99 -7 1.00 -6 6553 7411
bqp500-6 501|126252 9.98 -7 1.00 -6 6561 7875
bqp500-7 501|126252 9.99 -7 1.00 -6 6858 8302
bqp500-8 501|126252 1.00 -6 9.99 -7 7357 9184
bqp500-9 501|126252 1.00 -6 9.99 -7 6443 7708

gka10b 126|8127 9.98 -7 9.95 -7 2633 2045
gka10d 101|5252 9.97 -7 9.99 -7 1344 1963
gka1d 101|5252 9.99 -7 9.98 -7 1982 5543
gka1e 201|20502 9.99 -7 1.00 -6 3227 5657
gka1f 501|126252 1.00 -6 1.00 -6 6680 7548

gka2d 101|5252 9.99 -7 9.97 -7 1421 3081
gka2e 201|20502 9.99 -7 9.99 -7 2531 4375
gka2f 501|126252 9.99 -7 9.99 -7 7024 9190
gka3d 101|5252 9.92 -7 1.00 -6 2643 9450
gka3e 201|20502 9.93 -7 9.98 -7 2466 4134

gka3f 501|126252 9.99 -7 9.99 -7 6528 7177
gka4d 101|5252 1.00 -6 9.99 -7 1427 3399
gka4e 201|20502 9.99 -7 9.98 -7 3023 6043
gka4f 501|126252 9.98 -7 9.99 -7 6233 7402
gka5d 101|5252 1.00 -6 9.73 -7 1240 1747

gka5e 201|20502 9.99 -7 9.98 -7 2917 5486
gka5f 501|126252 9.99 -7 9.99 -7 6255 8483
gka6d 101|5252 9.93 -7 9.57 -7 1468 2143
gka7c 101|5252 9.97 -7 1.00 -6 3193 7008
gka7d 101|5252 9.66 -7 9.60 -7 1212 1805

gka8a 101|5252 9.94 -7 9.58 -7 15111 5377
gka8d 101|5252 9.98 -7 9.99 -7 2151 8219
gka9b 101|5252 7.58 -7 9.96 -4* 681 25000*
gka9d 101|5252 9.91 -7 9.92 -7 1175 1872
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Table 3: 2EBD-HPE results on BIQ problems
Instance n|m 〈c, x〉 〈b, w〉 Time min

i
xi εP εD εG Iterations

be100.1 101|5252 -2.002135 +4 -2.002135 +4 10 -2.36 -7 9.70 -7 9.01 -7 -1.15 -6 1511
be100.10 101|5252 -1.640851 +4 -1.640851 +4 9 -9.21 -8 1.43 -7 9.63 -7 -8.46 -7 1111
be100.2 101|5252 -1.798872 +4 -1.798872 +4 10 -1.79 -6 9.69 -7 8.02 -7 +3.55 -7 1200
be100.3 101|5252 -1.823106 +4 -1.823106 +4 13 -1.60 -6 9.91 -7 6.99 -7 -2.86 -7 1531
be100.4 101|5252 -1.984180 +4 -1.984180 +4 9 -1.66 -6 9.99 -7 5.14 -7 -2.96 -7 1500

be100.5 101|5252 -1.688871 +4 -1.688871 +4 12 -2.15 -6 9.98 -7 7.02 -7 -4.16 -7 1215
be100.6 101|5252 -1.814822 +4 -1.814822 +4 13 -9.80 -7 9.95 -7 6.75 -7 -8.45 -7 1470
be100.7 101|5252 -1.970087 +4 -1.970087 +4 10 -1.19 -6 9.73 -7 9.94 -7 -4.66 -7 1279
be100.8 101|5252 -1.994637 +4 -1.994637 +4 8 -8.32 -8 6.46 -7 9.98 -7 -5.86 -7 1246
be100.9 101|5252 -1.426338 +4 -1.426338 +4 8 -5.91 -7 8.39 -7 9.93 -7 -7.46 -7 1168

be120.3.1 121|7502 -1.380356 +4 -1.380356 +4 16 -1.87 -6 9.96 -7 6.61 -7 -8.65 -7 1535
be120.3.10 121|7502 -1.293087 +4 -1.293087 +4 14 -6.21 -7 9.97 -7 9.59 -7 -2.08 -6 1373
be120.3.2 121|7502 -1.362663 +4 -1.362663 +4 13 -1.10 -6 9.99 -7 7.11 -7 -1.36 -6 1721
be120.3.3 121|7502 -1.298791 +4 -1.298791 +4 16 -3.31 -7 9.38 -7 9.95 -7 -1.21 -6 1527
be120.3.4 121|7502 -1.451126 +4 -1.451126 +4 18 -2.18 -7 9.90 -7 8.96 -7 -1.50 -6 1660

be120.3.5 121|7502 -1.199191 +4 -1.199191 +4 21 -2.63 -6 9.99 -7 5.24 -7 +2.70 -8 2015
be120.3.6 121|7502 -1.343206 +4 -1.343206 +4 22 -2.84 -6 9.99 -7 6.79 -7 -4.58 -7 2047
be120.3.7 121|7502 -1.456411 +4 -1.456411 +4 32 -1.51 -6 9.99 -7 7.13 -7 -3.30 -7 3229
be120.3.8 121|7502 -1.530302 +4 -1.530302 +4 22 -1.13 -6 9.99 -7 9.25 -7 -1.74 -7 2405
be120.3.9 121|7502 -1.124132 +4 -1.124132 +4 24 -4.52 -7 9.96 -7 7.10 -7 -4.99 -7 2370

be120.8.1 121|7502 -2.019395 +4 -2.019395 +4 9 -5.18 -7 5.21 -7 9.92 -7 +7.84 -7 1165
be120.8.10 121|7502 -2.002401 +4 -2.002401 +4 16 -1.49 -7 3.57 -7 9.97 -7 -5.88 -7 1513
be120.8.2 121|7502 -2.007413 +4 -2.007413 +4 26 -2.24 -6 1.00 -6 8.29 -7 -6.92 -7 2246
be120.8.3 121|7502 -2.050590 +4 -2.050590 +4 17 -1.17 -6 9.94 -7 6.83 -7 -4.56 -10 1632
be120.8.4 121|7502 -2.177981 +4 -2.177981 +4 19 -1.99 -6 8.88 -7 1.00 -6 -1.47 -6 1802

be120.8.5 121|7502 -2.131628 +4 -2.131628 +4 14 -1.85 -6 9.97 -7 7.06 -7 -2.04 -7 1662
be120.8.6 121|7502 -1.967697 +4 -1.967697 +4 14 -2.86 -6 9.98 -7 6.40 -7 -1.37 -6 1357
be120.8.7 121|7502 -2.373240 +4 -2.373240 +4 18 -3.36 -7 8.82 -7 9.97 -7 -7.11 -7 1682
be120.8.8 121|7502 -2.120476 +4 -2.120476 +4 10 -1.96 -7 9.32 -7 9.99 -7 -5.33 -7 1278
be120.8.9 121|7502 -1.928441 +4 -1.928441 +4 12 -1.65 -7 9.82 -7 9.91 -7 -2.72 -7 1196

be150.3.1 151|11627 -1.984919 +4 -1.984919 +4 26 -3.37 -7 8.56 -7 9.98 -7 -1.86 -6 2104
be150.3.10 151|11627 -1.923092 +4 -1.923092 +4 35 -1.38 -6 9.99 -7 6.67 -7 -3.47 -7 2573
be150.3.2 151|11627 -1.886485 +4 -1.886485 +4 25 -5.78 -7 9.96 -7 6.92 -7 -7.15 -7 2063
be150.3.3 151|11627 -1.804372 +4 -1.804372 +4 22 -4.03 -7 9.16 -7 9.95 -7 -1.09 -6 1715
be150.3.4 151|11627 -2.065267 +4 -2.065267 +4 24 -8.37 -7 8.71 -7 9.98 -7 -9.51 -7 2007

be150.3.5 151|11627 -1.776865 +4 -1.776865 +4 22 -3.83 -6 9.99 -7 7.10 -7 -9.66 -7 1878
be150.3.6 151|11627 -1.805069 +4 -1.805069 +4 21 -3.22 -6 9.93 -7 8.33 -7 -6.60 -7 1619
be150.3.7 151|11627 -1.910131 +4 -1.910131 +4 30 -5.30 -7 9.98 -7 7.34 -7 -6.81 -7 1997
be150.3.8 151|11627 -1.969807 +4 -1.969807 +4 27 -1.97 -6 7.96 -7 9.97 -7 -1.10 -6 2294
be150.3.9 151|11627 -1.410338 +4 -1.410338 +4 17 -1.72 -7 9.96 -7 8.79 -7 -1.55 -6 1323

be150.8.1 151|11627 -2.914369 +4 -2.914369 +4 19 -2.79 -7 9.41 -7 9.99 -7 -5.72 -7 1477
be150.8.10 151|11627 -3.004798 +4 -3.004798 +4 22 -1.72 -6 7.32 -7 9.97 -7 -1.37 -6 1720
be150.8.2 151|11627 -2.882111 +4 -2.882111 +4 20 -5.65 -7 9.98 -7 9.53 -7 -1.88 -6 1431
be150.8.3 151|11627 -3.106038 +4 -3.106038 +4 25 -5.01 -7 9.10 -7 1.00 -6 -7.56 -7 1768
be150.8.4 151|11627 -2.872931 +4 -2.872931 +4 24 -1.61 -6 9.97 -7 6.75 -7 -1.29 -6 1691

be150.8.5 151|11627 -2.948208 +4 -2.948208 +4 24 -1.42 -6 9.96 -7 6.73 -7 -1.12 -6 1930
be150.8.6 151|11627 -3.143723 +4 -3.143723 +4 21 -3.01 -6 9.99 -7 5.63 -7 -4.85 -7 1649
be150.8.7 151|11627 -3.325211 +4 -3.325211 +4 28 -1.42 -6 1.00 -6 9.59 -7 -1.61 -6 2184
be150.8.8 151|11627 -3.160000 +4 -3.160000 +4 27 -3.38 -6 8.09 -7 9.99 -7 -1.10 -6 2137
be150.8.9 151|11627 -2.711073 +4 -2.711073 +4 27 -2.59 -6 9.99 -7 7.04 -7 -1.55 -6 2066

be200.3.1 201|20502 -2.771610 +4 -2.771610 +4 47 -1.90 -7 9.25 -7 1.00 -6 -2.04 -6 2023
be200.3.10 201|20502 -2.576069 +4 -2.576069 +4 53 -1.22 -6 9.99 -7 7.52 -7 -7.36 -7 2287
be200.3.2 201|20502 -2.676079 +4 -2.676079 +4 55 -3.80 -7 7.78 -7 9.98 -7 -1.22 -6 2304
be200.3.3 201|20502 -2.947864 +4 -2.947864 +4 73 -7.33 -7 9.08 -7 9.97 -7 -1.08 -6 3167
be200.3.4 201|20502 -2.910622 +4 -2.910622 +4 54 -3.47 -7 9.98 -7 9.71 -7 -1.49 -6 2316

be200.3.5 201|20502 -2.807299 +4 -2.807299 +4 70 -1.23 -6 9.71 -7 9.98 -7 -1.13 -6 2882
be200.3.6 201|20502 -2.792835 +4 -2.792835 +4 47 -2.61 -7 7.64 -7 9.99 -7 -9.35 -7 2126
be200.3.7 201|20502 -3.162051 +4 -3.162051 +4 61 -2.16 -7 8.10 -7 9.98 -7 -1.08 -6 2689
be200.3.8 201|20502 -2.924430 +4 -2.924430 +4 44 -4.89 -7 9.13 -7 9.97 -7 -1.82 -6 2265
be200.3.9 201|20502 -2.643705 +4 -2.643705 +4 88 -2.39 -7 9.47 -7 9.98 -7 -1.50 -6 3787

be200.8.1 201|20502 -5.086950 +4 -5.086950 +4 60 -5.15 -7 9.98 -7 8.35 -7 -1.31 -6 2620
be200.8.10 201|20502 -4.574308 +4 -4.574308 +4 46 -5.69 -7 9.57 -7 9.97 -7 -1.60 -6 2074
be200.8.2 201|20502 -4.433606 +4 -4.433606 +4 40 -1.58 -7 9.30 -7 1.00 -6 -1.34 -6 1769
be200.8.3 201|20502 -4.625398 +4 -4.625398 +4 49 -9.78 -7 9.99 -7 7.90 -7 -9.74 -7 2309
be200.8.4 201|20502 -4.662126 +4 -4.662126 +4 46 -2.74 -7 9.00 -7 1.00 -6 -1.38 -6 2104

be200.8.5 201|20502 -4.427125 +4 -4.427125 +4 44 -1.00 -6 1.00 -6 9.24 -7 -8.21 -7 1965
be200.8.6 201|20502 -5.121888 +4 -5.121888 +4 56 -2.05 -6 5.30 -7 9.78 -7 -5.35 -7 2451
be200.8.7 201|20502 -4.935283 +4 -4.935283 +4 47 -4.25 -8 4.24 -7 9.97 -7 -1.24 -6 2118
be200.8.8 201|20502 -4.768917 +4 -4.768917 +4 46 -2.61 -6 9.99 -7 8.11 -7 -3.74 -7 2079
be200.8.9 201|20502 -4.549560 +4 -4.549560 +4 52 -4.31 -6 9.97 -7 7.04 -7 -9.25 -7 2310

be250.1 251|31877 -2.511947 +4 -2.511947 +4 136 -1.65 -6 9.93 -7 9.98 -7 -7.49 -7 3638
be250.10 251|31877 -2.435502 +4 -2.435502 +4 150 -1.94 -6 9.99 -7 9.58 -7 -6.56 -7 4220
be250.2 251|31877 -2.368150 +4 -2.368150 +4 117 -6.31 -7 1.00 -6 6.76 -7 -1.32 -6 3643
be250.3 251|31877 -2.400002 +4 -2.400002 +4 118 -7.38 -7 9.97 -7 8.80 -7 -2.07 -6 3297
be250.4 251|31877 -2.572032 +4 -2.572032 +4 215 -9.30 -7 1.00 -6 5.24 -7 -6.93 -7 5779

be250.5 251|31877 -2.237471 +4 -2.237471 +4 120 -8.94 -7 9.99 -7 6.91 -7 -1.05 -6 3560
be250.6 251|31877 -2.401885 +4 -2.401885 +4 125 -3.23 -7 8.36 -7 9.99 -7 -1.06 -6 3570
be250.7 251|31877 -2.511896 +4 -2.511896 +4 121 -2.53 -6 9.98 -7 6.87 -7 -3.44 -7 3321
be250.8 251|31877 -2.502041 +4 -2.502041 +4 127 -8.06 -7 7.06 -7 9.99 -7 -1.94 -6 3502
be250.9 251|31877 -2.139707 +4 -2.139707 +4 139 -8.25 -7 8.66 -7 9.97 -7 -2.15 -6 3947
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Table 4: 2EBD-HPE results on BIQ problems
Instance n|m 〈c, x〉 〈b, w〉 Time min

i
xi εP εD εG Iterations

bqp100-1 101|5252 -8.380387 +3 -8.380387 +3 8 -6.98 -7 9.98 -7 7.27 -7 -3.34 -7 1291
bqp100-10 101|5252 -1.298027 +4 -1.298027 +4 17 -4.99 -6 9.99 -7 6.81 -7 -5.06 -7 1977
bqp100-2 101|5252 -1.148926 +4 -1.148926 +4 19 -7.09 -7 9.90 -7 9.98 -7 -1.12 -6 2742
bqp100-3 101|5252 -1.315318 +4 -1.315318 +4 26 -7.97 -7 9.30 -7 1.00 -6 -6.28 -7 3505
bqp100-4 101|5252 -1.073189 +4 -1.073189 +4 20 -1.03 -6 9.98 -7 9.06 -7 -4.87 -7 2596

bqp100-5 101|5252 -9.487028 +3 -9.487028 +3 16 -2.38 -6 1.00 -6 5.17 -7 -4.42 -7 2248
bqp100-6 101|5252 -1.082476 +4 -1.082476 +4 7 -3.44 -7 8.40 -7 9.97 -7 +2.53 -7 1237
bqp100-7 101|5252 -1.068915 +4 -1.068915 +4 11 -1.94 -7 9.95 -7 9.82 -7 -1.23 -6 1775
bqp100-8 101|5252 -1.176999 +4 -1.176999 +4 18 -1.47 -6 8.88 -7 9.94 -7 -2.77 -7 2307
bqp100-9 101|5252 -1.173325 +4 -1.173325 +4 18 -8.36 -7 8.54 -7 9.99 -7 +2.26 -7 2156

bqp250-1 251|31877 -4.766312 +4 -4.766312 +4 112 -9.51 -7 8.94 -7 1.00 -6 -2.08 -6 3484
bqp250-10 251|31877 -4.301453 +4 -4.301453 +4 112 -8.83 -8 7.70 -7 1.00 -6 -2.24 -6 2922
bqp250-2 251|31877 -4.722238 +4 -4.722238 +4 128 -5.98 -7 9.98 -7 6.70 -7 -1.01 -6 3591
bqp250-3 251|31877 -5.107680 +4 -5.107680 +4 136 -1.21 -7 9.91 -7 8.61 -7 -1.99 -6 3877
bqp250-4 251|31877 -4.331257 +4 -4.331257 +4 89 -3.73 -7 8.09 -7 1.00 -6 -1.54 -6 2972

bqp250-5 251|31877 -5.000433 +4 -5.000433 +4 184 -2.58 -7 8.18 -7 1.00 -6 -1.85 -6 4962
bqp250-6 251|31877 -4.366886 +4 -4.366886 +4 139 -3.99 -7 9.98 -7 6.34 -7 -1.14 -6 3663
bqp250-7 251|31877 -4.892176 +4 -4.892176 +4 119 -3.21 -7 9.98 -7 9.24 -7 -2.80 -6 3509
bqp250-8 251|31877 -3.877955 +4 -3.877955 +4 104 -9.76 -8 6.83 -7 9.98 -7 -1.02 -6 2729
bqp250-9 251|31877 -5.149755 +4 -5.149755 +4 131 -2.73 -6 9.99 -7 7.98 -7 -7.48 -7 3530

bqp500-1 501|126252 -1.259642 +5 -1.259642 +5 821 -2.37 -8 7.56 -7 9.99 -7 -2.77 -6 6542
bqp500-10 501|126252 -1.385345 +5 -1.385345 +5 938 -1.89 -8 7.32 -7 9.99 -7 -3.22 -6 6967
bqp500-2 501|126252 -1.360111 +5 -1.360111 +5 919 -9.53 -8 7.05 -7 9.99 -7 -2.10 -6 7129
bqp500-3 501|126252 -1.384535 +5 -1.384535 +5 877 -1.87 -8 7.26 -7 9.99 -7 -3.12 -6 6947
bqp500-4 501|126252 -1.393284 +5 -1.393284 +5 946 -2.58 -8 8.01 -7 9.99 -7 -2.80 -6 6991

bqp500-5 501|126252 -1.340922 +5 -1.340922 +5 848 -4.49 -7 7.06 -7 9.99 -7 -2.70 -6 6553
bqp500-6 501|126252 -1.307644 +5 -1.307644 +5 885 -6.48 -8 8.26 -7 9.98 -7 -1.74 -6 6561
bqp500-7 501|126252 -1.314915 +5 -1.314915 +5 923 -4.96 -8 6.96 -7 9.99 -7 -2.27 -6 6858
bqp500-8 501|126252 -1.334899 +5 -1.334899 +5 976 -6.95 -8 8.00 -7 1.00 -6 -1.48 -6 7357
bqp500-9 501|126252 -1.302883 +5 -1.302883 +5 872 -2.18 -7 7.14 -7 1.00 -6 -2.24 -6 6443

gka10b 126|8127 -1.555750 +2 -1.555750 +2 25 -5.31 -8 9.98 -7 2.65 -8 -1.30 -5 2633
gka10d 101|5252 -2.010856 +4 -2.010856 +4 9 -4.66 -7 8.60 -7 9.97 -7 +9.90 -7 1344
gka1d 101|5252 -6.528430 +3 -6.528430 +3 16 -6.31 -6 8.71 -7 9.99 -7 -3.90 -7 1982
gka1e 201|20502 -1.706982 +4 -1.706982 +4 76 -7.86 -7 9.99 -7 7.53 -7 -4.94 -7 3227
gka1f 501|126252 -6.555910 +4 -6.555910 +4 911 -1.67 -7 7.16 -7 1.00 -6 -2.03 -6 6680

gka2d 101|5252 -6.990710 +3 -6.990710 +3 9 -1.31 -7 5.66 -7 9.99 -7 -3.91 -7 1421
gka2e 201|20502 -2.491764 +4 -2.491764 +4 59 -5.50 -7 9.99 -7 6.81 -7 -1.09 -6 2531
gka2f 501|126252 -1.079318 +5 -1.079318 +5 1023 -1.96 -7 7.92 -7 9.99 -7 -3.02 -6 7024
gka3d 101|5252 -9.734332 +3 -9.734332 +3 19 -1.59 -6 9.87 -7 9.92 -7 -2.04 -9 2643
gka3e 201|20502 -2.689874 +4 -2.689874 +4 58 -3.32 -6 9.93 -7 8.63 -7 -6.91 -7 2466

gka3f 501|126252 -1.501511 +5 -1.501511 +5 815 -1.04 -7 6.85 -7 9.99 -7 -2.27 -6 6528
gka4d 101|5252 -1.127841 +4 -1.127841 +4 12 -4.75 -7 4.54 -7 1.00 -6 -5.76 -7 1427
gka4e 201|20502 -3.722515 +4 -3.722515 +4 72 -4.21 -7 6.44 -7 9.99 -7 -1.27 -6 3023
gka4f 501|126252 -1.870880 +5 -1.870880 +5 879 -9.55 -7 9.73 -7 9.98 -7 -2.27 -6 6233
gka5d 101|5252 -1.239886 +4 -1.239886 +4 12 -1.98 -6 1.00 -6 6.01 -7 +6.52 -8 1240

gka5e 201|20502 -3.800231 +4 -3.800231 +4 68 -2.23 -6 7.29 -7 9.99 -7 -7.77 -7 2917
gka5f 501|126252 -2.069143 +5 -2.069143 +5 879 -8.21 -8 8.04 -7 9.99 -7 -1.46 -6 6255
gka6d 101|5252 -1.492937 +4 -1.492937 +4 11 -1.84 -6 9.47 -7 9.93 -7 -4.16 -7 1468
gka7c 101|5252 -7.316449 +3 -7.316449 +3 26 -6.22 -7 9.97 -7 9.85 -7 -6.45 -7 3193
gka7d 101|5252 -1.537583 +4 -1.537583 +4 10 -2.95 -7 9.66 -7 8.97 -7 -7.00 -7 1212

gka8a 101|5252 -1.119723 +4 -1.119723 +4 143 -2.00 -8 8.70 -7 9.94 -7 -2.45 -6 15111
gka8d 101|5252 -1.700536 +4 -1.700536 +4 16 -1.27 -6 9.98 -7 8.96 -7 -7.41 -7 2151
gka9b 101|5252 -1.370000 +2 -1.370000 +2 5 -9.24 -7 7.58 -7 6.71 -8 +2.57 -7 681
gka9d 101|5252 -1.653390 +4 -1.653390 +4 8 -3.07 -8 2.68 -7 9.91 -7 +9.30 -7 1175

23



problem on G can be formulated as a κ-cut problem

max
[(

κ− 1
2κ

)
L(G, W )− 1

2
Diag(We)

]
•X

s.t. −Eij •X ≤ 2/(kκ− 1), ∀ (i, j),
−Eij •X = 2/(κ− 1), ∀ (i, j) ∈ U ⊆ E,

diag(X) = e, X � 0, rank(X) = κ,

where κ > 1 is an integer, L(G, W ) := Diag(We)−W is the Laplacian matrix, Eij = eie
T
j +eje

T
i with ei ∈ Rn

the vector with all zeros except in the ith position and e ∈ Rn is the vector with all ones. An SDP relaxation of
the problem above is obtained by dropping the rank restriction and the inequality constraint for the non-edges
to obtain the following formulation

max
[(

κ− 1
2κ

)
L(G, W )− 1

2
Diag(We)

]
•X

s.t. X � 0, (62a)

−Eij •X ≤ 2/(κ− 1) ∀ (i, j) ∈ E \ U, (62b)

−Eij •X = 2/(κ− 1) ∀ (i, j) ∈ U ⊆ E, diag(X) = e, (62c)

where X ∈ Sn.
There is more than one way of viewing (62) as a special case of formulation (45). In our current im-

plementation, we considered the following two-easy-block structure formulation. Let X = W1 := Sn,

W2 = R|E\U | × R|U | × Rn, K1 = Sn
+ and K2 = R|E\U |+ × 0|U | × 0n, where 0n denotes an n dimensional

vector of all zeros. Also, endow X with the Frobenius inner product. With these de�nitions, we can easily see
that we can view (62) as having the two-easy-block structure (45) if we let (62a) asM1, and (62b) and (62c)
asM2.

In order to agree with the scaling of the data and error measures adopted by SDPAD for (59), we measure
the primal infeasibility measure εP as

εP (x) =

r
1
2

P
(i,j)∈E\U

‖min {0, Eij • X + 2/(κ − 1)}‖2
F + 1

2

P
(i,j)∈U

‖Eij • X + 2/(κ − 1)‖2
F + ‖diag(X) − e‖2

F

1 +
p

n + 2|E|/(κ − 1)2
, (63)

and the dual infeasibility measure εD as in (51) with µ = 1 + ‖C‖1, where ‖·‖F is the Frobenius norm de�ned
in (61) and ‖·‖1 is the matrix 1-norm de�ned as

‖A‖1 = max
j

m∑
i=1

|Aij | , ∀A ∈ Rm×n.

Note that the above primal infeasibility measure is not a special case of (50) since it does not take into
consideration the violations with respect to the constraint X � 0. We observe also that, in view of the �rst
inclusion in Theorem 5.2(a), the constraint X � 0 is always satis�ed by 2EBD-HPE , while SDPAD approaches
it in the limit.

Table 5 compares the two methods on a collection of 7 SDP relaxations of FAPs using the tolerance
ε̄ = 10−6. For the purpose of this comparison, we considered 2EBD-HPE with σ = 0.99 and the values of γ,
τ and k̄ in the dynamic scaling rule (57) set to γ = 1.5, τ = 0.75 and k̄ = 5.

Table 6 give more detailed computational results obtained by our method 2EBD-HPE, such as the primal
and dual objective function values, number of iterations, the primal and dual infeasibility measures as described
above, and the relative duality gap. Figure 5 plots the performance pro�les of both methods.

Note that 2EBD-HPE solves 5 (out of a total of 7) problems faster than SDPAD. Moreover, 2EBD-HPE
solves about 3 of them almost 2 times faster than SDPAD. Note also that 2EBD-HPE performs better than
SDPAD on large SDP relaxations of FAPs (i.e., fap25 and fap36).
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Table 5: Comparison of the methods on FAPs
Problem max{εP , εD, εG} Iterations

Instance ns|m 2EBD-HPE SDPAD 2EBD-HPE SDPAD

fap08 120|7260 9.29 -7 9.90 -7 924 717
fap09 174|15225 9.57 -7 9.98 -7 716 505
fap10 183|14479 9.98 -7 9.92 -7 2480 4728
fap11 252|24292 9.98 -7 9.99 -7 2419 2749
fap12 369|26462 9.99 -7 9.93 -7 2991 3609
fap25 2118|322924 1.00 -6 9.96 -7 4389 7948
fap36 4110|1154467 9.99 -7 9.92 -7 3609 6328

Table 6: 2EBD-HPE results on FAPs
Instance n|m 〈c, x〉 〈b, w〉 Time εP εD εG Iterations

fap08 120|7260 +2.436300 +0 +2.436300 +0 8 9.29 -7 8.62 -7 +5.77 -7 924
fap09 174|15225 +1.079770 +1 +1.079770 +1 10 9.57 -7 9.35 -7 -3.73 -6 716
fap10 183|14479 +9.643400 -3 +9.643400 -3 41 9.98 -7 5.84 -7 -8.08 -5 2480
fap11 252|24292 +2.964500 -2 +2.964500 -2 66 9.98 -7 7.08 -7 -2.38 -4 2419
fap12 369|26462 +2.731000 -1 +2.731000 -1 142 9.99 -7 4.33 -7 -1.79 -4 2991
fap25 2118|322924 +1.287750 +1 +1.287750 +1 9074 8.72 -7 1.00 -6 -7.70 -5 4389
fap36 4110|1154467 +6.985640 +1 +6.985640 +1 63291 9.99 -7 9.87 -7 -1.99 -5 3609

7.3 SDPs arising from relaxation of maximum stable set problems

This subsection compares the performance of our method 2EBD-HPE with that of SDPAD on a collection of
SDPs corresponding to θ-functions and θ+-functions of graph stable set problems.

The SDPs for θ-functions and θ+-functions of graph stable set problems can be described as follows. Given
a graph G with n nodes and an edge set E, the SDP relaxations θ(G) and θ+(G) of the maximum stable set
problem are de�ned as

θ(G) := max C •X θ+(G) := max C •X

s.t X � 0, s.t X � 0, (64a)

I •X = 1, I •X = 1, (64b)

Xij = 0, (i, j) ∈ E, Xij = 0, (i, j) ∈ E, X ≥ 0, (64c)

where C = eeT , X ∈ Sn and e ∈ Rn is the vector with all ones.
There is more than one way of viewing the θ(G) and θ+(G) problems as special cases of formulation (45).

In our current implementation, we considered the following two-easy-block structure formulations. For the
case of the θ(G) (resp. θ+(G)) problem, we let X = Sn, W1 := Sn × R, W2 = R × R|E|, K1 = Sn

+ × 01 and

K2 = 01 × 0|E| (resp. K2 = 01 × 0|E| × Rn(n+1)/2
+ ). Also, endow X with the Frobenius inner product. With

these de�nitions, we can easily see that we can view the θ(G) and θ+(G) problems as having the two-easy-block
structure (45) if we letM1 (resp. M2) to be the set of X ∈ Sn satisfying (64a) and (64b) (resp. (64b) and
(64c)). Note that (64b) is used to de�ne bothM1 andM2.

In order to agree with the scaling of the data and error measures adopted by SDPAD for the θ(G) and
θ+(G) problems, we measure the primal infeasibility measure εP as

εP (x) =

√
1
2

∑
(i,j)∈E

X2
ij + 1

n (I •X − 1)2

1 +
√

1
n

, (65)

and the dual infeasibility measure εD as in (51) with µ = 1+2 ‖C‖F , where ‖·‖F is the Frobenius norm de�ned
in (61). Note that the above primal infeasibility measure is not a special case of (50) since it does not take
into consideration the violations with respect to the constraint X � 0 (and also X ≥ 0 for the case of the
θ+(G) problem). We observe also that, in view of the �rst inclusion in Theorem 5.2(a), the constraints X � 0
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and I • X = 1 are always satis�ed by 2EBD-HPE , while SDPAD approaches them in the limit. Note also
that both methods approach the constraint X ≥ 0 for the θ+(G) problem only in the limit.

Tables 7 and 9 compare the two methods on a collection of 59 θ(G) and θ+(G) problems using the tolerance
ε̄ = 10−6. For the purpose of this comparison, we considered 2EBD-HPE with σ = 0.9 and the values of γ, τ
and k̄ in the dynamic scaling rule (57) set to γ = 1.5, τ = 0.75 and k̄ = 5. For the θ(G) problems, we stopped
the dynamic scaling rule when an accuracy of ε̄ = 10−5 is achieved.

Tables 8 and 10 give more detailed computational results obtained by our method 2EBD-HPE, such as the
primal and dual objective function values, number of iterations, the primal and dual infeasibility measures
as described above, and the relative duality gap. Since our implementation of 2EBD-HPE is based on εP in
order to conform with the stopping criterion of SDPAD and, as observed above for the θ+(G) problem, εP

does not take into consideration the violations with respect to the constraint X ≥ 0, we also include in Tables
10 a column with the minimum value of all entries of X. Figures 7 and 8 plots the performance pro�les of
both methods for solving θ(G) and θ+(G) instances, respectively.

Note that 2EBD-HPE solves 46 (out of a total of 59) θ(G) and 47 (out of a total of 59) θ+(G) problems
faster than SDPAD. Moreover, 2EBD-HPE solves about 5 θ(G) and 11 θ+(G) problems at least 2 times faster
than SDPAD. Note also that 2EBD-HPE fails to solve 4 θ(G) (1et.2048, 1tc.2048, G52 and G53) and 1 θ+(G)
(1et.256) instances while SDPAD fails to solve 8 θ(G) (1dc.128, 1dc.512, 1tc.1024, 1tc.2048, 2dc.1024,
2dc.2048, G52 and G53) and 2 θ+(G) (G52 and G53) instances.

8 Numerical results: part II

In this section, we brie�y compare 2EBD-HPE with the SDPNAL method presented in [20] and a BD method
presented in [10], namely DSA-BD. For this comparison with use the same classes of conic optimization
problems mentioned in Section 7.

In contrast to 2EBD-HPE, the methods DSA-BD and SDPNAL always require as input a conic optimization
problem given in standard form, i.e., as in (1). Hence, for the latter two codes it is necessary (except for the θ-
function SDP problems) to add additional variables to the original conic optimization problem (45) in order to
obtain a standard form formulation. Thus, the number of variables handled by the latter two codes are usually
larger than the number of variables handled by 2EBD-HPE. As our computational results of this section show,
this has a negative e�ect on the performance of DSA-BD and SDPNAL compared to 2EBD-HPE.

For the 2EBD-HPE, DSA-BD and SDPNAL methods, the computational results for the SDP relaxations
of BIQs and FAPs were obtained on a server with 2 Xeon X5460 processors at 3.16GHz and 32GB RAM,
and the ones corresponding to the SDPs for θ-functions and θ+-functions of graph stable set problems were
obtained on a single core of a server with 2 Xeon X5520 processors at 2.27GHz and 48GB RAM. For every
problem class, we endow X with the Frobenius inner product.

We use the same stopping criterion adopted by both DSA-BD and SDPNAL. More speci�cally, we measure
the primal and dual infeasibility measures εP and εD as in (50) and (51), respectively, where the norm ‖·‖′Wi

is de�ned as

‖·‖′Wi
=

‖·‖F(
1 +

√
‖b1‖2F + ‖b2‖2F

) , i = 1, 2,

and the parameter µ is de�ned as µ = 1 + ‖C‖F . For ε̄ = 10−6, we stop the three methods whenever

max {εP,k, εD,k} ≤ ε̄. (66)

For the sake of shortness, we only report the performance pro�les and exclude the detailed tables as the
ones reported in Section 7. Figures 9, 10 and 11 plot the performance pro�les of 2EBD-HPE, DSA-BD and
SDPNAL for the SDP relaxations of BIQ problems, the SDP relaxations of FAPs, and the SDPs for θ-functions
and θ+-functions of graph stable set problems, respectively. Note that based on these performance pro�les,
2EBD-HPE outperforms DSA-BD and SDPNAL in every problem class.
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Table 7: Comparison of the methods on θ(G)
Problem max{εP , εD, εG} Iterations

Instance ns|m 2EBD-HPE SDPAD 2EBD-HPE SDPAD

1dc.1024 1024|24064 1.00 -6 9.99 -7 13209 9458
1dc.128 128|1472 8.56 -7 9.23 -6* 13260 20000*
1dc.2048 2048|58368 1.00 -6 9.98 -7 16540 10905
1dc.256 256|3840 9.58 -7 9.43 -7 2601 3969
1dc.512 512|9728 1.00 -6 2.17 -6* 11041 20000*

1et.1024 1024|9601 1.00 -6 1.00 -6 9150 7857
1et.128 128|673 9.69 -7 9.71 -7 580 333
1et.2048 2048|22529 3.12 -3* 1.00 -6 20000* 10968
1et.256 256|1665 9.99 -7 9.70 -7 1758 2188
1et.512 512|4033 9.72 -7 9.71 -7 3147 3302

1tc.1024 1024|7937 1.00 -6 2.17 -6* 12797 20000*
1tc.128 128|513 9.88 -7 9.12 -7 391 898
1tc.2048 2048|18945 2.85 -5* 2.08 -6* 20000* 20000*
1tc.256 256|1313 9.99 -7 9.99 -7 5079 4329
1tc.512 512|3265 1.00 -6 1.00 -6 11860 15022

1zc.1024 1024|16641 8.71 -7 9.72 -7 1176 608
1zc.128 128|1121 8.18 -7 9.96 -7 311 330
1zc.256 256|2817 9.05 -7 8.13 -7 316 211
1zc.512 512|6913 9.70 -7 9.56 -7 510 349
2dc.1024 1024|169163 1.00 -6 5.58 -6* 15667 20000*

2dc.2048 2048|504452 1.00 -6 5.78 -6* 12399 20000*
2dc.512 512|54896 9.82 -7 1.00 -6 7688 8622
G43 1000|9991 9.97 -7 9.96 -7 726 1102
G44 1000|9991 9.91 -7 7.77 -7 750 1131
G45 1000|9991 1.00 -6 9.90 -7 746 1149

G46 1000|9991 9.99 -7 9.61 -7 750 1136
G47 1000|9991 9.91 -7 9.92 -7 772 1103
G51 1000|5910 9.99 -7 9.99 -7 4183 5110
G52 1000|5917 2.73 -6* 2.72 -6* 20000* 20000*
G53 1000|5915 3.67 -6* 6.40 -6* 20000* 20000*

G54 1000|5917 9.99 -7 1.00 -6 2953 3843
brock200-1 200|5067 9.59 -7 9.74 -7 212 240
brock200-4 200|6812 9.76 -7 9.69 -7 196 208
brock400-1 400|20078 9.63 -7 9.75 -7 214 254
c-fat200-1 200|18367 9.72 -7 1.00 -6 258 302

hamming-10-2 1024|23041 9.26 -7 9.10 -7 1153 630
hamming-7-5-6 128|1793 8.86 -7 9.01 -7 252 515
hamming-8-3-4 256|16129 9.09 -7 9.00 -7 191 188
hamming-8-4 256|11777 8.91 -7 7.58 -7 347 136
hamming-9-5-6 512|53761 8.04 -7 8.73 -7 212 1092

hamming-9-8 512|2305 8.87 -7 9.55 -7 1340 2622
keller4 171|5101 1.00 -6 9.87 -7 252 249
p-hat300-1 300|33918 9.97 -7 9.97 -7 709 705
san200-0.7-1 200|5971 8.41 -7 9.52 -7 152 3752
sanr200-0.7 200|6033 9.78 -7 9.98 -7 204 219

theta10 500|12470 9.96 -7 9.84 -7 291 460
theta102 500|37467 9.44 -7 9.83 -7 215 253
theta103 500|62516 9.91 -7 9.42 -7 216 257
theta104 500|87245 9.97 -7 9.72 -7 240 260
theta12 600|17979 9.96 -7 9.79 -7 297 404

theta123 600|90020 9.65 -7 9.71 -7 237 263
theta32 150|2286 9.94 -7 9.89 -7 278 300
theta4 200|1949 9.96 -7 9.92 -7 379 395
theta42 200|5986 9.72 -7 9.85 -7 226 242
theta6 300|4375 9.81 -7 9.88 -7 299 440

theta62 300|13390 9.67 -7 9.90 -7 219 229
theta8 400|7905 9.65 -7 9.88 -7 292 369
theta82 400|23872 9.60 -7 9.71 -7 210 243
theta83 400|39862 9.79 -7 9.89 -7 216 233
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Table 8: 2EBD-HPE results on θ(G)
Instance n|m 〈c, x〉 〈b, w〉 Time εP εD εG Iterations

1dc.1024 1024|24064 -9.598550 +1 -9.598550 +1 14841 1.00 -6 2.87 -7 -2.96 -6 13209
1dc.128 128|1472 -1.684180 +1 -1.684180 +1 135 6.57 -7 6.63 -7 +8.56 -7 13260
1dc.2048 2048|58368 -1.747310 +2 -1.747310 +2 104725 1.00 -6 2.89 -7 -4.61 -6 16540
1dc.256 256|3840 -3.000000 +1 -3.000000 +1 107 6.02 -7 9.58 -7 +4.09 -7 2601
1dc.512 512|9728 -5.303100 +1 -5.303100 +1 1913 1.00 -6 4.37 -7 -2.86 -6 11041

1et.1024 1024|9601 -1.842271 +2 -1.842271 +2 9638 1.00 -6 5.49 -7 -2.26 -6 9150
1et.128 128|673 -2.923090 +1 -2.923090 +1 6 9.69 -7 8.87 -7 -2.48 -7 580
1et.2048 2048|22529 -3.983327 +2 -3.456929 +2 167053 3.12 -3 2.92 -3 -7.07 -2 20000
1et.256 256|1665 -5.511440 +1 -5.511440 +1 58 9.99 -7 6.34 -7 -1.40 -6 1758
1et.512 512|4033 -1.044244 +2 -1.044244 +2 554 9.42 -7 9.72 -7 -1.93 -6 3147

1tc.1024 1024|7937 -2.063051 +2 -2.063051 +2 13894 1.00 -6 9.50 -7 -1.87 -6 12797
1tc.128 128|513 -3.800000 +1 -3.800000 +1 4 9.88 -7 9.56 -7 +9.24 -7 391
1tc.2048 2048|18945 -3.747874 +2 -3.746651 +2 148639 2.85 -5 2.79 -5 -1.63 -4 20000
1tc.256 256|1313 -6.339990 +1 -6.339990 +1 197 9.99 -7 6.77 -7 -4.40 -7 5079
1tc.512 512|3265 -1.134006 +2 -1.134006 +2 2170 9.92 -7 1.00 -6 -1.87 -6 11860

1zc.1024 1024|16641 -1.286700 +2 -1.286700 +2 1233 8.35 -7 8.71 -7 -1.40 -5 1176
1zc.128 128|1121 -2.066690 +1 -2.066690 +1 3 6.78 -7 8.18 -7 -4.02 -6 311
1zc.256 256|2817 -3.800050 +1 -3.800050 +1 9 8.39 -7 9.05 -7 -6.35 -6 316
1zc.512 512|6913 -6.875130 +1 -6.875130 +1 87 9.70 -7 9.42 -7 -1.03 -5 510
2dc.1024 1024|169163 -1.863870 +1 -1.863870 +1 17880 1.00 -6 5.56 -7 -1.91 -5 15667

2dc.2048 2048|504452 -3.067430 +1 -3.067430 +1 88042 1.00 -6 2.30 -7 -2.22 -5 12399
2dc.512 512|54896 -1.176790 +1 -1.176790 +1 1491 6.74 -7 9.82 -7 -3.04 -6 7688
G43 1000|9991 -2.806257 +2 -2.806257 +2 817 9.97 -7 8.68 -7 -1.54 -6 726
G44 1000|9991 -2.805840 +2 -2.805840 +2 808 9.91 -7 7.87 -7 -1.11 -6 750
G45 1000|9991 -2.801858 +2 -2.801858 +2 800 1.00 -6 8.01 -7 -8.52 -7 746

G46 1000|9991 -2.798371 +2 -2.798371 +2 717 9.99 -7 7.51 -7 -2.17 -7 750
G47 1000|9991 -2.818943 +2 -2.818943 +2 757 9.91 -7 7.07 -7 -4.46 -7 772
G51 1000|5910 -3.490001 +2 -3.490001 +2 4167 9.99 -7 4.67 -7 -1.77 -7 4183
G52 1000|5917 -3.483936 +2 -3.483877 +2 24146 2.73 -6 1.08 -6 -1.18 -5 20000
G53 1000|5915 -3.483595 +2 -3.483505 +2 19737 3.67 -6 1.91 -6 -1.29 -5 20000

G54 1000|5917 -3.410001 +2 -3.410001 +2 3430 9.99 -7 3.38 -7 -2.09 -7 2953
brock200-1 200|5067 -2.745670 +1 -2.745670 +1 5 9.59 -7 8.54 -7 -6.45 -7 212
brock200-4 200|6812 -2.129350 +1 -2.129350 +1 5 9.76 -7 9.08 -7 -7.21 -7 196
brock400-1 400|20078 -3.970200 +1 -3.970200 +1 24 9.20 -7 9.63 -7 -8.17 -7 214
c-fat200-1 200|18367 -1.200000 +1 -1.200000 +1 5 9.72 -7 7.38 -7 -2.75 -6 258

hamming-10-2 1024|23041 -1.024037 +2 -1.024037 +2 1107 8.07 -7 9.26 -7 -1.69 -5 1153
hamming-7-5-6 128|1793 -4.266680 +1 -4.266680 +1 2 6.96 -7 8.86 -7 -2.42 -6 252
hamming-8-3-4 256|16129 -2.559990 +1 -2.559990 +1 6 2.11 -7 9.09 -7 +4.00 -7 191
hamming-8-4 256|11777 -1.600010 +1 -1.600010 +1 12 2.76 -7 8.91 -7 -4.14 -6 347
hamming-9-5-6 512|53761 -8.533390 +1 -8.533390 +1 31 8.04 -7 7.81 -7 -3.79 -6 212

hamming-9-8 512|2305 -2.240020 +2 -2.240020 +2 192 8.87 -7 8.65 -7 -3.68 -6 1340
keller4 171|5101 -1.401230 +1 -1.401230 +1 4 1.00 -6 8.77 -7 -1.03 -6 252
p-hat300-1 300|33918 -1.006800 +1 -1.006800 +1 43 9.97 -7 2.63 -7 -1.31 -6 709
san200-0.7-1 200|5971 -3.000000 +1 -3.000000 +1 4 8.41 -7 6.85 -7 -8.64 -8 152
sanr200-0.7 200|6033 -2.383620 +1 -2.383620 +1 5 9.78 -7 8.98 -7 -5.32 -7 204

theta10 500|12470 -8.380610 +1 -8.380610 +1 52 9.96 -7 9.83 -7 -7.89 -7 291
theta102 500|37467 -3.839060 +1 -3.839060 +1 42 9.11 -7 9.44 -7 -1.03 -6 215
theta103 500|62516 -2.252860 +1 -2.252860 +1 47 9.13 -7 9.91 -7 -1.42 -6 216
theta104 500|87245 -1.333620 +1 -1.333620 +1 50 8.86 -7 9.97 -7 -1.99 -6 240
theta12 600|17979 -9.280180 +1 -9.280180 +1 86 8.97 -7 9.96 -7 -7.39 -7 297

theta123 600|90020 -2.466870 +1 -2.466870 +1 68 9.65 -7 6.39 -7 -1.69 -6 237
theta32 150|2286 -2.757160 +1 -2.757160 +1 5 9.94 -7 5.50 -7 -1.94 -7 278
theta4 200|1949 -5.032130 +1 -5.032130 +1 9 9.96 -7 6.59 -7 -4.95 -7 379
theta42 200|5986 -2.393170 +1 -2.393170 +1 6 9.72 -7 6.76 -7 -4.01 -7 226
theta6 300|4375 -6.347720 +1 -6.347720 +1 19 9.81 -7 9.02 -7 -4.81 -7 299

theta62 300|13390 -2.964130 +1 -2.964130 +1 13 9.67 -7 6.18 -7 -8.22 -7 219
theta8 400|7905 -7.395370 +1 -7.395370 +1 32 9.65 -7 8.52 -7 -6.46 -7 292
theta82 400|23872 -3.436700 +1 -3.436700 +1 25 9.41 -7 9.60 -7 -8.93 -7 210
theta83 400|39862 -2.030190 +1 -2.030190 +1 28 9.31 -7 9.79 -7 -1.27 -6 216
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Table 9: Comparison of the methods on θ+(G)
Problem max{εP , εD, εG} Iterations

Instance ns|m 2EBD-HPE SDPAD 2EBD-HPE SDPAD

1dc.1024 1024|24064 1.00 -6 9.99 -7 2514 2790
1dc.128 128|1472 9.99 -7 9.99 -7 870 926
1dc.2048 2048|58368 1.00 -6 9.95 -7 5444 6171
1dc.256 256|3840 8.93 -7 9.74 -7 348 3798
1dc.512 512|9728 1.00 -6 9.98 -7 1767 1991

1et.1024 1024|9601 9.97 -7 9.90 -7 1701 2392
1et.128 128|673 9.22 -7 9.78 -7 477 392
1et.2048 2048|22529 9.99 -7 1.00 -6 3322 3547
1et.256 256|1665 9.53 -5* 1.00 -6 20000* 1133
1et.512 512|4033 9.99 -7 9.89 -7 1055 1401

1tc.1024 1024|7937 9.99 -7 9.96 -7 5150 5003
1tc.128 128|513 8.27 -7 9.90 -7 201 1066
1tc.2048 2048|18945 9.99 -7 9.98 -7 4937 5283
1tc.256 256|1313 9.99 -7 9.99 -7 1881 2264
1tc.512 512|3265 9.99 -7 9.94 -7 2535 3032

1zc.1024 1024|16641 9.11 -7 7.18 -7 1141 849
1zc.128 128|1121 6.96 -7 9.75 -7 217 161
1zc.256 256|2817 8.83 -7 8.13 -7 209 180
1zc.512 512|6913 8.84 -7 9.80 -7 550 769
2dc.1024 1024|169163 1.00 -6 1.00 -6 1974 1716

2dc.2048 2048|504452 9.94 -7 1.00 -6 1421 1802
2dc.512 512|54896 9.99 -7 1.00 -6 1809 2179
G43 1000|9991 9.99 -7 9.59 -7 622 1103
G44 1000|9991 9.93 -7 9.70 -7 660 1100
G45 1000|9991 9.94 -7 8.74 -7 658 1145

G46 1000|9991 9.94 -7 9.98 -7 645 1106
G47 1000|9991 9.86 -7 9.99 -7 651 1073
G51 1000|5910 9.99 -7 9.99 -7 4475 13379
G52 1000|5917 9.97 -7 3.00 -4* 6260 20000*
G53 1000|5915 1.00 -6 1.93 -4* 14407 20000*

G54 1000|5917 9.93 -7 9.91 -7 2561 6645
brock200-1 200|5067 9.60 -7 9.80 -7 228 237
brock200-4 200|6812 9.56 -7 9.84 -7 210 212
brock400-1 400|20078 9.76 -7 9.98 -7 240 258
c-fat200-1 200|18367 9.42 -7 9.98 -7 248 293

hamming-10-2 1024|23041 9.00 -7 9.39 -7 882 581
hamming-7-5-6 128|1793 8.73 -7 9.45 -7 611 508
hamming-8-3-4 256|16129 9.09 -7 9.00 -7 191 188
hamming-8-4 256|11777 9.49 -7 6.51 -7 193 114
hamming-9-5-6 512|53761 9.98 -7 9.27 -7 554 433

hamming-9-8 512|2305 8.37 -7 9.88 -7 1053 2569
keller4 171|5101 9.42 -7 9.41 -7 435 419
p-hat300-1 300|33918 9.98 -7 9.96 -7 566 677
san200-0.7-1 200|5971 8.11 -7 9.68 -7 121 3689
sanr200-0.7 200|6033 9.68 -7 9.57 -7 222 228

theta10 500|12470 9.72 -7 9.80 -7 317 382
theta102 500|37467 9.68 -7 9.97 -7 235 263
theta103 500|62516 9.84 -7 9.52 -7 231 262
theta104 500|87245 9.99 -7 9.55 -7 246 266
theta12 600|17979 9.87 -7 9.77 -7 319 393

theta123 600|90020 9.97 -7 9.43 -7 239 267
theta32 150|2286 9.78 -7 9.99 -7 273 276
theta4 200|1949 9.70 -7 9.78 -7 355 405
theta42 200|5986 9.88 -7 9.72 -7 235 242
theta6 300|4375 9.93 -7 9.75 -7 322 370

theta62 300|13390 9.87 -7 9.61 -7 232 235
theta8 400|7905 9.98 -7 9.89 -7 318 358
theta82 400|23872 9.74 -7 9.75 -7 231 250
theta83 400|39862 9.70 -7 9.69 -7 225 256
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Table 10: 2EBD-HPE results on θ+(G)
Instance n|m 〈c, x〉 〈b, w〉 Time min

i
xi εP εD εG Iterations

1dc.1024 1024|24064 -9.555170 +1 -9.555170 +1 3299 -2.02 -8 1.00 -6 7.97 -7 -2.68 -6 2514
1dc.128 128|1472 -1.667840 +1 -1.667840 +1 10 -4.37 -8 9.72 -7 9.99 -7 -3.92 -6 870
1dc.2048 2048|58368 -1.742592 +2 -1.742592 +2 46243 -6.66 -9 1.00 -6 8.91 -7 -4.62 -6 5444
1dc.256 256|3840 -3.000010 +1 -3.000010 +1 12 -1.40 -8 6.28 -7 8.93 -7 -8.25 -6 348
1dc.512 512|9728 -5.269530 +1 -5.269530 +1 305 -4.04 -8 1.00 -6 6.88 -7 -1.86 -6 1767

1et.1024 1024|9601 -1.820731 +2 -1.820731 +2 2034 -4.64 -9 9.74 -7 9.97 -7 -4.48 -6 1701
1et.128 128|673 -2.923090 +1 -2.923090 +1 5 -5.07 -8 9.22 -7 7.91 -7 +3.26 -7 477
1et.2048 2048|22529 -3.381690 +2 -3.381690 +2 25791 -3.42 -9 9.99 -7 8.15 -7 -5.66 -6 3322
1et.256 256|1665 -5.448150 +1 -5.447670 +1 861 -1.06 -4 7.92 -5 9.53 -5 +4.42 -5 20000
1et.512 512|4033 -1.035501 +2 -1.035501 +2 160 -1.04 -8 9.99 -7 9.35 -7 -3.87 -6 1055

1tc.1024 1024|7937 -2.042054 +2 -2.042054 +2 6548 -3.30 -8 9.99 -7 9.87 -7 -3.43 -6 5150
1tc.128 128|513 -3.799990 +1 -3.799990 +1 2 -1.58 -7 8.25 -7 8.27 -7 -7.85 -7 201
1tc.2048 2048|18945 -3.704916 +2 -3.704916 +2 40227 -2.13 -8 9.20 -7 9.99 -7 -4.23 -6 4937
1tc.256 256|1313 -6.324050 +1 -6.324050 +1 64 -9.33 -8 9.99 -7 7.02 -7 -1.46 -6 1881
1tc.512 512|3265 -1.125343 +2 -1.125343 +2 418 -4.98 -8 9.99 -7 7.31 -7 -2.65 -6 2535

1zc.1024 1024|16641 -1.280043 +2 -1.280043 +2 1201 -1.18 -9 7.79 -7 9.11 -7 -1.79 -5 1141
1zc.128 128|1121 -2.066660 +1 -2.066660 +1 2 -6.76 -9 2.49 -7 6.96 -7 +4.40 -7 217
1zc.256 256|2817 -3.733370 +1 -3.733370 +1 6 -1.66 -8 8.83 -7 7.85 -7 -5.92 -6 209
1zc.512 512|6913 -6.800050 +1 -6.800050 +1 82 -1.37 -8 8.84 -7 6.20 -7 -4.14 -6 550
2dc.1024 1024|169163 -1.771020 +1 -1.771020 +1 2630 -3.91 -9 7.72 -7 1.00 -6 -8.60 -6 1974

2dc.2048 2048|504452 -2.878750 +1 -2.878750 +1 14410 -3.96 -9 8.80 -7 9.94 -7 -1.44 -5 1421
2dc.512 512|54896 -1.138370 +1 -1.138370 +1 330 -4.55 -9 9.99 -7 8.65 -7 -1.23 -5 1809
G43 1000|9991 -2.797368 +2 -2.797368 +2 764 -3.24 -8 9.99 -7 6.77 -7 -1.35 -6 622
G44 1000|9991 -2.797466 +2 -2.797466 +2 762 -4.32 -8 8.01 -7 9.93 -7 -7.53 -7 660
G45 1000|9991 -2.793182 +2 -2.793182 +2 719 -4.58 -8 9.94 -7 6.64 -7 -1.08 -6 658

G46 1000|9991 -2.790329 +2 -2.790329 +2 711 -1.05 -7 7.93 -7 9.94 -7 -6.34 -7 645
G47 1000|9991 -2.808921 +2 -2.808921 +2 669 -5.30 -8 8.34 -7 9.86 -7 -6.03 -7 651
G51 1000|5910 -3.490001 +2 -3.490001 +2 5599 -3.52 -7 9.99 -7 7.86 -7 -3.27 -7 4475
G52 1000|5917 -3.483865 +2 -3.483865 +2 7951 -2.93 -7 8.68 -7 9.97 -7 -8.46 -7 6260
G53 1000|5915 -3.482135 +2 -3.482135 +2 20045 -7.63 -8 1.00 -6 7.07 -7 -3.04 -6 14407

G54 1000|5917 -3.410003 +2 -3.410003 +2 3044 -1.54 -7 9.93 -7 9.43 -7 -1.13 -6 2561
brock200-1 200|5067 -2.719680 +1 -2.719680 +1 6 -4.59 -8 9.60 -7 8.12 -7 -7.39 -7 228
brock200-4 200|6812 -2.112110 +1 -2.112110 +1 5 -6.21 -8 9.56 -7 8.20 -7 -9.87 -7 210
brock400-1 400|20078 -3.933100 +1 -3.933100 +1 26 -3.42 -8 9.76 -7 9.31 -7 -1.15 -6 240
c-fat200-1 200|18367 -1.200000 +1 -1.200000 +1 4 -3.81 -8 9.42 -7 9.02 -7 +1.60 -8 248

hamming-10-2 1024|23041 -8.533720 +1 -8.533720 +1 1041 -6.68 -11 8.06 -7 9.00 -7 -2.36 -5 882
hamming-7-5-6 128|1793 -3.600060 +1 -3.600060 +1 5 -3.14 -10 8.73 -7 7.52 -7 -7.91 -6 611
hamming-8-3-4 256|16129 -2.559990 +1 -2.559990 +1 5 -1.25 -9 2.11 -7 9.09 -7 +4.00 -7 191
hamming-8-4 256|11777 -1.600030 +1 -1.600030 +1 5 -1.97 -9 9.49 -7 3.73 -7 -1.09 -5 193
hamming-9-5-6 512|53761 -5.866730 +1 -5.866730 +1 80 -3.92 -10 5.32 -7 9.98 -7 -6.31 -6 554

hamming-9-8 512|2305 -2.240014 +2 -2.240014 +2 137 +4.13 -9 6.22 -7 8.37 -7 -3.92 -6 1053
keller4 171|5101 -1.346590 +1 -1.346590 +1 7 -3.90 -8 7.56 -7 9.42 -7 -6.18 -7 435
p-hat300-1 300|33918 -1.002020 +1 -1.002020 +1 34 -6.61 -8 9.98 -7 6.71 -7 -1.24 -6 566
san200-0.7-1 200|5971 -3.000000 +1 -3.000000 +1 3 -1.25 -8 1.81 -7 8.11 -7 -1.14 -6 121
sanr200-0.7 200|6033 -2.363330 +1 -2.363330 +1 6 -5.84 -8 9.68 -7 7.90 -7 -7.21 -7 222

theta10 500|12470 -8.314920 +1 -8.314920 +1 56 -4.55 -8 9.72 -7 8.88 -7 -9.28 -7 317
theta102 500|37467 -3.806640 +1 -3.806640 +1 43 -1.44 -8 9.68 -7 9.24 -7 -1.42 -6 235
theta103 500|62516 -2.237750 +1 -2.237750 +1 43 -8.48 -9 9.84 -7 9.80 -7 -1.87 -6 231
theta104 500|87245 -1.328270 +1 -1.328270 +1 50 -5.12 -9 9.26 -7 9.99 -7 -2.32 -6 246
theta12 600|17979 -9.209110 +1 -9.209110 +1 92 -4.67 -8 9.01 -7 9.87 -7 -9.64 -7 319

theta123 600|90020 -2.449520 +1 -2.449520 +1 78 -6.76 -9 8.85 -7 9.97 -7 -1.81 -6 239
theta32 150|2286 -2.729160 +1 -2.729160 +1 4 -1.15 -7 8.45 -7 9.78 -7 -3.43 -7 273
theta4 200|1949 -4.986910 +1 -4.986910 +1 8 -1.99 -7 8.62 -7 9.70 -7 -5.65 -7 355
theta42 200|5986 -2.373820 +1 -2.373820 +1 6 -1.15 -7 9.88 -7 6.86 -7 -6.18 -7 235
theta6 300|4375 -6.296190 +1 -6.296190 +1 18 -1.05 -7 9.93 -7 7.69 -7 -6.13 -7 322

theta62 300|13390 -2.937800 +1 -2.937800 +1 13 -3.26 -8 8.59 -7 9.87 -7 -9.08 -7 232
theta8 400|7905 -7.340800 +1 -7.340800 +1 36 -5.61 -8 9.98 -7 7.80 -7 -8.48 -7 318
theta82 400|23872 -3.406440 +1 -3.406440 +1 25 -2.09 -8 9.74 -7 9.15 -7 -1.25 -6 231
theta83 400|39862 -2.016720 +1 -2.016720 +1 25 -1.44 -8 9.70 -7 9.67 -7 -1.63 -6 225
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Figure 9: Performance pro�les of 2EBD-HPE, the BD

method in [10] and SDPNAL for solving 133 SDP relaxations

of BIQ problems with accuracy ε̄ = 10−6.

Figure 10: Performance pro�les of 2EBD-HPE, the BD

method in [10] and SDPNAL for solving 7 SDP relaxations

of FAPs with accuracy ε̄ = 10−6.
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in [10] and SDPNAL for solving 76 θ(G) and θ+(G) problems with

accuracy ε̄ = 10−6.

31



9 Concluding remarks

Note that when applying the A-BD-HPE framework to (23), it is necessary to �rst specify the �rst and second
blocks, namely 0 ∈ F1(x, y) + A(x) and 0 ∈ F2(x, y) + B(x), respectively. We have seen that Algorithm 1
corresponds to applying the A-BD-HPE framework to (23) by choosing the �rst and second blocks to be the
�rst and second inclusions in (23), respectively. Clearly, a variant of Algorithm 1 can be obtained by changing
the choice of the �rst and second blocks to be the second and �rst inclusions in (23), respectively. The resulting
method can be easily shown to possess similar convergence properties as those of Algorithm 1. We observe
that λ̃ for this variant should be chosen as

λ̃ := min
{

σ2
1

θL
,

(σ2 − σ2
1)1/2

√
θ

}
.

The approach in Section 4 can be easily extended to the convex problem

min f(x) +
∑m

i=0 hi(x)
s.t. x ∈ X ,

(67)

which is equivalent to solving the inclusion problem

0 ∈ ∇f(x) + ∂h0(x) +
m∑

i=1

yi,

0 ∈ θi[−x + ∂h∗i (yi)], i = 1, . . . ,m,

where θi > 0, i = 1, . . . ,m, are scaling factors. Even though, this inclusion system has m + 1 blocks of
inclusions, it can be viewed as having two blocks for the purpose of applying the A-BD-HPE framework to
it. Indeed, the �rst block would be the �rst inclusion and the second block would consist of the other m
inclusions. Note that once x̃k is obtained from the proximal equation associated with the �rst block, it can
be updated in the proximal equations corresponding to the other inclusions, and the ỹi,k can all be computed
simultaneously. Convergence results similar to the ones obtained in Section 4 can be derived for (67).
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