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ABSTRACT
Widespread interest in features and trends in time series
has generated a need for interactive tools that support
discovering unusual events in time series. In this pa-
per, we introduce an application (TimeSeer) for guiding
interactive exploration through high-dimensional data.
Our application is designed to handle the types of doubly-
multivariate data series by working directly on notewor-
thy features such as density, skewness, shape, outliers,
and texture.
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INTRODUCTION
TimeSeer [4] is a platform for the visual analysis of high-
dimensional multivariate time series. The data model
that TimeSeer is designed to deal with is: t time points
and p variables, resulting in p-multivariate time series.
For each variable, however, we have n series, resulting
in a doubly-multivariate design. Typical data for this
model are: tmonths, p economic indicators, and n coun-
tries; t minutes, p vital signs, and n patients; t trading
days, p stock indices, and n markets (exchanges). We
normally expect t, p, and n to be large. An traditional
approach, of course, would be to examine all individual
series. This approach does not scale.

This paper deals with a substantial extension to the
TimeSeer model that allows us to examine time series
in a dense visual environment. The original model al-
lowed a user to select pairs of time series and analyze
relations between them. The current model allows a
user to examine all time series in a corpus simultane-
ously.
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RELATED WORK

Scagnostics
The features we use to process time series are based on
Scagnostics. In the mid 1980s, John and Paul Tukey
developed an exploratory graphical method to describe
a collection of 2D scatterplots through a small number
of measures of the pattern of points in these plots [9].
We implemented the original Tukey idea through nine
Scagnostics (Outlying, Skewed, Clumpy, Sparse, Stri-
ated, Convex, Skinny, Stringy, Monotonic) defined on
planar proximity graphs.

We now review the Scagnostic algorithm [15].

Binning
We begin by normalizing the data to the unit interval
and then use a 40 by 40 hexagonal grid [2] to aggregate
the points in each scatterplot. The choice of bin size is
constrained by efficiency (too many bins slow down cal-
culations of the geometric graphs) and sensitivity (too
few bins obscure features in the scatterplots).

The Scagnostics measures depend on proximity graphs
that are all subsets of the Delaunay triangulation: the
convex hull, the minimum spanning tree (MST), and
the alpha complex [5].

Deleting Outliers
We consider an outlier to be a vertex whose adjacent
edges in the MST all have a weight (length) greater
than Finner+, where

Finner+ = q75 + 1.5(q75 − q25) (1)

where q75 is the 75th percentile of the MST edge lengths
and the expression in the parentheses is the interquartile
range of the edge lengths.

Computing Scagnostic Measures
We now present the Scagnostic measures computed on
our three geometric graphs: H for the convex hull, A
for the alpha shape, and T for the minimum spanning
tree. Figure 1 shows an example of the three geometric
graphs. We are interested in assessing three aspects of
scattered points: density, shape, and association.

Density Measures



Figure 1. Minimum spanning tree, alpha shape, and con-
vex hull.

The following measures detect different aspects of point
densities.

• Outlying

The Outlying Scagnostic measures the proportion of
the total edge length of the minimum spanning tree
accounted for by the total length of edges adjacent to
outlying points (as defined above). We do this calcula-
tion before deleting outliers for the other measures.

coutlying = length(Toutliers)/length(T ) (2)

Figure 2. High Outlying and low Outlying distributions
(Red vertices are outliers which are not outliers in both
projections).

• Skewed

We use two other density measures based on MST edge-
lengths. The first is a relatively robust measure of skew-
ness in the distribution of edge lengths of the MST.
Figure 3 shows an example of this measure.

qskew = (q90 − q50)/(q90 − q10) (3)

• Sparse

The second edge-length statistic, Sparse, measures whether
points in a 2D scatterplot are confined to a lattice or
a small number of locations on the plane. This can
happen, for example, when tuples are produced by the
product of categorical variables. It can also happen

Figure 3. High Skew and low Skew distributions (MST
is in green).

when the number of points is extremely small. We
choose the 90th percentile of the distribution of edge
lengths in the MST. This is the same value we use for
the α statistic.

csparse = q90 (4)

Figure 4. High Sparse and low Sparse distributions (Red
edges are q90).

• Clumpy

An extremely skewed distribution of MST edge lengths
does not necessarily indicate clustering of points. For
this, we turn to another measure based on the MST:
the RUNT statistic [8]. The runt size of a dendrogram
node is the smaller of the number of leaves of each of
the two subtrees joined at that node. Since there is an
isomorphism between a single-linkage dendrogram and
the MST [6], we can associate a runt size (rj) with each
edge (ej) in the MST, as described by [12]. The RUNT
graph (Rj) corresponding to each edge is the smaller of
the two subsets of edges that are still connected to each
of the two vertices in ej after deleting edges in the MST
with lengths less than length(ej).

The RUNT-based measure responds to clusters with
small maximum intra-cluster distance relative to the
length of their nearest-neighbor inter-cluster distance.
In the formula below, j runs over all edges in T and k



runs over all edges in Rj .

cclumpy = max
j

[
1−max

k
[length(ek)] /length(ej)

]
(5)

Figure 5. High Clumpy and low Clumpy distributions.

• Striated

We define coherence in a set of points as the pres-
ence of relatively smooth paths in the minimum span-
ning tree. Smooth algebraic functions, time series, and
curves (e.g., spirals) fit this definition. So do points
arranged in flows or vector fields. Another common ex-
ample is the pattern of parallel lines of points produced
by the product of categorical and continuous variables.

We use a measure based on the number of adjacent
edges in the MST whose cosine is less than -0.75. Let
V (2) ⊆ V be the set of all vertices of degree 2 in V and
let I() be an indicator function. Then

cstriate =
1

|V |
∑

v∈V (2)

I(cos θe(v,a)e(v,b) < −.75) (6)

Figure 6. High Striated and low Striated distributions
(Red nodes are 2-degree vertices whose cosine is less than
-0.75).

Shape Measures

The shape of a set of scattered points is our next consid-
eration. We want to detect if a set of scattered points
on the plane appears to be connected, convex, and so
forth. Of course, scattered points are by definition not
these things, so we need additional machinery (based on
geometric graphs) to allow us to make such inferences.
In particular, we will measure aspects of the convex hull
and the alpha hull.

• Convex

Our convexity measure is based on the ratio of the area
of the alpha hull and the area of the convex hull. This
ratio will be 1 if the nonconvex hull (alpha shape) and
the convex hull have identical areas.

cconvex = [area(A)/area(H)] (7)

Figure 7. High Convex and low Convex distributions
(Alpha shape in yellow and convex hull in blue).

• Skinny

The ratio of perimeter to area of a polygon measures,
roughly, how skinny it is. We use a corrected and nor-
malized ratio so that a circle yields a value of 0, a square
yields 0.12 and a skinny polygon yields a value near one.

cskinny = 1−
√

4πarea(A)/perimeter(A) (8)

Figure 8. High Skinny and low Skinny distributions (Al-
pha shape in yellow).



• Stringy

A stringy shape is a skinny shape with no branches.
We count vertices of degree 2 in the minimum spanning
tree and compare them to the overall number of vertices
minus the number of single-degree vertices.

cstringy =
|V (2)|

|V | − |V (1)|
(9)

Figure 9. High Stringy and low Stringy distribu-
tions(Red nodes are 2-degree vertices in MST).

We cube the Stringy measure to adjust for negative
skew in its conditional distribution on n.

Association Measure

We are interested in a symmetric and relatively robust
measure of association.

• Monotonic

We use the squared Spearman correlation coefficient to
assess monotonicity in a scatterplot. We square the
coefficient to accentuate the large values and to re-
move the distinction between negative and positive co-
efficients. We assume investigators are most interested
in strong relationships, whether negative or positive.

cmonotonic = r2spearman (10)

This is the only coefficient not based on a subset of the
Delaunay graph.

Visualizing Multivariate Time Series
Some have developed viewers for multivariate time se-
ries. Theme River [10] was one of the first applications
developed for visualizing multivariate time series. It
employed kernel smooths of time series, stacking them
in a single display. Based on a similar idea, Wattenberg
[14] developed an applet called Name Voyager, which
allows one to drill-down to an individual series easily.

Another way to deal with multivariate series is to aggre-
gate across similar series [11, 13, 7]. Aggregation risks

Figure 10. High Monotonic and low Monotonic distribu-
tions.

concealment of important features, however.

In any case, none of these approaches can deal with
the t, p, and n multivariate series that are handled by
TimeSeer.

TIMESEER
We will illustrate TimeSeer by using real datasets to
show how this visual analytic can be used to detect
anomalies and regular patterns.

Data sets
In this section, we use three different datasets to demon-
strate the performance of TimeSeer. The first is a series
of Weather data, the second is a series of US Employ-
ment data, and the third is a series of International
Energy data.

The Weather data comprise hourly meteorological mea-
surements over a year from the Gulf of Maine in 2008.
There are 17 variables represented in the dataset: cur-
rent speed, current direction, temperature, East Cur-
rent Velocity, North Current Velocity , significant wave
height, dominant wave period, air temperature, wind
speed, wind gust, wind direction, visibility, baromet-
ric pressure, water temperature, salinity, sigma-T, and
conductivity. Data and variable descriptions can be
found at http://gyre.umeoce.maine.edu/buoyhome.
php. For these data, we have 50,000 scatterplots with
24 data points (24 hours in a day) each to examine.

The US Employment data comprise monthly employ-
ment statistics for 50 states over 22 years from 1990 to
2011. The data were retrieved from http://www.bls.
gov/. There are 25 variables in the collected data: Total
Nonfarm, Construction, Manufacturing, Non-Durable
Goods, Trade and Transportation, Wholesale Trade,
Retail Trade, Transportation and Utilities, Financial
Activities, Real Estate and Leasing, Professional and
Business, Scientific and Technical, Administrative and
Support, Education and Health, Educational Services,
Social Assistance, Leisure and Hospitality, Arts and
Entertainment, Accommodation and Food, Other Ser-
vices, Government, Federal Government, State Govern-



Figure 11. Stringy measure of the Weather data: a) 2D color map b) 2D Dot Plot map.

Figure 12. Outlying measure of the US Employment data: a) 2D color map b) 2D Dot Plot map.



Figure 13. Monotonic measure of the Weather data: Pan and zoom in one week data.

ment, Local Government, and State Employment. For
these data, we have 78,600 scatterplots with 50 data
points each to examine.

The International Energy data comprise yearly energy
statistics for more than 200 countries over 31 years from
1990 to 2010. There are 13 variables represented in the
dataset: CO2 Emissions, Per Capita CO2 Emissions,
Population, Oil Supply, Oil Consumption, Gas Produc-
tion, Gas Consumption, Coal Production, Coal Con-
sumption, Electric Generation, Electric Consumption,
Total Energy Production, and Total Energy Consump-
tion. Data can be found at http://http://www.eia.
gov/countries/data.cfm. For these data, we have
2,418 scatterplots with 200 data points (200 countries
over the world) each to examine.

In the rest of this paper, we describe three basic analysis
tasks implemented in TimeSeer: overviewing, panning
and zooming, brushing, and drilling-down. These anal-
ysis tasks capture people’s activities while employing in-
formation visualization tools for understanding data [1].

Overview
Users first have to select one of nine measures to visu-
alize. Timeseer generates an overview of the selected
measure for all pairs of variables over entire time peri-
ods. The horizontal axis shows time. The vertical axis

shows the selected measure. We also use the heat color
map along vertical axis to highlight value distributions
on the selected measure.

Figure 11 shows an example of Weather data. In partic-
ular, we use a 2D map to present the overview of 50,000
scatterplots. The horizontal axis contains 365 days in a
year. The vertical axis is the Stringy measure.

In Figure 11(a), every scatterplot is presented by a dot
in the 2D map. High Stringy scatterplots (plots with
points lying on snaky paths) are mapped to red dots,
low Stringy scatterplots are mapped to blue dots. The
opacity of each dot is used to highlight areas with high
occurrences of dots.

Figure 11(b) improves the 2D map by using a bubble
symbol. The size of each bubble is determined by the
number of scatterplots at the same locations. We use a
dot plot algorithm [3] to achieve better location accu-
racy.

Figure 12 shows another example on US Employment
data. In particular, we have selected the Outlying mea-
sure for visualization. In Figure 12(b), we can see clearly
that there are a lot of scatterplots with outliers in a time
point in 2005. In this case, the outliers are Louisiana
and Mississippi. Hurricane Katrina wreaked havoc on



Figure 14. Outlying measure of the US Employment data: Brushing Financial Financial Activities and State Employ-
ment.

their employment and productivity figures.

Pan and Zoom
TimeSeer allows one to pan and zoom into a specific
region into the overview by using a dragging box. All
scatterplots in the dragging box of overview are dis-
played in the force-directed layout. Since we character-
ize a scatterplot with orientation-independent features
and use them for comparison, we provide an option to
view scatterplots in form of circles instead of rectangles.
This option makes detecting shapes of data point dis-
tribution easier. Moreover, a force-directed layout with
circles converges faster than one with rectangles.

Figure 13 shows an example of Pan and Zoom for Weather
data. In particular, we zoom into a week from Day
188 to Day 194. All scatterplots in this interval are
displayed in the force-directed graph on the top (High
Monotonic plots are in red, low Monotonic plots are in
blue). Scatterplots move to vertical levels associated to
their scagnostic values.

Brushing and Drilling-down
Users can focus on one pair of variables by clicking on
any scatterplots in the force-directed graph (the scatter-
plots of other pairs of variable are faded in both force-
directed graph and overview). This is helpful when we
want to investigate individual pairs of variables in the

entire time series.

Figure 14 shows an example of Brushing for US Em-
ployment data. In particular, we have selected one pair
of variables (Financial Financial Activities and State
Employment). The overview graph shows that there
are not many outlying plots, except in September 2005
when Hurricane Katrina happened. In the force-directed
graph, scatterplots of the non-selected pairs are faded.

Figure 15 shows another example of Brushing for the In-
ternational Energy data. We have selected Monotonic
to visualize the correlations between variables in the
data. Users can focus on a particular variable by select-
ing only scatterplots containing that variable. For in-
stance, we want to investigate what are the factors that
increase CO2 Emissions (as shown in Figure 15(b)). We
then drill down on individual pairs of variables by a
simple click on a scatterplot. Figure 15(c) shows an ex-
ample. In particular, we have selected CO2 Emissions
vs. Total Energy consumption in 2004. In this year,
China was the country releasing the most CO2 and also
the country using the most energy.
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Figure 15. Monotonic measure of the International Energy data: (a) All pairs of variables (b) All pairs containing CO2

Emissions (c) CO2 Emissions and Total Energy consumption.
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