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TimeSeer: Scagnostics for
High-Dimensional Time Series

Tuan Nhon Dang, Anushka Anand, and Leland Wilkinson

Abstract—We introduce a method (Scagnostic time series) and an application (TimeSeer) for organizing multivariate time series and
for guiding interactive exploration through high-dimensional data. The method is based on nine characterizations of the 2D distributions
of orthogonal pairwise projections on a set of points in multidimensional euclidean space. These characterizations include measures,
such as, density, skewness, shape, outliers, and texture. Working directly with these Scagnostic measures, we can locate anomalous
or interesting subseries for further analysis. Our application is designed to handle the types of doubly multivariate data series that are

often found in security, financial, social, and other sectors.

Index Terms—Scagnostics, scatterplot matrix, high-dimensional visual analytics, multiple time series

1 INTRODUCTION

UPPOSE we have data consisting of many time series over

many variables with many time points. Suppose,
further, that we want to identify unusual events at
individual time points across all the series. If there is only
one time series for each variable, the usual analytic
approach to this problem is to perform spectral modeling
of cross-covariance functions among the series. A visual
analytic analog of this approach is to plot pairs of series and
highlight noteworthy features in the pairs that appear to be
substantially related. We might see, for example, one series
showing average fines for auto speeding each week in a US
state and another series showing weekly auto accidents in
that state. If we see a rise in auto speeding fines preceding
by several weeks a reduction in accidents, we might
conclude (with appropriate ceteris-paribus qualification) that
a rise in fines may lead to a reduction in accidents.

This traditional approach will not work if there is more
than one time series for each variable (more than one state
in our example). An alternative, of course, would be to
examine all singletons or pairs of individual series for
patterns. This alternative does not scale. Assume we have ¢
time points, p variables, and n series which describe a
doubly multivariate data series. In this case, we have for
each pair of variables at each time point a 2D scatterplot of
n points. In our US economy example, we would have for
a single year’s data 52 time points (each week in a year),
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10 variables (one for each economic sector), and 50 series
(one for each state). In this rather small example (from our
perspective), we have 2,340 scatterplots with 50 points
each to examine. We will consider a much larger example
in this paper.

If we can solve the multitude-of-scatterplots problem, we
gain some important visual-analytic insights. By looking at
scatterplots instead of individual series, we can analyze
patterns that would not be evident in other types of
multivariate time series visualizations. Suppose, for in-
stance, that we have n individuals (including some
potential terrorists) interacting at ¢ time points through p
different channels (websites, text messages, cell conversa-
tions, etc.). Suppose, also, that we are interested in
recognizing time points where one or more subgroups of
these individuals begin to cluster together in a communica-
tion clique. With the right tools, we should be able to
identify scatterplots where these clusters are apparent.
Furthermore, we should be able to examine with these tools
other features, such as outliers or correlations, that char-
acterize conspiratorial interaction. Fig. 1 shows an example
where Timeseer examines the Outlying Scagnostic feature.
In particular, the scatterplots with lighter backgrounds are
high Outlying plots.

An important aspect of our proposal is that it is firmly
grounded in time series methodology. We are not simply
looking for unusual scatterplots in a large collection
of scatterplots. We are looking at time series of aspects of
scatterplots. For example, we can investigate a time series of
Clumpiness (cliques) or Outliers (rogues) or Monotonicity
(conspirators). We will see in our examples below that these
series have coherent behavior in real data that becomes
apparent and revealing when viewed with the right tools. It
is noted that multiple views, interactions and analytical
components are particularly useful in analyzing time-
oriented data [1]. Our system, TimeSeer, not only looks at
a data abstraction through aspects of the raw data but also
provides multiple views together with filtering, searching
and focusing interactions.

Published by the IEEE Computer Society
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Fig. 1. Visualization of US Employment data highlighting the Outlying Scagnostic feature.

This work is a natural extension of our work on
Scagnostics [48], an idea that allows us to characterize the
“shape” of scatterplots. In developing a working platform,
however, we discovered that we had to design custom tools
to deal with the challenges posed by massive time series
data sets. We found some clues in related work, but most of
what we have developed is, in our understanding, new.

Our contributions in this paper are as follow:

e We devise a framework for applying Scagnostics in
the context of time-varying data analysis. This
induces data reduction which allows for fast
identification of interesting features such as outliers
in high-dimensional data sets.

e We propose a dissimilarity measure for scatterplots
based on their Scagnostics.

e We design an interactive system for visually mining
doubly multivariate data series using multiple visual
metaphors in a novel combination.

The paper is structured as follows: we describe related work
in the following section. We describe an overview of our
interactive system, TimeSeer, in Section 3. Section 4
illustrates TimeSeer on real data sets. Finally, Section 5
draws conclusions and indicates future developments.

2 RELATED WORK

In reviewing related work, we must keep in mind that
some approaches that seem visually similar to ours are
fundamentally different and some approaches that seem
visually quite different nevertheless provided important
guidelines for our own development. We begin with our
work on Scagnostics.

2.1 Scagnostics

In the mid 1980s, John and Paul Tukey proposed an
exploratory graphical method called Scagnostics. The Tukeys
intended to characterize a collection of 2D scatterplots
through a small number of measures of the pattern of points
in these plots. These measures included the area of 2D
isolevel kernel density contours, the perimeter length of
these contours, a nonlinearity measure of association based

on principal curves [23], and other statistics. By using these
measures, the Tukeys aimed to detect anomalies in density,
shape, association, and other features.

We described Scagnostics in a plenary session at the 2003
InfoVis conference. Seo and Shneiderman followed our
general description by using ordinary parametric statistics
(mean, standard deviation, correlation coefficient, etc.)
instead of the kinds of nonparametric measures proposed
by the Tukeys [27]. Consequently, we decided to implement
the original Tukey idea through nine Scagnostics defined on
planar proximity graphs. We gave these measures ordinary
names (Outlying, Skewed, Clumpy, Sparse, Striated, Con-
vex, Skinny, Stringy, Monotonic) and presented a scalable
program for computing these new graph-theoretic mea-
sures [47]. Following this work, Fu [16] extended Scagnos-
tics to 3D and still others used analogs of the word to
describe feature-based descriptions for parallel coordinates
and pixel displays [14], [39].

Although the original motivation for Scagnostics was to
locate interesting scatterplots in a large scatterplot matrix,
we soon realized the idea had more general implications.
We have argued [48] that Scagnostics should be regarded as
a type of projection that enables us to examine features in
Scagnostics space and then make inferences about patterns
that would not be apparent in the raw data space. In other
words, Scagnostics space can serve as a basis for visual
analytics much as the complex plane does for spectral
analytics, although the Scagnostics projection is not in-
vertible. Our time series platform rests on this fundamental
principle.

We now outline the Scagnostic algorithm.

2.1.1 Binning

We begin by normalizing the data to the unit interval and
then use a 40 by 40 hexagonal grid [9] to aggregate the
points in each scatterplot. If there are more than 250
nonempty cells, we reduce the bin size by half and rebin.
We rebin until there are no more than 250 nonempty cells.
The choice of bin size is constrained by efficiency (too
many bins slow down calculations of the geometric
graphs) and sensitivity (too few bins obscure features in
the scatterplots).
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We compute all our measures on the binned points using
the counts in each bin as weights. The Scagnostics measures
depend on proximity graphs that are all subsets of the
Delaunay triangulation: the convex hull, the minimum
spanning tree (MST), and the alpha complex [15].

2.1.2 Deleting Outliers

Before computing the Scagnostics, we delete outliers to
improve robustness. We consider an outlier to be a vertex
whose adjacent edges in the MST all have a weight (length)
greater than Fj,,.,+, where

Enner+ =qr + 1-5((175 - q25)7 (1)

where g5 is the 75th percentile of the MST edge lengths and
the expression in the parentheses is the interquartile range of
the edge lengths.

2.1.3 Computing Scagnostic Measures

We now present the Scagnostic measures computed on our
three geometric graphs. In the formulas below, we use H for
the convex hull, A for the alpha hull, and 7" for the minimum
spanning tree. We are interested in assessing three aspects of
scattered points: density, shape, and association.

Density measures. The following measures detect
different aspects of point densities.

e Outlying. The Outlying Scagnostic measures the
proportion of the total edge length of the minimum
spanning tree accounted for by the total length of
edges adjacent to outlying points (as defined above).
We do this calculation before deleting outliers for the
other measures

Coutlying = length(ToutlieTS)/length(T)' (2)

e  Skewed. We use two other density measures based on
MST edge-lengths. The first is a relatively robust
measure of skewness in the distribution of edge
lengths of the MST

Uskew = (@90 — G50)/ (90 — qu0)- (3)

e Sparse. The second edge-length statistic, Sparse,
measures whether points in a 2D scatterplot are
confined to a lattice or a small number of locations
on the plane. This can happen, for example, when
tuples are produced by the product of categorical
variables. It can also happen when the number of
points is extremely small. We choose the 90th
percentile of the distribution of edge lengths in the
MST. This is the same value we use for the « statistic

Csparse = 490- (4)

o  Clumpy. An extremely skewed distribution of MST
edge lengths does not necessarily indicate clustering
of points. For this, we turn to another measure based
on the MST: the RUNT statistic [22]. The runt size of
a dendrogram node is the smaller of the number of
leaves of each of the two subtrees joined at that node.

Since there is an isomorphism between a single-
linkage dendrogram and the MST [19], we can
associate a runt size (r;) with each edge (e;) in the
MST, as described by Stuetzle [40]. The RUNT graph
(R;) corresponding to each edge is the smaller of the
two subsets of edges that are still connected to each
of the two vertices in e; after deleting edges in the
MST with lengths less than length(e;).

The RUNT-based measure responds to clusters
with small maximum intracluster distance relative to
the length of their nearest neighbor intercluster
distance. In the formula below, j runs over all edges
in T' and & runs over all edges in R;

Celumpy = mjax[l — m;xx[length(ek)}/length(ej)}. (5)

e  Striated. We define coherence in a set of points as the
presence of relatively smooth paths in the minimum
spanning tree. Smooth algebraic functions, time
series, and curves (e.g., spirals) fit this definition.
So do points arranged in flows or vector fields.
Another common example is the pattern of parallel
lines of points produced by the product of catego-
rical and continuous variables.

We use a measure based on the number of
adjacent edges in the MST whose cosine is less than
—0.75. Let V@ C V be the set of all vertices of
degree 2 in V and let I() be an indicator function.
Then

1
Cstriate = m Z I(COS 96(1),(1)6(7,‘,[]) < _075) (6)

veV ()

Shape measures. The shape of a set of scattered points is
our next consideration. We want to detect if a set of scattered
points on the plane appears to be connected, convex, and so
forth. Of course, scattered points are by definition not these
things, so we need additional machinery (based on geo-
metric graphs) to allow us to make such inferences. In
particular, we will measure aspects of the convex hull, the
alpha hull, and the minimum spanning tree.

e  Convex. Our convexity measure is based on the ratio
of the area of the alpha hull and the area of the
convex hull. This ratio will be 1 if the nonconvex hull
and the convex hull have identical areas

Ceonver = |area(A)/area(H)]. (7)

e  Skinny. The ratio of perimeter to area of a polygon
measures, roughly, how skinny it is. We use a
corrected and normalized ratio so that a circle yields
a value of 0, a square yields 0.12 and a skinny
polygon yields a value near one

Cskinny = 1 — \/4marea(A)/perimeter(A).  (8)

e Stringy. A stringy shape is a skinny shape with no
branches. We count vertices of degree 2 in the
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minimum spanning tree and compare them to the
overall number of vertices minus the number of
single-degree vertices

__ v
Cstringy = m . (9)

We cube the Stringy measure to adjust for negative skew
in its conditional distribution on n.

Association measure. We are interested in a symmetric
and relatively robust measure of association.

e Monotonic. We use the squared Spearman correlation
coefficient to assess monotonicity in a scatterplot.
We square the coefficient to accentuate the large
values and to remove the distinction between
negative and positive coefficients. We assume
investigators are most interested in strong relation-
ships, whether negative or positive

Cmonotonic = Tzspem‘man- (10)
This is the only coefficient not based on a subset of the
Delaunay graph.

2.2 Time Series Visualization

Visualizing time series has a long history in statistics and
geography [30], [17], [20], [6], [11]. Many of the best ideas
from centuries-old hand-drawn graphics have been incor-
porated in modern computer visualizations [4], [43], [44].
Noteworthy recent examples are Spiral Graph [46] and
Time Searcher [26].

2.2.1 Visualizing Multivariate Time Series

Some have developed viewers for multivariate time series.
Theme River [24] was one of the first; it employed kernel
smooths of time series, stacking them in a single display.
Theme River can be quite effective for displaying up to 20
time series simultaneously, but it is not as useful for
displaying raw series. Theme River trades detail for overall
impact. Because it smooths and stacks, the absolute levels of
the series are difficult to discern. Cleveland has discussed in
more detail the problems involved in stacking time series
[12] (see also [7]). Wattenberg [45] developed an applet
called Name Voyager that presents interactive stacked
graphs of raw series with exploratory widgets that allow
the manipulation and visualization of multiple series in a
single stacked display. With his tool, it is easy to drill-down
to an individual series to investigate details. Name Voyager
continues to be one of the more popular visualization sites
on the Web, perhaps because it is so engaging and easy to
use. Other recent multivariate time series viewers include

(3], [41], [25], [34], [28], [5]-

2.2.2 Time Series Pattern Search

Long time series cannot be visualized on ordinary or mega-
pixel displays. There are not enough pixels to represent
each time point in these series. The problem is especially
acute in live feeds or streaming data sources because the
feeds are effectively infinite [36]. A common remedy is to
pan and zoom into “interesting” segments of the series with
lensing or other widgets. How do we identify “interesting”

segments, however? One popular method is to search for
motifs or anomalous patterns in time series using statistical
and data mining algorithms [33], [8], [10], [35], [29]. Time
Searcher [26] contains widgets that could be effective when
paired with these algorithms. Superimposing similar sub-
series can facilitate within-series comparisons.

2.2.3 Aggregation

One way to deal with multivariate series is to aggregate
across similar series. If series are already categorized (within
states, countries, economic sectors, hospital patients, etc.),
then averaging the series is a possibility. Otherwise, one
must use cluster analysis to identify clusters of similar series
[37], [42], [21]. Aggregation risks concealment of important
features, however. One must be sensitive to outlying series
and other anomalies that can bias the aggregation.

3 TIMESEER

TimeSeer is a platform for visualizing Scagnostic time
series. As we indicated before, our model is fundamentally
different from other time series visualizations. It is based
on the recognition that synchronized multivariate time
series have multivariate point distributions at each time
point. Our data model is a multivariate generalization of
the series models employed in the papers we have
reviewed. We have ¢ time points and p variables, resulting
in p-multivariate time series. For each variable, however,
we have n series, resulting in a doubly multivariate
distribution. We have found no visual analytic platform
capable of handling this model.

Typical data for this model are: ¢ months, p economic
indicators, and n countries; ¢ minutes, p vital signs, and n
patients; ¢ trading days, p stock indices, and n markets
(exchanges); t seconds, p network protocols, and n nodes. A
significant challenge for visual analytics on data like these is
scalability. We normally expect ¢, p, and n to be large. It is
not uncommon to find the product of these parameters to be
in the tens of thousands. Visualizing them with conven-
tional tools is out of the question.

We will illustrate the features of TimeSeer mainly
through examples. In this section, however, we will
describe the overall architecture of the system. As we have
indicated, our solution to the overall problem is to regard
simultaneous time points in this multivariate system as
collections of point sets. Characterizing those point sets will
allow us to discern patterns that we could not see with
conventional time series analytics or statistics. Our system
leverages juxtaposition and explicit encoding of relation-
ships in data (through the Scagnostics) as visual comparison
strategies [18].

The most obvious benefit of our parameterization is to
reduce n to 1. That is, if we can characterize a scatterplot
with a single measure (monotonicity, clumpiness, etc.), then
we can use methods designed for ordinary multivariate
time series. The tradeoff here is, of course, that we might
lose detail at a given time point. Our remedy for that
tradeoff is to devise a display that incorporates a pixel-scale
scatterplot at each time point. An additional way we
ameliorate this problem is to provide selection tools to
switch easily between different Scagnostics. Our display
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Non lensing
Table lens / \

Our lensing

Fig. 2. DOI function maps from cell address to interest level.

changes almost instantly when a different Scagnostic is
selected for analysis. This feature allows an analyst to focus
on a particular aspect of scatterplots without excluding
other possibilities.

We confine our model at this point to 2D scatterplots.
There is nothing preventing us from computing most
Scagnostics in higher dimensions, but display issues come
into play as the dimensionality increases. We believe that
analysts are more familiar with 2D scatterplots than with
more exotic displays, but that is a belief that requires testing
in the future.

3.1 The TimeSeer GUI

The TimeSeer GUI incorporates two major systems: Vari-
able Selection SPLOM and Time Series Viewer. The first
enables the analyst to select Scagnostics and then variables.
We employ a scatterplot matrix and a novel lensing tool to
navigate through the matrix and select cells. The selections
made in the SPLOM system direct the visualization in the
Time Series Viewer. Fig. 5 shows instances of this tool. The
top panel shows an implementation of Table Lens [38], in
which a row/column is enlarged and the remaining rows/
columns are reduced. The lower two panels show our
implementation, which involves a smooth lens so that
distant rows/columns are reduced proportionally.

Fig. 2 depicts the basic difference between Table Lens
and our lensing method. In Table Lens, the Degree Of
Interest (DOI) of rows/columns outside the lensing area is
uniformly small. In our lensing method, we implement a
smooth transition in DOI proportional to the distance of a
frame to the lensing frame. This lensing technique is similar
to Cartesian Fisheye View [31].

The following algorithm shows how we extend Table
Lens to achieve smooth lensing. For simplicity, we will
explain the algorithm in one dimension, say X-axis, and one
side of lensing area, say on the right of lensing area. The 2D
smooth lensing can be achieved by applying the same
algorithm for both sides and both dimensions.

1. As with Table Lens, we increase the width of the
lensed column W,,,,. Let k be the number of
columns to the right of the lensed column, the
widths of these columns are reduced to W = W5 =

T = Wk - Wsmall'

2. Now we compute a lensing factor s= (W —
Wiin)/((k — 1)/2) where W,,q; is the smallest width
(of the farthest column) that we want to lens.

3. The width of columns are recomputed by W; =
Wi+ s((k+1)/2—4) fori=1,...,k

Fig. 3 shows an example of our lensing method on X-axis

where W0 = 98, Wona = 34, Wi =10, k=7, and s = 8.
All widths are in pixels.

Non lensing 38 38 38 38 38 38 38

T

Table Lens 34 34 34 34 34 34 34

i AR

Our lensing 34 26 1810

*Ilmll-_-lllll

mﬂJC Wi W Wi Wi Ws WsWain

Fig. 3. Horizontal lensing.

After we have selected pairs in the SPLOM system, we
go to the Time Series Viewer where time series in selected
cells are expanded in a full window as depicted in Fig. 7.
This main window contains multiple Scagnostic series at
the bottom and scatterplots at each timepoint. A variety of
pan-and-zoom tools facilitate smooth navigation through-
out this window. As depicted in Figs. 7b and 7c, the same
smooth lensing technique is applied on the X-axis.

Simple buttons offer alternate views and filtering. The
Time Series Viewer is discussed in greater details in
Section 4.3.

We could elaborate on details in this section, but it is
easier to understand the workings of this rather large
application by looking at real data examples. We will
explain technical details as we cover various capabilities of
the program.

4 EXAMPLES

In this section, we use two different data sets to
demonstrate the performance of TimeSeer. The first is a
series of US Employment data and the second is a series of
US Weather data. The US Employment data comprise
monthly employment statistics for 50 states over 22 years
from 1990 to 2011. The data were retrieved from http://
www.bls.gov/. There are 25 variables in the collected data:
Total Nonfarm, Construction, Manufacturing, Non-Durable
Goods, Trade, and Transportation, Wholesale Trade, Retail
Trade, Transportation, and Utilities, Financial Activities,
Real Estate and Leasing, Professional and Business,
Scientific and Technical, Administrative and Support,
Education and Health, Educational Services, Social Assis-
tance, Leisure and Hospitality, Arts and Entertainment,
Accommodation and Food, Other Services, Government,
Federal Government, State Government, Local Govern-
ment, and State Employment. For these data, we have
78,600 scatterplots with 50 data points each to examine.
The Weather data comprise hourly meteorological mea-
surements over a year from the Gulf of Maine in 2008. There
are 17 variables represented in the data set: current speed,
current direction, temperature, East Current Velocity, North
Current Velocity , significant wave height, dominant wave
period, air temperature, wind speed, wind gust, wind
direction, visibility, barometric pressure, water temperature,
salinity, sigma-T, and conductivity. Data and variable
descriptions can be found at http://gyre.umeoce.maine.
edu/buoyhome.php. For these data, we have 50,000 scatter-
plots with 24 data points (24 hours in a day) each to examine.
We begin with the US Employment data.
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4.1 Variable Selection SPLOM

With p variables, there are p(p — 1)/2 pairs of variables. To
do our analysis, we need to: 1) select the Scagnostic of
interest: Outlying, Monotonic, Stringy, Skinny, Sparse,
Striated, Convex, Clumpy, Skewed, 2) select a criterion to
order variables in SPLOM: mean or variance of the
Scagnostic series, and 3) select a subset of the scatterplots,
either by picking individual frames in the scatterplot matrix
or by picking all frames corresponding to a single variable.

The mean and variance of a Scagnostic time series
(a pair of variables) is computed by averaging that
Scagnostic measure over time series as shown in (11) and
(12) where T is the number of data points in time series, p
and ¢ are two variables

T
i—1 X
Mean(p, q) = L;} :

(11)
ST (X; — Mean(p, q))?
- .

The Scagnostic mean and variance of a variable p is
computed by averaging all pairs of variables containing p
as an element as shown in (13) and (14) where V is the
number of variables. The mean or variance of variables
(depending on which one we have selected) is used to
order variables in SPLOM

v
Zq:l,q#p Mean(p, q)
V )

Variance(p, q) = (12)

Mean(p) =

(13)

ZZqu#p Variance(p, q)
v .

We offer both mean and variance for ordering Scagnos-
tics series because each captures a different aspect of the
Scagnostic process that might interest an analyst. The mean
selection offers the opportunity to pick series with
extremely high or low series means on a Scagnostic. The
variance selection ranks by variability, so that single peaks
and valleys in the Scagnostic time series will be more
discernable in the main time series window.

Fig. 4a shows the scatterplot matrix for 25 variables in the
US Employment data. We have selected the Outlying
measure and sorted the variables by their means. In
particular, each plot (each pair of variables) is colored by
its mean of the selected Scagnostic time series; the
embedded small graph shows a thumbnail of the actual
Scagnostic time series. On the top of Fig. 4a is the color
legend for the mean of Outlying Scagnostic time series. We
use a Kelvin color temperature scale [32] to encode the range
of all possible Outlying mean values with red correspond-
ing to high values of means and green corresponding to low
values of means. This range (always within the 0 and 1
interval) is different when we select a different Scagnostic
feature. TimeSeer sorts the variables so that low Outlying
series are at the bottom and high Outlying series are at the
top. Notice that we also color variable names to differentiate
and group them by categories and subcategories.

Single plot selection is depicted in Fig. 4a. This mode is
invoked by clicking on any of the panes in the scatterplot

Variance(p) = (14)

Mean Outlying over 262 months

®)

Fig. 4. Plot selection in scatterplot matrix of 25 sorted variables in the US
Employment data.

matrix. This selection mode allows the analyst to investigate
specific Scagnostic series that show interesting patterns of
behavior among the two featured variables. Single variable
selection mode is depicted in Fig. 4b This mode is invoked
by clicking on the angled variable names to the right of the
scatterplot matrix diagonal. The figure shows Total Non-
farm selected. Black rectangles are used to denote selected
plots. This selection mode allows the analyst to examine all
variables paired with a specific variable of interest.

4.2 Lensing

For many more variables, the Scagnostic time series will be
difficult to discern inside the scatterplot matrix. Conse-
quently, we added zooming and lensing to the matrix. If
one hovers over a plot the graph inside is enlarged. There
are two types of lensing. Fig. 5a shows an implementation
of Table Lens; Figs. 5b and 5c show smooth lensing on the
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Fig. 5. Lensing in scatterplot matrix of 25 sorted variables in the US
Employment data.

top and in the corner. Unlike the standard implementation
of Table Lens, our smooth lensing offers a smooth transition
when we move the mouse over different plots. Therefore, it
is easier to keep track of the whole context (SPLOM) and the
focused area.

After a user has selected variables from the scatterplot,
all pairwise combinations are displayed in the controller
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Retail Trade
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Fig. 6. Pairwise variable selection: eight pairs of variables.

window, as depicted in Fig. 6 (eight pairs of variables are
selected). Nine other Scagnostic measures on each pair of
variables are presented on the same row as the selected pair
but they are faded. Each plot is colored by the mean of that
feature over a year. Additionally, all pairs are reordered by
the selected criterion: the mean of the selected Outlying
feature. In Fig. 6, the third pair is brushed, and other
features of the third pair are highlighted. We can keep track
the position of the brushing pair in the scatterplot matrix by
highlighting the graph inside this selection display. Both
views are linked. Moreover, variable names are colored in
the same as they appear in SPLOM. This helps in locating
variables in both views.

4.3 Time Series Viewer

After we have selected pairs, we go to the Time Series
Viewer. There are several ways to visualize multiple time
series: small multiples or multiples superimposed with or
without lensing. Fig. 7 is an example. The series are built
from ones we selected in the controller based on the US
Employment data. We selected Monotonic as the Scagnostic
for this example, and we chose nine pairs of variables
sorted by their means. Notice the slanted orientation of the
second variable in each pair. This device helps the viewer to
understand which variable is on the X-axis and which
variable is on the Y-axis.

Fig. 7a shows nine small multiples corresponding to nine
pairs. The lensing in the Y-dimension is applied to the first
three series, colored red, green, and blue, respectively;
the other pairs are colored gray and greatly reduced in size.
We also employ a gradient on the lensed series to make the
profiles more discernible and to coordinate highlighting
with the scatterplots at the top of the window. The larger
the series value, the lighter the coloring (like snow on
mountains). This use of brightness also facilitates the
highlighting of the scatterplots at the top. Each scatterplot
corresponds to the appropriate colored Scagnostic series
directly below it, and is highlighted with the same bright-
ness as the point on the series.

We can change the number of pairs in the lensing area or
replace them by other pairs in the nonlensing area by a
simple click and drag. Moreover, we can resize the Y-
dimension of a Scagnostic time series (both lensing and non
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Fig. 7. Visualization of US Employment data. (a) Small multiples overview with lensing on Y-dimension. (b) Small multiples with lensing on both X-
and Y-dimension. (c) Line graphs superimposed by plots with lensing on both X- and Y-dimension.

lensing area) by a simple mouse scroll. This helps to
accommodate different numbers of Scagnostic time series
into the fixed height of application window, as users can
always go back to the SPLOM to select different pairs of
variables.

For the arrangement we have selected, we notice that the
Monotonic Scagnostic shows a distinct seasonal pattern

with an annual cycle. This is consistent with what we would
expect for variables related to farming.

In the US employment data, there are 262 data points on
each Scagnostic time series. As we can see in Fig. 7a,
however, the data point are crowded enough so that we
cannot read any details in a season. The common solution in
this case is displaying a selected season or interval. One
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Fig. 8. Details on demand. (a) Overview. (b) Lensing in interested area.
(c) Filtering: Outlying > 0.7. (d) Requested actual data plots of the first
outlier (Louisiana). (e) Requested actual data plots of the second outlier
(Mississippi).

limitation of this method is that when we select a season or
interval, we lost the overall context of the time series. As a
remedy, we chose to implement smooth lensing for the X-
dimension. When we lens a season, we still can see what is
going on in the other seasons throughout the entire time
series. We can simply move the mouse to enlarge a different
season. Moreover, smooth lensing allows continuous
transition as we move the mouse.

Fig. 7b shows a lens applied to the Scagnostic series.
Vertical lensing is applied to three first pairs of variables
and horizontal lensing are applied to two seasons (high-
lighted in Box A). The lensing works over the series as well
as the scatterplots, so we are able to investigate individual
scatterplots to see the configuration of points that led to the
value of the Scagnostic shown in the series.

Fig. 7c shows an alternate view of the same series. This
view superimposes scatterplots on line graphs of the

Scagnostics series. Such an arrangement allows investiga-
tion of individual scatterplots without anchoring or
reference to a row of scatterplots elsewhere in the window.
We believe this layout is useful once interesting segments
are found in the series. In any case, toggling between views
can be done in an instant.

4.4 Filtering, Brushing, and Drill-Down

Information visualization systems should allow one to
perform analysis tasks that largely capture people’s
activities while employing information visualization tools
for understanding data [2]. In the rest of this section, we
describe four basic analysis tasks implemented in TimeSeer:
filtering, brushing, drill-down, and searching.

4.4.1 Filtering

We employ a gradient on the Scagnostic series and the
scatterplots at the top to help users locate scatterplots with
high Scagnostic values. However, it is not possible for users
to filter only scatterplots with selected Scagnostic values in
a specific interval (for example, with Monotonicity from 0.6
to 0.8). The range sliders on the left of each Scagnostic time
series allow users to do that. Fig. 8c shows an example of
filters applied to the Outlying series for the three pairs in
the lensing area. We are looking for outliers. When the user
moves a range slider, a number is displayed to show the
current value on the range slider. The filtered parts of time
series are faded. In the pairwise view area, the filtered
distributions are faded so viewers can focus on data
distributions with high numbers of outliers.

4.4.2 Brushing

Looking at an interesting distribution, we may want to
check out the data point for further details. For example, we
may want to see which state is the outlier in an Outlying
distribution. Or, we may ask where is New York in the
overall picture for 2001. Or, we may want to compare
Illinois and California in 2011. We implement a brushing
tool allowing users to do these things. Fig. 8d illustrates the
use of a brush. When we brush a state (a data point in a
scatterplot), the state name is displayed in a tool tip, the
same state is highlighted in other plots and a line appears
connecting adjacent plots. This reveals, in effect, a spatial-
temporal series. We can see the changes in the orientation of
the state in scatterplots over time. This kind of detail view
provides information that cannot be discerned in the
original raw time series.

4.4.3 Drill-Down

Fig. 8 shows an additional view invoked by a simple user
action. The Scagnostic is Outlying, and the pairs of
variables selected involve State Employment against
{Accommodation and Food, Leisure and Hospitality,
Education and Health, Construction, Retail Trade, and
Trade and Transportation].

In Fig. 8a, we see a peak in several Scagnostic series. This
suggests a time point in 2005 (highlighted in Box A) in
which we would expect to see outliers in the relevant
scatterplots. We lens this region in Fig. 8b. We see that a
period in the Fall has an unusually high peak. This is the
precise point where we expect to find an outlier. In Fig. 8c,
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Fig. 9. US Employment data, searching for distributions which are
similar to State Employment against Accommodation and Food in
September of 2005.

filtering out low outlying plots allows us to focus on
outliers. We now can see clearly the high outlying plots in
all selected time series in September of 2005.

We get our details on demand, as shown in Fig. 8d, by
clicking on the red scatterplots. Subsequently, the raw series
of State Employment and Accommodation and Food (which
are the l-month net change in employment rate) are
displayed in the lower graph on two separated scales (in
cyan and pink). By brushing the outlier in the scatterplot of
September of 2005, we see the actual line graph for that
brushed state in yellow. In this case, the outlier is Louisiana.
Hurricane Katrina wreaked havoc on their employment and
productivity figures (note the sudden drop in Louisiana
employment rate and many industries). Notice that
Louisiana is also the outlier in the scatterplot of December
of 2005, even as it recovered.

In Fig. 8e, we brush another outlier of State Employment
and Accommodation and Food scatterplot which is
Mississippi. Similarly, Mississippi is also an outlier in the
scatterplot of December of 2005. However, Mississippi
situation is different (Mississippi got another even more
serious drop in Accommodation and Food in December of
2005). We can obtain that information by only looking at
the scatterplots. Further details can be found in raw data
time series.

4.5 Searching for Similar Patterns or Interesting
Distributions

Upon finding an interesting distribution, one may want to
look for similar ones. For example, one may wonder if there
is another month having a similar distribution to the
Katrina example in State Employment versus Accommoda-
tion and Food in September of 2005. Other may want to see
if other pairs of variables have similar distributions to the
Katrina example in State Employment versus Accommoda-
tion and Food in September of 2005.

TimeSeer offers several methods for discovering similar
patterns in the Scagnostic series. The dissimilarity of two
scatterplot (S and P) is computed by the following
equation:

Dissimilarity(S, P) = (15)

where S and P are two arrays of nine Scagnostics of the two
scatterplots.

Fig. 10. Weather data, searching for distributions which are similar to
barometric pressure and air temperature on day 273.

4.5.1 Automatic Search for Similar Distributions

In Fig. 9, we show the result from the user selecting a plot
from the main screen and requesting a search. TimeSeer
searches and plots the top five most similar scatterplots, as
characterized by the selected Scagnostic (outlying in this
case). In this example, taken from the US employment data,
we have selected a plot with a high outlier on State
Employment against Accommodation and Food in Septem-
ber of 2005. In the lower panel, the first plot on the left is the
plot we selected, highlighted by a yellow rectangle. The five
most similar plots are ordered over the nine Scagnostics (the
smaller the index, the more similar). Again, the background
of a plot is colored by the time series containing that plot;
saturation encodes the value of interested feature (the
brighter the shade, the more salient the Scagnostic).

We also can see the time (on the top of each plot) for
when the data distributions happen to be similar. The
Scagnostics of the selected plot and top five plots are also
grouped and ordered appropriately. From Fig. 9, we note
that it is interesting that Louisiana and Mississippi are
outliers in all six plots. Additionally, four out of five similar
plots are in the same month (September of 2005). This tells
us that Hurricane Katrina affected Louisiana employment
in the selected economy sectors.

The last similar plot is another month which has similar
Scagnostics as State Employment against Accommodation
and Food in September of 2005. However, the situation in
December of 2005 is different. While Louisiana had
recovered in both Employment Rate and Accommodation
and Food, Mississippi was still struggling.

Fig. 10 shows a similar result for the Weather data. We
have selected a plot with a high Stringy and Skinny
Scagnostic value on barometric pressure versus air tem-
perature and searched for similar distributions in the same
time series. This is a rather fascinating example of an
unusual relation between variables that would not be
evident in summary statistics such as the Pearson correla-
tion. It is well known that air temperature and barometric
pressure are related, but these plots make clear that it is not
a simple functional relationship. By searching for Stringy
Scagnostics, we see that this dynamic relationship between
barometric pressure and air temperature has little error (the
strings/paths are quite smooth) but is highly nonlinear
(they wind around instead of following a straight line).
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Fig. 11. US Employment data, searching for distributions which are similar to State Employment against Accommodation and Food in September of

2005. (a) Dissimilarity index for all selected pairs. (b) Filter applied: dis

4.5.2 Manual Search for Similar Distributions

We have devised an annotation that allows a user to search
for similar plots manually. The user selects a plot from the
main screen and TimeSeer computes the Scagnostic
dissimilarity of each plot compared to the selected plot. It
then displays this dissimilarity underneath the series.
Fig. 11a shows an example. We have selected an Outlying

similarity <0.5.

Scagnostic. We also selected the scatterplot in State
Employment against Accommodation and Food in Septem-
ber of 2005. The similarity at each time point compared to
the selected scatterplot is presented by the saturation (in
purple) of the bar under it; the higher the saturation, the
more similar the scatterplots. The slider at the bottom is
used to filter similarity. Above this slider is the dot
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Fig. 12. Weather data, searching for distributions which are similar to temperature versus salinity on day 64. (a) Dissimilarity index for all selected

pairs. (b) Filter applied: dissimilarity <0.5.

histogram showing the similarity distribution of all plots in
the 6 selected time series colored accordingly. Notably, as
we have selected a high outlying plot, the brighter plots
tend to appear in the front of the slider and vice versa.
The user can filter these plots to see only the most similar
ones. Fig. 11b shows an example. All plots with a
dissimilarity greater than 0.5 have been filtered (by using

the slider). The user can brush on the remaining dissim-
ilarity purple bars or on the dot histogram to check the
dissimilarity. When the mouse is over a purple bar or a plot
in the dot histogram, a small window appears right below
the purple bar. On this window, a new scatterplot and its
Scagnostics is plotted next to the selected plot. In the
example in Fig. 11b, we can see that the distribution of State
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Employment against Education and Health in September of
2005 (and its Scagnostic histogram) is similar to the
distribution of State Employment against Accommodation
and Food (and its Scagnostic histogram) in the same time.

Fig. 12 shows a similar result for the Weather data. We
have selected a plot with a high Striated and Skinny
Scagnostic value on temperature versus salinity on day 64
and searched for similar distributions in the selected time
series.

We should note that the time for searching similar
distribution does not depend on the number of data points.
The time for comparing two scatterplots is O(1) compared
to O(n) because we are searching on nine Scagnostics, not
on individual points. Therefore, the time to search for
distributions similar to one in a selected plot is O(t x p?)
instead of O(t * p* x n)

In a real-time application with a huge time series
involving multiple variables, and many data points at each
time point, we can cache Scagnostics at each time point.
When we need to find plots having a distribution similar to
a target plot, we can exploit our cache. The time saved in
this approach is considerable.

5 CONCLUSIONS

TimeSeer is a visual analytic tool for analyzing a doubly
multivariate time series. It highlights the strength of visual
analytics itself because statistical modeling of this type of
series is problematic. There are no off-the-shelf algorithms
for dealing with the doubly multivariate time series design,
even in advanced statistical packages like SAS or R and
even in existing visual analytics platforms.

It should be clear that TimeSeer is not a simple
application designed for nontechnical users. To leverage
its capabilities, a user needs to become familiar with
scatterplots, scatterplot matrices, Scagnostics, and multi-
variate time series. Consequently, we have focused on
giving this relatively sophisticated class of analysts a set of
tools that enables searches for structure in very high
dimensional time series spaces. There are surely ways these
tools can be improved, and a study of user interactions can
help with this task. Nevertheless, our first challenge has
been to devise an interactive platform that can handle huge
multivariate collections like the BLS and weather data sets
without running out of memory, time, or screen resolution.

One might wonder whether data fitting in this model are
rare and whether the model itself is esoteric. We believe the
opposite is true. We have cited examples in economics,
security, medicine, and other fields that indicate how
prevalent these types of data are. An exploratory tool that
provides an integrated analytic environment for these types
of series can make it possible for the first time to examine
real-world data sets that arise from massive data collection
systems and sensor networks. The use of Scagnostics also
provides an ordinary-language descriptor for distinctive
patterns in time series. We see the power of this descriptive
language when we compare the plots in Figs. 9 and 10. It is
appropriate and obvious to characterize the first as Out-
lying and the second as Stringy.

TimeSeer is sensitive to how data is normalized. We
normalize each variable independently to have the range 0

to 1. Variables that change the same amount in the
normalized scale even with vastly different relative values,
produce scatterplots that appear similar and Scagnostics do
not help detect these changes especially if the changes in
absolute values are small.

The enormous compression we achieve by collapsing n
to 1 through the use of Scagnostics provides TimeSeer with
the scalability to handle huge data sets. Subcomponents of
the system can deal with thumbnails rather than multiple
raw series.

Finally, we plan to investigate the use of TimeSeer on
large security databases to assess the gains we claim for its
performance. In addition, we expect to investigate how
TimeSeer can be extended to spatial data. Time and space
have similar statistical issues when modeling [13], so
extending time series analytics to spatial analytics makes
sense.
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