
TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

19

Substantial Improvements in the Set-Covering Projection Classifier
CHIRP (Composite Hypercubes on Iterated Random Projections)

LELAND WILKINSON, ANUSHKA ANAND, and TUAN NHON DANG, University of Illinois at
Chicago

In Wilkinson et al. [2011] we introduced a new set-covering random projection classifier that achieved
average error lower than that of other classifiers in the Weka platform. This classifier was based on an
L∞ norm distance function and exploited an iterative sequence of three stages (projecting, binning, and
covering) to deal with the curse of dimensionality, computational complexity, and nonlinear separability. We
now present substantial changes that improve robustness and reduce training and testing time by almost
an order of magnitude without jeopardizing CHIRP’s outstanding error performance.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Data mining

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Supervised classification, random projections

ACM Reference Format:
Wilkinson, L., Anand, A., and Dang, T. N. 2012. Substantial improvements in the set-covering projection
classifier CHIRP (composite hypercubes on iterated random projections. ACM Trans. Knowl. Discov. Data.
6, 4, Article 19 (November 2012), 18 pages.
DOI = 10.1145/2382577.2382583 http://doi.acm.org/10.1145/2382577.2382583

1. INTRODUCTION

This article reviews the design of the CHIRP classifier introduced in Wilkinson et al.
[2011] and presents important revisions and extensions of the CHIRP algorithm that
substantially improve its performance. CHIRP was designed to address the curse of
dimensionality and exponential complexity by using projection, binning, and covering
in a sequential framework. For class-labeled points in high-dimensional space, CHIRP
employs computationally efficient methods to construct 2D projections and sets of
rectangular regions on those projections that contain points from only one class. CHIRP
organizes these collections of projections and regions into a decision list for scoring
new data points. The scoring model is based on sets of rectangles, called Composite
Hypercube Description Regions.

1.1. Composite Hypercube Description Regions (CHDRs)

While the union of open spherical balls is used to define a basis for the L2 Euclidean
metric topology, we can alternatively use balls based on other Lp metrics. For CHIRP,
we employ the L∞ or sup metric

||x||∞ = sup(|x1|, |x2|, . . . |xn|)

This work is supported by NSF/DHS grant DMS-FODAVA-0808860.
Authors’ addresses: L. Wilkinson, A. Anand, and T. N. Dang, Department of Computer Science, University
of Illinois at Chicage, 700 S. Halsted St. no. 2029, Chicago, IL 60607.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1556-4681/2012/11-ART19 $15.00

DOI 10.1145/2382577.2382583 http://doi.acm.org/10.1145/2382577.2382583

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

19:2 L. Wilkinson et al.

Fig. 1. A CHDR covering class instances at the periphery of a projected random spherical distribution. Data
are the Orange10 dataset from Hastie et al. [2001]. The data have been binned into a 24 × 24 grid with the
size of each dot proportional to the count of instances in each bin. Yellow is used to represent the currently
selected class; gray represents all other classes. All-yellow dots represent bins containing only current class
instances. All-gray dots represent bins containing only other-class instances. Gray dots with yellow centers
and yellow dots with gray centers represent mixed-class bins. The CHDR (a union of rectangles) is colored
blue; it covers bins such that the odds of covering current class instances versus all other instances are
maximized.

when we search for neighbors. In this search, we are looking for all neighbors of a point
at the center of a hypercube of fixed size in a vector space. Because we are concerned
with finite-dimensional vector spaces in practice, we will use max() instead of sup()
from now on.

Definition 1.1. A Hypercube Description Region (HDR) is the set of points less than
a fixed distance from a single point (called the center) using the L∞ norm. A weighted
hypercube description region is an HDR that uses the positively weighted L∞ norm.

||x||∞ = max(w1|x1|, w2|x2|, . . . wn|xn|)

We will assume the term HDR refers to this more general case. Our use of weights
implies that different points in a high-dimensional space can have different weights
defining their hypercubes.

Definition 1.2. A Composite Hypercube Description Region (CHDR) is the set of
points inside the union of zero or more hypercube description regions.

The CHDR is the structure we use to define a region containing points belonging to a
single class or to no class. CHDRs are defined for any number of dimensions in a finite-
dimensional vector space. For scalability, we have limited them to two dimensions. The
original motivation for working with CHDRs was a visual classifier [Anand et al. 2009]
that generated a number of 2D projections and presented them sequentially to users
in displays like Figure 1. The subjects constructed CHDRs by drawing rectangular
regions around yellow dots on the display. This crude classifier worked surprisingly
well. Following those promising results, we subsequently removed humans from the
loop and we now grow CHDRs using an iterated covering algorithm. Figure 1 shows
an example of a CHDR covering a 2D projection of the Orange10 dataset used in our
tests later in this article. The CHDR represented by the blue region of the figure is a
composition of rectangles extending out to the edges of the frame.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

Substantial Improvements in the Set-Covering Projection Classifier CHIRP 19:3

1.2. CHIRP Constructs a List of CHDRs

Each CHDR constructed by CHIRP is based on a different random 2D projection. The
algorithm is a one-against-all classifier [Dietterich and Bakiri 1995]. For each class Ck
in a training set, we: (a) compute a 2D projection, (b) bin the projected data values in
a 2D rectangular segmentation, and (c) cover bins containing mostly instances of Ck
with a CHDR. We iterate over classes until we are unable to find bins pure enough to
classify remaining instances in the training set.

The result of this process is a list of CHDRs that can be used to score new data points.
A point is assigned to the first CHDR in the list that contains it. If no CHDR contains
the point, it is assigned to the closest CHDR in the list using smallest point-to-rectangle
L∞ distance.

CHIRP is an ensemble classifier. We run it mtimes and score a testing instance based
on simple-majority, equally weighted vote. In this article, we use m = 7. Increasing m
improves accuracy, but with diminishing gains.

Although CHIRP employs some well-known ideas, the combination of them described
in this article results in a classifier that is novel and coherent. We will first discuss
related work, then present the algorithm, and finally present performance comparisons
between CHIRP and competitors. We will argue, in conclusion, that the success of
CHIRP is due to the statistical properties of its components and the way they are
combined.

2. RELATED WORK

Perhaps the most widespread use of rectangular description regions is in recursive
partitioning trees [Breiman et al. 1984; Quinlan 1993]. These methods partition a
space into nested rectangular regions that are relatively homogeneous over the values
of a predicted variable. Our approach differs from these models, however, because
it is not restricted to a partitioning. Our description regions need not be disjoint or
exhaustive.

Several teams have developed projection pursuit classifiers [Lee et al. 2005; Flick
et al. 1990; Jimenez and Landgrebe 1995]. These efforts exploit the flexibility of affine
projections but have failed to ameliorate the computational complexity of projection
pursuit.

Researchers have used hyperboxes for classification through neural networks
[Simpson 1992], mixed integer programming [Üney and Türkay 2006], set covering
[Marchand and Shawe-Taylor 2002], and decision lists [Sokolova et al. 2003; Aguilar
et al. 1998]. These approaches can be slow to converge on larger datasets. Most
importantly, the hyperbox researchers restrict their method to 2D axis-parallel (pairs
of features) projections, so their utility is limited.

Finally, various researchers have used compositions of rectangles (unions and prod-
ucts) to characterize the results of unsupervised classification [Alpern and Carter 1991;
Agrawal et al. 1998; Bu et al. 2005; Gao 2002; Gao and Ester 2006; Pu and Mendelzon
2005]. The primary focus of these researchers has been to develop rapid scoring meth-
ods that can be implemented inside a database through the use of rectangles. We will
discuss some of this work in more detail as we describe the CHIRP algorithm in the
next sections.

3. CHIRP TRAINING

The CHIRP training algorithm consists of three stages: projecting, binning, and cov-
ering. We will describe these stages in detail in this section. First, however, we will
summarize preliminary data processing steps similar to those employed in other clas-
sifiers.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

19:4 L. Wilkinson et al.

Kurtosis Transform

0.0 0.2 0.4 0.6 0.8 1.0
y

0.0

0.2

0.4

0.6

0.8

1.0

y*

Skewness Transform

0.0 0.2 0.4 0.6 0.8 1.0
y

0.0

0.2

0.4

0.6

0.8

1.0

y*

Fig. 2. Kurtosis and skewness transforms.

3.1. Preliminary Normalizing and Transforming

We begin by reading n rows and p columns of a training dataset X. We code numerical
values as double precision numbers and string values as integers. We assume numer-
ical values are derived from continuous variables and string values from categorical
variables, although numerals can be treated as strings if so designated. We use the
terms feature and variable interchangeably to mean a mapping of a set of objects to a
set of values.

We normalize the data by rescaling each variable (feature) to the open unit interval.
Then we recode extremely skewed variables with a nonlinear transformation. In the
KDD article, we used a folded square root transformation. Our decision on whether
to apply this transformation to a given variable was based on computing conventional
standardized skewness and kurtosis of that variable’s values and testing those statis-
tics against a False Discovery Rate criterion. This approach was time consuming and
sensitive to outliers. In addition, the transformation itself was relatively ad hoc.

We now base our decision to transform on robust measures of skewness and kurto-
sis called L-skewness and L-kurtosis [Hosking 1990]. L-moments are based on order
statistics and are robust against outliers and generalize to a larger family of distri-
butions than do ordinary power-moments. In addition, computing L-moments requires
only a sort plus a pass through half the values.

A second important modification of our original transformation strategy is the sep-
aration of transforms to alleviate skewness and kurtosis. If the absolute value of L-
skewness exceeds .2, we apply the transformation.

y∗ = log(y/(1 − y))/20

Otherwise, if L-kurtosis exceeds .2 (a peaked or leptokurtic distribution), we apply
the transformation.

y∗ = 1/(1 + exp(−6y + 3))

Figure 2 shows these two transforms. Our skewness transform resembles the well-
known logit function. Our kurtosis transform resembles the familiar logistic sigmoid
function. The point distribution above each plot shows the effect of the rescaling on
an equally spaced set of points. For the skewness transform, the outer regions of the
unit interval are magnified and for the kurtosis transform, the middle section of the
interval is magnified.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

Substantial Improvements in the Set-Covering Projection Classifier CHIRP 19:5

Our goal in transforming is to improve our chances of discovering class separation in
relatively dense regions. This is especially important because we use binning (a form of
segmentation) to compress our data. Without transformation, highly skewed or kurtotic
densities might concentrate in only one or two bins. The logic behind this is similar to
the rationale for using linearizing transformations in support vector machines.

The next three subsections describe the three stages that comprise the core of the
CHIRP algorithm. We iterate these three stages cyclically over classes until we are
unable to classify remaining training data. Each iteration is a one-against-all classifi-
cation step involving the current class versus other classes.

3.2. Projecting

We compute 2D projections of variables in the hope of locating dense and well-separated
class distributions. To do this, we generate a candidate list of 1D projections, pick the
best of these based on a separation measure for the current class, and pair the best to
make a set of 2D projections.

Before projecting, we need to scale categorical variables in order to project them
into the same subspace along with continuous variables. To scale categorical variables,
we use a strategy derived from the latent class model [Lazarsfeld and Henry 1968].
For a given categorical variable, we count the unclassified instances of the current
class in each category. We divide this count by the total count of unclassified instances
in each category. Finally, we replace integer category values with the corresponding
proportions based on these two counts.

Next, we generate a set of 1D projections using three-valued vectors with elements

uj ∈ {−1, 0, 1}, j = 1, . . . , p.

Of the p projection weights, r are zero and the remainder are split evenly between −1
and 1.

Choosing r depends on p. When p is small (p ≤ 50), we apply random projections with
zero and nonzero weights. Otherwise, we apply random projections after constraining
p− 50 weights to be zero. Our choice of 50 is guided by results in Hegde and Baraniuk
[2007] and Li et al. [2006].

3.2.1. Small p. If p is small, we choose r = p/4, r = p/2, or r = 3p/4. We decide among
the three alternatives by generating three random projections (using these r values)
and choosing the one with the largest value of a separation statistic S. For a projection,
our separation statistic is the distance of the current-class projected mean x̄c from the
closest other-class projected mean x̄k.

S = min
k�=c

(dx̄c,x̄k)

3.2.2. Large p. If p is large, we set p − 50 weights to zero before doing our random
projections on the remaining features the same way we do for small p. In this case,
we need to determine which features are constrained to have zero weights. To decide,
we compute the class separation statistic S on each variable. We sort all features on
this statistic and we constrain the p − 50 features with the smallest class separation
statistics to have zero weights. This process is a form of feature selection, but unlike
other applications that use feature selection to preprocess large datasets, we employ it
inside our iterations. Different features are likely to be selected on different iterations
because class means change as points are removed from the training set.

Unit-weighting our projections is a form of regularization [Hastie et al. 2001;
Tibshirani 1995]. Regularized estimators increase bias in order to reduce prediction
error. We discuss this aspect further in the Appendix.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

19:6 L. Wilkinson et al.

i

j j j j

Fig. 3. Growing a hypercube description region (HDR) on a binned 2D projection. Each point is located at
the centroid of the instances in each cell. Hollow symbols represent bins containing only instances of the
current class. Solid symbols represent bins containing at least one instance of another class.

3.3. Binning

The next step in the process is to pair our best 1D projections and bin currently
unclassified instances into a bin matrix for each pair. We base the number of bins for
each 2D projection on a formula in Sturges [1926]. Given n instances, we compute the
marginal number of bins b using

b = 2 log2(n).

This formula produces a few more bins than optimal statistical estimates for bin-
ning normal and mildly skewed distributions [Scott 1979; Wand 1997]. Traditional
methods assume a homogeneous distribution, however, which is clearly not the case in
classification.

Next, we rank our b×b 2D bin matrices on a purity measure. For a given target class
Ck, our purity measure is

Pk =
b∑

i=1

b∑
j=1

ni, j Ii, j(Ck),

where

Ii, j(Ck) =
{

1 ni, j = ni, j,k

0 otherwise.

In other words, we sum the counts across all bins whose total counts of points falling
in them (ni, j) are due only to class Ck counts (ni, j,k). We want our purity measure to
count only pure bins, because our fitting method will be especially greedy. The more
pure bins we can eliminate early in the process, the better chance we have of seeing
well-separated other classes later.

To recapitulate our current situation: we have generated a small number of 1D
random projections sorted on our separation measure S and we have paired them to
make a set of 2D projections. We have then chosen the best of these 2D projections
based on our bin purity measure P. We are now working with the upper tail of the
extreme-value distribution of binned, unit-weighted random projections ordered on a
bin purity measure. We now will cover these binned projections with rectangles and
pick the cover that most improves our training set classification.

3.4. Covering

The last stage in each iteration involves covering pure bins in order to define a classi-
fication region for a given class Ck. Our cover is a CHDR, which is a list of HDRs. Each
CHDR is uniquely associated with a class label.

3.4.1. Growing a CHDR. We developed a covering algorithm after observing humans
select homogeneous regions in a classification “game” [Anand et al. 2009]. Figure 3
shows how this process works. For a given pure bin element bi, j , we grow an HDR

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

Substantial Improvements in the Set-Covering Projection Classifier CHIRP 19:7

covering the bin and its pure neighbors by expanding upward (b., j+1), rightward (bi+1,.),
downward (b., j−1), and leftward (bi−1,.) in a spiral path. In other words, we sequentially
expand each side of the current rectangle by one bin-row or bin-column whose length
is equal to the length of that side. We cease expanding in any of the four directions
when the odds ratio of current-class versus other-class instances inside the covering
rectangle begins to decrease. This strategy tends to result in squarish rectangles that
cover pure or empty bins, similar to an approach in Agrawal et al. [1998].

We grow an HDR for each of the bins in the 2D bin matrix. For each HDR we record
the number of instances of the current class that we have covered. We pick the HDR
that results in the largest current-class count. Finally, if the current-class count in the
HDR exceeds 10, we add the HDR to the current CHDR list for that 2D projection.

This 10 is not a magic number. It is based on a rule-of-thumb for a slippage test.
Tukey [1959] wrote the following.

Given two groups of measurements, taken under conditions (treatments, etc.) A and B, we feel the more
confident of our identification of the direction of difference the less the groups overlap one another. If
one group contains the highest value and the other the lowest value, then we may choose (i) to count the
number of values in the one group exceeding all values in the other, (ii) to count the number of values
in the other group falling below all those in the one, and (iii) to sum these two counts (we require that
neither count be zero). If the two groups are of roughly the same size, then the critical values of the total
count are, roughly, 7, 10 and 13, i.e. 7 for a two sided 5% level, 10 for a two sided 1% level, and 13 for a
two sided 0.1% level.

Our application fits this description because we construct an HDR to cover only
instances outside the range of other-class instances. There are some caveats, of course.
Our count of other-class instances is often substantially greater than the count of
current-class instances inside an HDR; Tukey’s approach assumes relatively balanced
sample sizes. Second, we work in 2D; Tukey worked in 1D. Third, we count only highest
values; Tukey counted highest and lowest. Tukey discusses several adjustments to deal
with these problems, but we found little need to employ them since our method biases
the test in a conservative direction. See Mosteller [1948] for more information on
slippage tests.

Once we compute an HDR, we mark bins that it covers. Then we iterate this procedure
over the 2D bin matrix starting with uncovered bins until we can find no HDRs that
meet Tukey’s criterion. The resulting set of HDRs is a CHDR for a 2D bin matrix.

3.5. Iterating

We iterate through classes in cyclical order. For each iteration, we pick a new target
class and repeat our three stages (projecting, binning, covering). This means recalculat-
ing all the statistics within these stages. Fortunately, these are one-pass calculations,
so the iterations are fairly rapid. Furthermore, later iterations are faster than early
ones because peeling away classified points results in fewer points to bin and test. We
terminate iterations when no CHDR can be constructed according to our rules.

3.6. Missing Values

We use weighted projections for data vectors with missing values. This involves com-
puting a linear combination with weights applied to nonmissing values. The result is
then adjusted by p/p−, where p is the number of weights and p− is the (smaller) num-
ber of nonmissing values. This is a rather poor imputation method. Much better would
be a nearest-neighbor or maximum-likelihood estimate, although we found these too
expensive for our applications.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

19:8 L. Wilkinson et al.

Table I. Characteristics of Datasets

Training Testing Attributes Groups Categorical Vars Continuous Vars
Abalone 2,088 2,089 8 3 No Yes
Adult 32,561 16,281 14 2 Yes Yes
Cancer 144 54 16,063 14 No Yes
Cover 11,340 569,672 54 7 Yes Yes
Credit 345 345 14 2 No Yes
Horse 300 68 22 2 Yes Yes
Madelon 2,000 600 500 2 No Yes
Optdigits 3,823 1,797 64 10 Yes Yes
Orange10 5,000 50,000 10 2 No Yes
Page Blocks 4,000 1,473 10 5 No No
Pendigits 7,494 3,498 16 10 No Yes
Poker 25,010 1,000,000 10 10 No Yes
Satellite 4,435 2,000 36 6 No Yes
Segment 210 2,100 19 7 No Yes
Shuttle 43,500 14,500 9 7 No Yes
Spect 80 187 22 2 Yes No
Swiss Roll 1,000 1,000 3 2 No Yes
Vehicle 679 167 18 4 No Yes
Vowel 528 462 10 11 No Yes
Waveform 300 500 21 3 No Yes

4. CHIRP SCORING

To score, we normalize and transform a new point. Then we pass through the list of
CHDRs. For each CHDR, we project the point using the stored projections from the
training data. Then we pass through the list of rectangles for that CHDR. The first
rectangle to enclose our projected testing point determines the classification.

If no enclosing rectangle is encountered by the end of the list, we assign the point to
the nearest rectangle in the CHDR list. This computation involves finding the shortest
L∞ distance between a point and a rectangle. Because the perimeter of a CHDR is a
zero-level set for a naive density estimator based on the union of rectangular polygons
[Silverman 1986], this point-to-rectangle distance is asymptotically a nearest-neighbor
statistic.

This scoring algorithm is based on a decision list [Rivest 1987]. Unlike trees, decision
lists do not require traversal of the entire depth in order to score new instances (unless,
of course, a cover is not encountered).

5. PERFORMANCE

In this section we will present performance statistics for CHIRP. Because we have
substantially improved the performance of CHIRP since the original KDD article,
we have recomputed the CHIRP statistics. We will discuss two different aspects of
CHIRP performance: accuracy and efficiency. We conducted an experiment to evaluate
CHIRP against a comprehensive set of competitive classifiers. We first summarize the
experimental design and then present results for accuracy and efficiency.

5.1. Datasets

We tested CHIRP and other classifiers on 20 datasets from the UCI Machine Learning
Repository [Asuncion and Newman 2007; Hastie et al. 2001], and other sources. Table I
summarizes prominent aspects of these datasets.

5.2. Challenges when Evaluating Classifiers

There are at least three reasonable questions for proponents of particular classifiers
who conduct evaluation experiments: (1) Have they “cherry-picked” their datasets to
make their classifiers look effective? (2) Have they included a sufficient number of

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

Substantial Improvements in the Set-Covering Projection Classifier CHIRP 19:9

datasets to provide reasonable statistical power for their conclusions? and (3) Have
they tested their classifiers against a sufficient number of competitors to insure their
claims are generalizable?

In response to the first question, we selected these particular datasets for their
structural variety; each represents a different challenge for classifiers. We tried
not to bias the results by picking two or more datasets with a similar structure.
These datasets include examples of missing values (Horse), mixed categorical and
continuous variables (Adult), mixed binary variables (Cover), small n (Spect), large
n (Poker, Adult), small p (Swiss Roll), large p (Madelon, Cancer), n � p (Cancer),
small g (Adult, Credit, Horse,nbsp;. . .), large g (Cancer), and relatively small ratios
of training to testing instances (Poker, Segment). We also looked for datasets with
disparate within-and-between-groups data densities (discrete, continuous, mixed,
convex, nonconvex, etc.). Almost all the test datasets are real, and each has been
widely tested on numerous classifiers.

In response to the second question, we included 20 datasets. This number enabled
relatively narrow confidence intervals on our error results. The median width of our
confidence intervals for standardized errors was .6. The distributions of the standard-
ized errors within classifiers are relatively symmetrical, so our use of the t-distribution
to construct confidence intervals is justified..

In response to the third question, we added CHIRP to the Weka data mining work-
bench [Witten et al. 1999]. Then we tested every classifier in Weka version 3.6.1,
omitting classifiers that could not deal with all 20 datasets (because they were special-
ized or were not scalable to the larger datasets). This left a total of 50 classifiers. We
included hybrid and metaclassifiers as well, even though these are not direct competi-
tors because they do not rest on a single geometric model. Tests were run on a 2.5 GHz
Intel Core 2 Duo Macintosh Powerbook with Macintosh OS X Version 10.5.7 and Java
Version 1.5.0 running in a 2GB partition. The full experiment took almost three weeks
of continuous CPU time.

To the best of our knowledge, this is one of the most comprehensive experimental
evaluations of classifiers since the Statlog Project [King et al. 1995; Statnikov et al.
2005; Abdullah et al. 2006]. We also examined published error rates for non-Weka clas-
sifiers on these datasets and found almost all of them to lie in the range of our findings
(except for specialized classifiers such as Li [2010], which can perform extraordinarily
well on specific types of datasets).

5.3. Accuracy

We computed a variance components analysis on the error rates for every classifier
across datasets. Dataset and Classifier were treated as random factors. The effects
of both factors were highly significant (p < .001). Consequently, we standardized the
error statistics within dataset for our final analysis.

Figure 4 summarizes the error performance for all classifiers. CHIRP has the lowest
standardized error of all classifiers and a relatively small variance. CHIRP is not only
extraordinarily accurate but also unusually consistent across a wide range of data
scenarios.

Figure 5 shows the performance of all the classifiers on these datasets. CHIRP is
highlighted in red. No other family of classifiers had the lowest or near-lowest error
on as many datasets as did CHIRP. There are several remarkable findings in this
plot. First, CHIRP substantially beats the other classifiers on the Cancer dataset.
The simple feature selection algorithm using the separation index appears effective.
This strategy resembles the common practice of computing t-statistics on genes in
microarray research in order to do model selection. Second, CHIRP excels on the Poker
Hand dataset; the other classifiers handle it poorly. Ping Li [2010] recommended this

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

19:10 L. Wilkinson et al.

CHIRP
trees.LMT

meta.Decorate
meta.ClassRegress

meta.Bagging
SMOPuk

meta.END
trees.FT

trees.J48graft
meta.Ensemble

trees.Simple
trees.J48

meta.LogitBoost
SimpleLogistic

RBFNetwork
Perceptron

trees.NBTree
trees.BFTree

rules.JRip
rules.DTNB

Logistic
rules.PART

meta.Filterered
SMONPolyKernl
SMOPolyKernel
meta.MultiClass

meta.Attribute
rules.Ridor

lazy.IBk
BayesNet

trees.LADTrees
trees.Random

lazy.IB1
trees.REPTrees

meta.Dagging
NaiveBayes

BayesUpdate
rules.Table
lazy.KStar

SMORBFKernel
lazy.LWL

rules.OneR
meta.AdaBoost

meta.MultiBoost
trees.Stump

rules.Conjunctive
misc.VFI

misc.HyperPi
meta.ClassCluster

rules.ZeroR

C
la

ss
ifi

er

-1 0 1 2 3
Mean Standardized Test Error

Fig. 4. Average standardized error rates and associated 95% confidence intervals for CHIRP and Weka
version 3.6.1 classifiers. Default parameter values were used for all classifiers.

dataset because his boosting classifiers, designed specifically for this type of data, have
achieved over 90% accuracy on Poker. We were surprised to discover how well CHIRP
did here, since we did not consider the peculiar aspects of that dataset in designing
CHIRP. Third, CHIRP achieves the lowest error for the Swiss Roll dataset. It is able to
find enough revealing projections to peel away and extract class information from this
difficult nonlinear manifold.

5.4. Efficiency

Figure 6 shows the training times for the new CHIRP and the other classifiers. Not
surprisingly, some of the worst performing classifiers in Figure 4 are the fastest to
train. The converse is not always true, however. The Multilayer Perceptron classifier
was the least efficient to train, yet its performance was middling. CHIRP’s closest rival
in accuracy, Logistic Model Trees, was substantially slower in training.

The new CHIRP is more than three times faster than the original. Much of this
improvement came from attention to memory usage and adaptations to the Weka
architecture. Nevertheless, the new CHIRP is still slower to train than some of the
other classifiers. In the main, this is due to its ensemble architecture. In a parallel
computing environment, each thread would run concurrently. This would be trivial
to implement on a multicore processor or in a parallel environment such as Map
Reduce. As with Random Forests, it would take minimal algorithmic modifications to
run CHIRP in separate threads. Even without these modifications, however, CHIRP
is reasonably efficient. The longest training time for other classifiers (rulesDTNB on
Madelon) was 38 hours. The longest training time for CHIRP was 27 minutes on Poker
Hand. The longest time for an SVM was 15 hours (SMOPuk on Adult).

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

Substantial Improvements in the Set-Covering Projection Classifier CHIRP 19:11

shuttle

optdigits

pendigits

segment

page-blocks

orange10

spect

satellite

horse

credit

adult

vehicle

waveform

madelon

cover

poker-hand

cancer

vowel

swissroll

abalone

D
at

as
et

0 20 40 60 80 100
Test Error

Fig. 5. Errors for CHIRP (in red) and the other classifiers (in blue) on 20 test datasets.

Figure 7 shows the testing times per instance for the new CHIRP and the other
classifiers. In contrast to its training performance, CHIRP falls in the fastest group
of classifiers, with performance that is not significantly worse than decision trees
(although its standard error is somewhat larger). Interestingly, the support vector
machines are generally the slowest in testing; the SVM with the lowest overall error
(SMOPuk) is among the slowest performers in a testing environment.

Again, scoring could be speeded up for CHIRP by parallelizing the voting. The longest
scoring time for any classifier on one instance was 4 minutes (lazyKStar on Satellite).
The longest scoring time for CHIRP was less than a tenth of a second (on Satellite). The
longest scoring time for an SVM was 22 seconds (SMOPuk on Satellite). These longer
times are problematic, because scoring times of more than a few seconds would be
impractical for online applications. By contrast, CHIRP is a good candidate for online
classification in a time-critical environment.

5.4.1. Theoretical Performance. CHIRP makes one pass through n rows of the training
data to compute data limits and basic statistics. For each of the g classes, it makes an
additional pass through the data to construct 25 2D bin matrices. CHIRP sorts this
bin-matrix list and picks the top 5 candidate 2D bin matrices. It iterates through this
process m times, adding a CHDR to the decision list at each step. Thus, we should
expect CHIRP to be O(gmnp) in time. To test this expectation, we did a simulation.

We generated spherical Gaussians for n = {500, 5000, 50000}, p = {20, 40, 60, 80,
100}, and g = {2, 4, 6, 8, 10}. In each of the 75 datasets, the first g Gaussians had unit
variance with centroids located at the corners of a (g − 1)-simplex with edges of length
7. Values for the remaining p − g variates were N(0, I).

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

19:12 L. Wilkinson et al.

lazy.KStar
rules.ZeroR

lazy.IBk
lazy.LWL

misc.HyperPipes
lazy.IB1

misc.VFI
rules.OneR

trees.Stump
BayesUpdate

NaiveBayes
BayesNet

meta.Filterered
trees.REPTree
meta.AdaBoost

meta.MultiBoost
rules.Conjunctive

trees.Random
trees.J48

meta.Attribute
meta.ClassCluster

trees.J48graft
meta.MultiClass

rules.PART
meta.Bagging

meta.LogitBoost
rules.Table
meta.END
rules.JRip

trees.BFTree
trees.Simple

Logistic
rules.Ridor

trees.LADTree
SMOPolyKernel

meta.ClassRegress
trees.FT

RBFNetwork

meta.Dagging
trees.NBTree

meta.Ensemble
rules.DTNB

SMOPuk
meta.Decorate

SMONPolyKernel
SimpleLogistic

SMORBFKernel

CHIRP

trees.LMT
Perceptron

C
la

ss
ifi

er

.01 .1 1 10 100
Mean TrainTimes (seconds)

Fig. 6. Mean training times and associated 95% confidence intervals for CHIRP and Weka version 3.6.1
classifiers.

Figure 8 shows a graph of the performance of CHIRP on these random datasets. We
have enhanced the plot with a distance-weighted least-squares smoother. The points
are fit well (R = .96, with well-behaved residuals) by the simple linearized model.

E[log(t)] = −11.389 + 0.942 log(n) + 1.655 log(g) + 0.677 log(p)

Our empirical results show that CHIRP is sublinear in n and p and superlinear in g. It
would appear that CHIRP is not the best candidate for problems involving hundreds
or thousands of classes. For relatively small g, however, CHIRP performance is similar
to that of k-means clustering, which is O(gnp) on g clusters, n cases, and p variables.

6. DISCUSSION

Our experiment provides clear evidence that CHIRP outperforms competitive classi-
fiers across a wide range of well-known datasets used to evaluate classifiers. We intend
to investigate in more detail how this happened, although we designed each stage using
well-established findings from the statistical and machine learning literature. What is
unique about CHIRP is how these components are assembled. We need to investigate
how these components interact.

We do have several preliminary answers to the question of why CHIRP works so
well. First, CHIRP handles nonconvex, discrete, and disjoint densities by covering in-
stead of partitioning. We suspect (but have not yet proven) that covering requires fewer
rectangles than partitioning in the case of certain topologies (such as the Orange10 or
Waveform datasets). Second, its categorical scaling algorithm allows us to combine dis-
crete and continuous densities to search for homogeneous joint regions. Third, CHIRP
is an ensemble classifier. Its use of random projections naturally lends itself to a voting

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

Substantial Improvements in the Set-Covering Projection Classifier CHIRP 19:13

trees.Simple
trees.BFTree
trees.Stump

trees.REPTree
meta.MultiBoost

rules.Conjunctive
rules.ZeroR
rules.OneR

trees.J48
trees.J48graft

rules.JRip
rules.Ridor

meta.Filterered
trees.Random

meta.AdaBoost
meta.LogitBoost

rules.Table
meta.Attribute
meta.Bagging

misc.HyperPipes
trees.LADTree

rules.PART
meta.Decorate

Logistic
SimpleLogistic

meta.ClassCluster
rules.DTNB

SMOPolyKernel
trees.LMT

trees.NBTree
BayesNet
misc.VFI

meta.ClassRegress
meta.END

Perceptron
RBFNetwork

BayesUpdate
meta.Dagging

meta.MultiClass
NaiveBayes

meta.Ensemble
trees.FT
lazy.IBk
lazy.IB1

SMOPuk
SMONPolyKernel

SMORBFKernel
lazy.KStar
lazy.LWL

C
la

ss
ifi

er

.01 .1 1

Mean Test Times per Instance (seconds)

CHIRP

Fig. 7. Mean testing times per instance and associated 95% confidence intervals for CHIRP and Weka
version 3.6.1 classifiers.

Fig. 8. Training times for CHIRP on random datasets. The parameters in these plots are number of classes
(g), number of features (p), and number of instances (n).

architecture. Fourth, CHIRP uses affine instead of axis-parallel projections; other set
covering classifiers do not employ this technique. Fifth, the two fitness measures used
for ranking projections (the class separation measure S and the bin purity measure
P) target different aspects of densities. The S measure values projections with large
margins; the P measure values projections with compact subsets. Projections missed
by one are likely to be found by the other. Finally, CHIRP embeds its projections and
covers inside its iterations; we have, for the first time, used projections and covers
recursively. This architecture contributes to the ability of CHIRP to peel away sets of

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

19:14 L. Wilkinson et al.

exterior points that obscure other sets in the core of a density. This peeling is adaptive;
CHIRP responds to the topology of the conditional density as it shrinks in size and
changes shape on each iteration.

CHIRP can have difficulty with certain higher-dimensional densities because its
covers are confined to 2D projections. Its ability to peel off subsections of higher-
dimensional densities mitigates against this weakness, but there are some configura-
tions it cannot exploit. Like all classifiers, CHIRP cannot outperform everyone on every
dataset.

There were several questions raised about CHIRP during and after the KDD discus-
sion session. Some of these deserve notice. One questioner recommended that we use
the ROC Area Under Curve (AUC) instead of average error as a criterion for compar-
ing classifiers. Setting aside the well-known problems with AUC [Hanczar et al. 2010;
Hand 2010], we must point out that CHIRP does not provide any sort of classification
probability estimate that would be needed for computing AUC. We have explored this
possibility through interpreting the CHDRs as fixed rectangular kernels, but this effort
has so far led nowhere. In any case, we do not believe the results would differ substan-
tially, since AUC and average error are highly correlated when marginal distributions
are relatively balanced, as is the case with most of our datasets.

One commented that we should have used our categorical coding algorithm to prepro-
cess categorical variables for other classifiers. This would be impossible, since CHIRP
does categorical recodes on every iteration. It is an essential and nonseparable part of
our algorithm. We think it is a distinct advantage of our design.

Finally, a Weka team member mentioned that the default tree-number setting for
Random Forests was a poor choice. He recommended changing this number to 100. The
change made a huge difference. Random Forests moved from thirty-second to third
place, behind Logistic Model Trees. The size of this improvement raises a question
about the settings for other classifiers. Since our simulation requires almost a month
of CPU time, customizing settings to improve the performance of individual classifiers
is not practical. We expect supporters of specific classifiers will fiddle with parameter
values in order to improve their performance on these datasets and we welcome that
effort. We must repeat, however, that customizing settings for individual datasets de-
feats the purpose of any comparison. In plain language, we believe that the rules for our
experiment take some of the “black art” out of classifier comparisons. If default settings
can be improved (as Weka will be doing with Random Forests in the next release), then
they should become defaults for all datasets and the Weka team should be responsi-
ble for making the change. Because most published classifier comparisons have been
idiosyncratic, opportunistic, and selective, their variability precludes objective evalua-
tions. To deal with this pervasive problem, we recommend that published evaluations
of new classifiers or modifications to existing ones be conducted in Weka on a suite of
test datasets that includes at least the ones we have employed. This procedure would
provide objective historical statistics as well as meaningful timing data.

7. CONCLUSION

Producing an error rate that matches or exceeds other known classifiers on a wide
range of datasets is not the principal distinction of this research. Such a result could
be accomplished through an incremental improvement of any of the most competitive
classifiers. Indeed, this is what sets the bar so high for a new classifier; the three or
four leading classifier frameworks have been polished for decades.

Accomplishing extraordinary accuracy with a novel classifier is what distinguishes
this research. The CHIRP project began with a simple idea: to link a visually motivated
covering algorithm to a random projection machine. It evolved with the realization
that random projections could be nested within iterations. And it concluded with the

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

Substantial Improvements in the Set-Covering Projection Classifier CHIRP 19:15

discovery that covers on random projections could be used to peel away subsets of points
to unwrap high-dimensional nonlinear configurations. Because this architecture is so
new, we expect to see substantial improvements in the future.

The result so far are as follows.

—The performance is subquadratic in complexity on n, p, and g (number of instances,
number of features, and number of classes).

—CHIRP does not depend on sensitive adjustable parameters (convergence criteria,
kernel types, bandwidths, pruning schedules, etc.). We tested this assertion by as-
sessing its performance over a wide range of parameter settings. Most importantly,
none of the potentially settable CHIRP parameters was adjusted to optimize perfor-
mance on a specific dataset in our training or testing.

—CHIRP had the lowest average standardized testing error rate and achieved the low-
est error rate on more datasets than did any other classifier. Clearly, these datasets
were not selected to favor CHIRP; we included well-known datasets designed to
present classifiers with the broadest variety of challenges.

—CHIRP is readily parallelizable at the random projection stage and/or voting stage.
—CHIRP is simple and tiny. Its JAR file is under 50K in size. The algorithm iterates

over only three steps.
—CHIRP is a novel algorithm; it is not a hybrid classifier. This fact would tend to

support the idea that CHIRP can contribute relatively independent classification
information to the results of other classifiers.

Given these distinctive features and its fundamental differences from other classi-
fiers, CHIRP is uniquely suited for applications where there is limited or no a priori
knowledge of the process generating the data.

APPENDIX

Suppose there are two normal populations with respective p×1 mean vectors μ1 and μ2
and common p× p covariance matrix �. Without loss of generality, we will assume that
μ1 = −μ2. The two-group Linear Discriminant Analysis (LDA) classification algorithm
assigns a new point x to the group with the smaller Mahalanobis distance.

(x − μi)T �−1(x − μi), i = 1, . . . , 2

Equivalently, if the Fisher linear discriminant function

δF(x) = �−1(μ1 − μ2)T x

is negative, we assign x to the first group, otherwise to the second.
Because we do not usually know μ1 or μ2 or �, we customarily estimate them via

maximum likelihood on n observations of sample data and employ the discriminant
function

dF(x) = �̂−1(μ̂1 − μ̂2)T x

for our classification rule.
When p > n, the maximum likelihood estimate of � cannot be computed because

the conventional matrix estimator is singular. Classical remedies for computing the
linear discriminant function in these cases include using a Moore-Penrose inverse or
selecting a subset of the p variables (features) to get our estimate.

Alternatively, we can assume � = σ 2I. In this case, the estimated discriminant func-
tion passes through μ̂1 and μ̂2 and the decision rule based on the linear discriminant
function is equivalent to a Naive Bayes rule. Bickel and Levina [2004] prove that the
Naive Bayes classification rule substantially outperforms the Fisher linear discrimi-
nant rule under broad conditions when the number of variables grows faster than the

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

19:16 L. Wilkinson et al.

number of observations. This gives us some confidence that we do not substantially in-
crease prediction error by ignoring covariance structure when searching for maximum
separation of means in higher-dimensional spaces.

Suppose we now replace the discriminant function coefficients with unit weights

dU (x) = uT x,

where ui ∈ {−1, 0, 1}. Suppose also that we choose unit weights that produce the
greatest spread between sample means on the dU (x) discriminant function. The number
of possible weights we must consider before making this choice is 1

2 (3p − 1). (The 1
2 is

due to the symmetry of dU (x) around zero.)
The following lemma gives us the upper bound of the angle between the optimal

unit-weight vector dU (x) and the Fisher discriminant vector dF(x).

LEMMA 1. Let U be the set of all nonnull p × 1 vectors u, where ui ∈ {−1, 0, 1}. Let x
be a p × 1 vector in Rp. Let ux be the element of U that is closest in angle to x. Then for
any x, the maximum possible angle between ux and x is

θmax = arccos
(

1/

√
p2 − 2

∑p
m=1

√
m

√
m− 1

)
.

For p = 50, for example, using dU (x) instead of dF(x) will shrink the values of μ̂1 and
μ̂2 projected on dF(x) toward zero by a factor of approximately .3. The gains from this
type of shrinkage are discussed in Wainer [1976], Hastie et al. [2001], Tibshirani [1995],
Guo et al. [2005] and elsewhere. It belongs to a class of regularization methods that,
relative to maximum likelihood estimators like dF(x), are more resistant to outliers
and have lower prediction error in new samples.

In practice, we cannot expect to find the projection dU (x) with the greatest separation
of means because it is impractical to search over 1

2 (3p − 1) weight vectors for large p.
We can get close, however, by taking advantage of the Johnson-Lindenstrauss Theorem
[Johnson and Lindenstrauss 1984]. This theorem states that if a metric on X results
from an embedding of X into a Euclidean space, then X can be embedded in Rk with dis-
tortion less than 1 + ε, where k = O(ε2log|X|). Remarkably, this embedding is achieved
by projecting onto a random k-dimensional subspace. Because our discriminant rule
depends on a similarity transformation of Euclidean distances, we can logarithmically
reduce the complexity of the problem through random projections.

Johnson-Lindenstrauss was originally proven for Gaussian weights, but Achlioptas
[2001] showed that unit-weighted projections do not jeopardize accuracy in approxi-
mating distances. Furthermore, Li et al. [2006] showed that unit random weights for
most purposes can be made very sparse with the following probabilities.

uj =

⎧⎪⎨
⎪⎩

1 with probability 1
2
√

p

0 with probability 1 − 1√
p

−1 with probability 1
2
√

p

In sum, we get lower prediction error, robustness, scalability, and better approxi-
mation to the maximum separation vector by using random unit weights in CHIRP.
Furthermore, by constructing 2D projections from these random 1D projections and
using (possibly) nonconvex set covers on them, we substantially outperform LDA and
other classifiers when the normality assumption is not plausible.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

Substantial Improvements in the Set-Covering Projection Classifier CHIRP 19:17

REFERENCES

ABDULLAH, M. R., TOH, K.-A., AND SRINIVASAN, D. 2006. A framework for empirical classifiers comparison. In
Proceedings of the Symposium on Industrial Electronics and Applications. IEEE.

ACHLIOPTAS, D. 2001. Database-Friendly random projections. In Proceedings of the 20th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (PODS’01). ACM, New York, 274–281.

AGRAWAL, R., GEHRKE, J., GUNOPULOS, D., AND RAGHAVAN, P. 1998. Automatic subspace clustering of high dimen-
sional data for data mining applications. In Proceedings of the ACM SIGMOD Conference on Management
of Data. 94–105.

AGUILAR, J., RIQUELME, J., AND TORO, M. 1998. Decision queue classifier for supervised learning using rotated
hyperboxes. In Proceedings of the 6th Ibero-American Conference on AI: Progress in Artificial Intelligence.
Lecture Notes in Computer Science, vol. 4045, Springer, 326–336.

ALPERN, B. AND CARTER, L. 1991. The hyperbox. In Proceedings of the IEEE Information Visualization Confer-
ence. 133–134.

ANAND, A., WILKINSON, L., AND TUAN, D. N. 2009. An L-infinity norm visual classifier. In Proceedings of the
International Conference on Data Mining (ICDM). 687–692.

ASUNCION, A. AND NEWMAN, D. 2007. UCI machine learning repository. http://www.ics.uci.edu/∼mlearn/
MLRepository.html.

BICKEL, P. AND LEVINA, E. 2004. Some theory for Fisher’s linear discriminant function, ‘naive Bayes’, and some
alternatives when there are many more variables than observations. Bernoulli 10, 989–1010.

BREIMAN, L., FRIEDMAN, J., OLSHEN, R., AND STONE, C. 1984. Classification and Regression Trees. Wadsworth,
Belmont, CA.

BU, S., LAKSHMANAN, L. V. S., AND NG, R. T. 2005. MDL summarization with holes. In Proceedings of the 31st
International Conference on Very Large Data Bases (VLDB ’05). VLDB Endowment, 433–444.

DIETTERICH, T. G. AND BAKIRI, G. 1995. Solving multiclass learning problems via error-correcting output codes.
J. AI Res. 2, 263–286.

FLICK, T. E., JONES, L. K., PRIEST, R. G., AND HERMAN, C. 1990. Pattern classification using projection pursuit.
Pattern Recogn. 23, 1367–1376.

GAO, B. 2002. Hyper-rectangle-based discriminative data generalization and applications in data. Ph.D.
thesis, Simon Fraser University.

GAO, B. J. AND ESTER, M. 2006. Turning clusters into patterns: Rectangle-based discriminative data descrip-
tion. In Proceedings of the 6th International Conference on Data Mining (ICDM’06). IEEE Computer
Society, 200–211.

GUO, Y., HASTIE, T., AND TIBSHIRANI, R. 2005. Regularized discriminant analysis and its application in microar-
rays. Biostatist. 1, 1–18.

HANCZAR, B., HUA, J., SIMA, C., WEINSTEIN, J., BITTNER, M., AND DOUGHERTY, E. R. 2010. Small-sample precision
of roc-related estimates. Bioinf. 26, 822–820.

HAND, D. 2010. Measuring classifier performance: A coherent alternative to the area under the roc curve.
Mach. Learn. 77, 103–123.

HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. H. 2001. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer.

HEGDE, C. AND BARANIUK, R. 2007. Random projections for manifold learning. In Proceedings of the Conference
on Advances in Neural Information Processing Systems (NIPS’07). MIT Press, Cambridge, MA.

HOSKING, J. 1990. L-Moments: Analysis and estimation of distributions using linear combinations of order
statistics. J. Roy. Statist. Soc. B 52, 105–124.

JIMENEZ, L. O. AND LANDGREBE, D. A. 1995. Projection pursuit for high dimensional feature reduction: paralle-
land sequential approaches. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS
’95. Vol. 1. 148–150.

JOHNSON, W. B. AND LINDENSTRAUSS, J. 1984. Lipschitz mapping into Hilbert space. Contemp. Math. 26, 189–206.
KING, R., FENG, C., AND SUTHERLAND, A. 1995. Statlog: Comparison of classification algorithms on large real-

world problems. Appl. Artif. Intell. 9.
LAZARSFELD, P. F. AND HENRY, N. 1968. Latent Structure Analysis. Houghton Mifflin, Boston.
LEE, E.-K., COOK, D., KLINKE, S., AND LUMLEY, T. 2005. Projection pursuit for exploratory supervised classifi-

cation. J. Comput. Graph. Statis. 14, 831–846.
LI, P. 2010. Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost. In Proceedings of the IEEE UAI.
LI, P., HASTIE, T. J., AND CHURCH, K. W. 2006. Very sparse random projections. In Proceedings of the 12th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’06). ACM, New York,
287–296.

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

TKDD0604-19 ACM-TRANSACTION November 17, 2012 12:52

19:18 L. Wilkinson et al.

MARCHAND, M. AND SHAWE-TAYLOR, J. 2002. The set covering machine. J. Mach. Learn. Res. 3, 723–746.
MOSTELLER, F. 1948. A k-sample slippage test for an extreme population. Ann. Math. Statist. 19, 58–65.
PU, K. Q. AND MENDELZON, A. O. 2005. Concise descriptions of subsets of structured sets. ACM Trans. Datab.

Syst. 30, 1, 211–248.
QUINLAN, J. R. 1993. C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning).

Morgan Kaufmann.
RIVEST, R. L. 1987. Learning decision lists. Mach. Learn. 2, 229–246.
SCOTT, D. W. 1979. On optimal and data-based histograms. Biometrika 66, 605–610.
SILVERMAN, B. 1986. Density Estimation for Statistics and Data Analysis. Chapman & Hall, New York.
SIMPSON, P. K. 1992. Fuzzy min-max neural network, i: Classification. IEEE Trans. Neural Netw. 3, 776–786.
SOKOLOVA, M., JAPKOWICZ, N., MARCHAND, M., AND SHAWE-TAYLOR, J. 2003. The decision list machine. In Advances

in Neural Information Processing Systems 15, MIT Press, 921–928.
STATNIKOV, A., ALIFERIS, C. F., TSAMARDINOS, I., HARDIN, D., AND LEVY, S. 2005. A comprehensive evaluation

of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinf. 21, 5,
631–643.

STURGES, H. A. 1926. The choice of a class interval. J. Amer. Statist. Assoc. 21, 65–66.
TIBSHIRANI, R. 1995. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. B 58, 267–288.
TUKEY, J. 1959. A quick, compact, two-sample test to Duckworth’s specifications. Technometrics, 31–48.
ÜNEY, F. AND TÜRKAY, M. 2006. A mixed-integer programming approach to multi-class data classification

problem. Euro, J. Oper. Res. 173, 910–920.
WAINER, H. 1976. Estimating coefficients in linear models: It don’t make no nevermind. Psychol. Bull. 83, 2,

213–217.
WAND, M. P. 1997. Data-Based choice of histogram bin width. The Amer. Statist. 51, 1, 59–64.
WILKINSON, L., ANAND, A., AND DANG, T. 2011. CHIRP: A new classiÞer based on composite hypercubes on

iterated random projections. In Proceedings of ACM Conference on Knowledge Discovery and Data
Mining.

WITTEN, I. H., FRANK, E., TRIGG, L., HALL, M., HOLMES, G., AND CUNNINGHAM, S. J. 1999. Weka: Prac-
tical machine learning tools and techniques with Java implementations. In Proceedings of the
ICONIP/ANZIIS/ANNES’99 Workshop on Emerging Knowledge Engineering and Connectionist-Based
Information Systems. 192–196.

Received October 2011; revised October 2012; accepted October 2012

ACM Transactions on Knowledge Discovery from Data, Vol. 6, No. 4, Article 19, Publication date: November 2012.

