
SHARD: A Framework for Sequential, Hierarchical
Anomaly Ranking and Detection

Jason Robinson1, Margaret Lonergan1, Lisa Singh1,
Allison Candido1, and Mehmet Sayal2

1 Georgetown University, Washington, DC 20057, USA
2 Hewlett Packard, Palo Alto, CA 94304, USA

Abstract. This work explores unsupervised anomaly detection within sequen-
tial, hierarchical data. We present a flexible framework for detecting, ranking
and analyzing anomalies. The framework 1) allows users to incorporate complex,
multidimensional, hierarchical data into the anomaly detection process; 2) uses
an ensemble method that can incorporate multiple unsupervised anomaly detec-
tion algorithms and configurations; 3) identifies anomalies from combinations of
categorical, numeric and temporal data at different conceptual resolutions of hi-
erarchical data; 4) supports a set of anomaly ranking schemes; and 5) uses an in-
teractive tree hierarchy visualization to highlight anomalous regions and relation-
ships. Using both synthetic and real world data, we show that standard anomaly
detection algorithms, when plugged into our framework, maintain a high anomaly
detection accuracy and identify both micro-level, detailed anomalies and macro-
level global anomalies in the data.

Keywords: Anomaly detection framework, multi-resolution anomalies, ensemble method

1 Introduction

Anomaly detection has many applications, including fraud detection, outbreak identi-
fication, and data scrubbing [13] [4]. Each of these domains contains its own semantic
relationships, many of which can be modeled as hierarchical. In this paper, we present
a framework that allows users to identify anomalies across different levels of these hier-
archical structures. For example, in fraud detection, users may be interested in detecting
fraudulent behavior across different time granularities (weeks, month, years) or across
different locations (neighborhood, city, state). In this case, both time and location are
different examples of semantic hierarchies that can be used to identify recurring or ag-
gregated anomalies. Figure 1 shows an example of a sequential, time based hierarchy
that we will refer to as an anomaly tree. Each level of the anomaly tree represents a
different granularity of time. By viewing these different semantic groups of data hi-
erarchically, users can better understand how anomalies propagate through different
sequential, hierarchical relationships associated with their applications. Are anomalies
scattered or recurring? Are some days, months, or years more anomalous than others?

In this work, we propose SHARD, a flexible framework for Sequential, Hierarchical,
Anomaly, Ranking, and Detection that supports incorporation of hierarchical semantics
across numeric and categorical data into unsupervised, anomaly detection and rank-
ing. This work makes the following contributions. First, we present system and design

2 Robinson et al.

Values

Day

Month

Year

All ALL DATA

2000 2001

January February

1 2

$60.50 $52.02 $99.99 $58.25

3 … 28

… December

2002

[/BRANCH]/date:yyyy = 2001

Current Value Count = 1

Mean = 50.33

Median = 45.0

Mode = [null]

Number of Children: 12

Anomalous Children:1

Anomaly Score: 0.8333

Fig. 1. Anomaly tree example and individual node statistics

considerations for developing a general framework for hierarchical anomaly detection.
These considerations lead to the decoupling of data formats, outputs, and the definition
of ’anomalous’ for a given use case. The second contribution is the framework itself,
which allows single or multiple anomaly detectors to work together. Most importantly
it allows domain experts to drive the anomaly detection process by scripting meaning-
ful, hierarchical relationships between the attributes. Finally, we present experiments
on synthetic and real world data sets that show similar performance of detailed, micro-
level anomaly detection when compared to the baseline detector performance without
the framework; the experiments also demonstrate high-order macro-level anomalies that
would completely escape the expert’s view without the framework.

The remainder of this paper is organized as follows. Section 2 presents related liter-
ature. Section 3 presents background concepts. Our framework is presented in section
4, followed by experimental results in section 5, and the conclusions in section 6.

2 Related Literature

A large body of literature on anomaly detection exists. For a detailed survey of anomaly
detection techniques, we refer you to [4] and [13].

Anomaly detection frameworks: A few anomaly detection frameworks have been pro-
posed in the literature. For example, Chandola [3] proposes a Reference Based Anal-
ysis (RBA) framework for analyzing anomalies with numeric and categorical data in
sequences and time series. While RBA offers summary visualizations, it does not offer
the multi-resolution evaluations, the interactive visualizations, or the plugin detection
and ranking algorithms that our framework does. Nemani et al. [12] propose a frame-
work for detecting anomalies in spatial-temporal data. This framework supports plugin
detection algorithms; yet, it does not appear to support visualization of multi-granular
time series, nor is it clear how customizable other aspects of this framework are.

Anomaly detection algorithms: A number of approaches for anomaly detection of
time series data exist [5], [8], [10]. Antunes and Oliveira [5] transform the time series
into forms that can use standard approaches for anomaly detection. Keogh, Lonardi,
and Chiu [10] evaluate the frequency of substrings in a time series and compare the re-
sulting distribution to a baseline time series. Li and Han [11] explore anomaly detection
in multidimensional time series data, identifying the top-k outliers for each detection
method and iteratively pruning these sets until a uniform set of anomalies is discov-
ered. All of these sequential anomaly detection algorithms focus on single resolution

SHARD: A Framework for Sequential, Hierarchical Anomaly Ranking and Detection 3

anomaly detection. Instead, this work focuses on a framework that supports integration
of many algorithms across multiple resolutions.

Joslyn and Hogan [9] explore similarity metrics in directed acyclic graphs and other
hierarchical structures. Their work can be utilized to visualize and find anomalies in
ontologies. While the ideas concerning semantic hierarchies that we present are implicit
in Joslyn and Hogan’s work, their focus is entirely on similarity metrics in these tree
structures and not on the full implementation of an anomaly detection framework.

3 Hierarchical Anomalies

Suppose we are given a data set D, containing a set of attributes or features, F =
{F1, F2, . . . , Fm}, where m is the number of features in D. Each feature contains an
ordered list of n values, Fi = [v1, v2, . . . , vn]. We define an anomaly, A, as a data point
or set of data points that deviate or behave differently than the majority of comparison
data, where the comparison data represents values for one or more features in D. We
purposely define an anomaly broadly since the type of deviation of interest can vary de-
pending on the data type (numeric, categorical, etc.) and/or the domain characteristics.

Even though our framework can handle any data that can be represented sequentially
and hierarchically, including natural language (document, sentences, words, syllables,
letters) and genetic sequences (DNA, genes, proteins), for ease of exposition and ubiq-
uity of data, we focus on time series data and time anomaly trees. In this case, data
values exists for each feature in the data set at n time points. We also define a set of
semantic resolutons r = {r1...rh}, where each resolution represents a different seman-
tic grouping for data in D. The semantic groupings for our example in figure 1 are day,
month, and year, r = {day,month, year, all}. These semantic groupings can then be
used as the basis for creating a time anomaly tree T of height h, where h = 4 for our
example. The resolutions tell us the granularity of data associated with each node in a
particular level of the tree. The leaf nodes contain statistics about data values at resolu-
tion r1, the day resolution in our example. The parent nodes of the leaf nodes contain
statistics about the data values at resolution r2, e.g. the month resolution, and so on.
Given this anomaly tree, we define a hierarchical anomaly A(nl) to be a node n at level
l that deviates significantly from other nodes (or a subset of other nodes) at level l in
the anomaly tree, where deviation is measured by one or more detectors selected by the
user and significance is algorithm specific.

For example, in a stock data domain, a single company can be considered anoma-
lous if it has an unlikely, sudden surge and subsequent drop in price, if it has an unlikely
surge in price that is maintained for some sustained duration, e.g. month, before drop-
ping back to normal, if daily behavior differs drastically from other companies’, or if
the company manifests a combination of these unusual behaviors. The specific type of
behavior identified depends on the detectors and rankers specified by the user.

4 Anomaly Detection Framework

Our high level algorithm for anomaly tree construction and annotation is presented as
Algorithm 1. The input to the algorithm is the data (D), an ontology template that

4 Robinson et al.

specifies the semantic relations of interest (τ), the anomaly detectors of interest (A),
and an anomaly ranker (R). Using this information, the framework builds an anomaly
tree by assigning data values to the nodes and updating the node summary statistics
according to the ontology template, runs different anomaly detectors on the nodes of
this tree to obtain a set of anomaly scores for each node, and ranks the anomalies in the
tree by computing a score based on criteria such as the level of agreement between the
anomaly detectors and the anomaly scores of the child nodes. The resulting tree is then
used for an interactive tree visualization that can be analyzed by the user. The remainder
of this section describes the framework and different design decisions.

Algorithm 1 Anomaly tree construction and annotation
INPUT: Template τ , Anomaly DetectorsA, RankerR, DataD
OUTPUT: T

function T = BUILD_TREE(τ ,D)
function IDENTIFY_ANOMALIES(T , A)
function RANK_ANOMALIES(T ,R)
return T

4.1 Ontology Template

The ontological tree template not only decides the hierarchy of where and how feature
values are organized and propagated, but also determines how the detectors evaluate
nodes. Specific considerations are 1) the range of nodes that maintain summary statistics
for the detectors to analyze, 2) normalizing or scaling of multivariate combinations,
and 3) sorting of temporal or ordinal features. Table 1 shows an example ontology
template and the resulting anomaly tree. The XML template describes an application
that attempts to find three different semantic hierarchies based on time, industry, and
employee education.

4.2 Anomaly Tree Structure

The anomaly tree T generated by the ontology template consists of multiple node types.

Definition 1. The leaf nodes at the lowest level of the tree contain data values. Data
from these nodes are aggregated and propagate information to the remaining levels of
the tree. Semantic grouping nodes are non-leaf nodes that are associated with a feature
and group children nodes according to the feature values. Branching nodes create a
branch of nodes to be evaluated for anomalies. These nodes determine how the child
values are evaluated and propagated through T . The propagation of leaf node values
stops at the branching node.

Each node type handles individual data values differently. Semantic grouping nodes
split on every new value of the attribute specified in the ontology template. Branching
nodes are not associated with a value. Instead they store summary statistics of all de-
scendant nodes and tell the detectors whether or not to search for anomalies in a partic-
ular branch. The branch creation process creates a root node and a set of children nodes,
where each child corresponds to a branching node based on attribute values specified in
the ontology template. For example, in the tree path industry/company/[PRICE]/Price/yyyy/

SHARD: A Framework for Sequential, Hierarchical Anomaly Ranking and Detection 5
<DataTreeTemplate>

<Node attribute="industry">
<Node attribute="company">

<Node attribute="edu" branch="EDU[c]"
propagateValues="True" >

<Node attribute="employee">
<Leaf attribute="edu" />

</Node>
</Node>

<Node attribute="date" step="2"
branch="PRICE"
propagateValues="True" >

<Node attribute="date" step="0">
<Node attribute="date"

step="1" >
<Leaf attribute="price"/>

</Node>
</Node>

</Node>
</Node>

</Node>
<Node attribute="edu" branch="EDU_PR"

propagateValues="True">
<Node attribute="date" step="2" >

<Leaf attribute="price"/>
</Node>

</Node>
</DataTreeTemplate>

Table 1. XML template and anomaly tree for XML template. Nodes a, c and d are examples of
branching Nodes. Node b is a semantic grouping node, as are all nodes below c and d. Node d
also specifies the data propagation to be categorical.

mm/dd/price3, all nodes are grouping nodes except for [PRICE] and the leaf node price
data. The leaf nodes propagate their values upward to the top branching node, which
means that every parent node is a summary of all of its child nodes. The XML example
has two leaf attribute values, price and education that anomalies will be calculated for.

The branch EDU[c] creates a branching node that maintains summary statistics (e.g.
mode) of the categorical datatype education for each employee in the semantic group-
ing node company, so that we can determine the most frequent level of education per
company. Likewise, the parent semantic grouping node industry allows the researcher
to also evaluate levels of education across industries. Branching node [EDU_PR] ag-
gregates prices by the average levels of education across all companies.

Table 1 also shows portions of the anomaly tree for the specified XML template. In
this example, there is only one industry, technology, under which there are three nodes,
one for each of the companies.4 The arrows at the bottom of nodes indicate nodes that
can be expanded to show their children. As the figure illustrates, the anomaly statis-
tics are populated throughout the tree and data statistics from the leaf nodes under a
branching node are aggregated as they are pushed up to the branching node, populat-
ing the intermediary nodes along the way. Each intermediary node maintains summary
statistics of its children nodes. The month level node for the price attribute, for exam-
ple, maintains the average price for all the children day nodes. Other statistics are also
calculated, including median, mode, standard deviation, and entropy.

4.3 Baseline Anomaly Detectors

The anomaly detectors use the anomaly tree, T , to determine the degree of anomalous-
ness of each node in T . This is accomplished by running each user specified anomaly

3 The XML template in table 1 uses the keyword ’step’ to identify which time steps to split on.
4 See http://cs.georgetown.edu/∼singh/SHARD/ for larger figures, data sets, and source code.

6 Robinson et al.

detection algorithm, e.g. statistical significance or entropy, for each element in the tree.
Along with the basic detectors, SHARD includes an ensemble detector that combines
the detection results of the individual detectors using a weighted voting algorithm,
where the weights are prespecified by the user. Once the anomaly scores are computed
by the different detectors, the tree nodes are annotated with this additional information.
This is also illustrated in Table 1.

In order to identify an anomaly, a data value must be compared to other data val-
ues. When evaluating a particular node in T , we use neighboring nodes as comparison
data. However, how these nodes are used differs depending on the particular anomaly
detection algorithm. For example, table 1 shows the current node under consideration
to be day 6 of month 1 (January) of year 1998 of CA, Inc. The options for comparison
data for this example include: 1) all immediate sister nodes, all nodes in January for this
year and company; 2) all prices for all months under the same company; 3) all prices for
all months and companies; 4) all the January 6ths’ for the current year across all com-
panies; and 5) the averages of the previous days or months. The SHARD framework
includes three parameterized defaults: 1) all local siblings (sister) nodes; 2) all nodes
at the same tree height for the same attribute; and 3) previous nodes at the same tree
height for the same attribute. Other options can be specified at configuration time and
new options are straightforward to integrated into framework.

4.4 Ranking Anomalies

Once all of the detectors have evaluated the nodes in T , the algorithm then runs a user
specified ranking method to assign an overall anomaly score to each node. The ranking
procedure can compute the anomaly score based on any of the following criteria: 1) the
anomaly scores provided by different detectors for a particular node; 2) the percentage
of detectors that found a particular node anomalous; 3) the priority of the detectors that
found the node to be anomalous; 4) the percentage of child nodes that were found to be
anomalous; 5) the importance of the level of granularity in which the anomalous node
occurs; and 6) whether anomalies occur in other parallel branches at the same granu-
larity. Our intuition is that the level of anomalousness depends on the domain priori-
ties, objectives and definitions of comparison data. Therefore, we incorporate a tunable
ranker that can be adjusted to these considerations. Ranking based on the percentage
of anomalous children is the default ranker in SHARD, although we also provide other
ranking procedures that combine different subsets of the mentioned factors.

4.5 Anomaly Tree Visualization

SHARD uses the SpaceTree [14] hierarchical visualization application to highlight the
most anomalous nodes based on a color heat map. SpaceTree reads in XML and dis-
plays an interactive tree of variable depth and width. This interactive software enables
users to expand the entire tree or focus on subtrees of different branches of the full tree
while hiding other subtrees. Doing this helps the user see where anomalies occur across
multiple resolutions. Because our framework is customizable, any amount of detail can
be displayed for each node including ranking scores, statistical summaries, individual
detector results, and raw data. This interactive visualization supports both an overview

SHARD: A Framework for Sequential, Hierarchical Anomaly Ranking and Detection 7

5 Empirical Evaluation

\section{Empirical Evaluation}

\label{sec:experiments}

In this section we evaluate our framework on synthetic data and three real world data sets, a stock

data set, a climatology data set and an event attendance data set. Our goal is to demonstrate the utility of

hierarchical anomaly detection, the accuracy of our voting approach using precision and recall, and the

flexibility of our framework.

\begin{figure*}

\centering

\includegraphics[width = 180mm]{images/synthetic_data_1yr.png}

\caption{One year of three synthetic time series}

\label{figure:synthetic-attributes}

\end{figure*}

5.1 Synthetic Data Experiments

\subsection{Synthetic Data Experiments}

For this analysis, we generated three time series with a numeric data value for each day over a six

year period. Figure \ref{synthetic-attributes} shows each of these time series for a one year period. As

illustrated in the figure, each time series has different properties and anomalies. Time series X

increases in overall magnitude over time with burst anomalies for 200 random days, one random month of

the year (this includes several of the random anomalous days), and one random year (this includes

Fig. 2. One year of synthetic time series data

and a detailed view, allowing for a more comprehensive analysis of the anomalies. Most
of the tree images in this paper were generated using SpaceTree.

5 Empirical Evaluation

In this section, we evaluate our framework on synthetic and real world data sets. Our
evaluation of the SHARD framework focuses on detection accuracy and anomalies dis-
covered. Specifically, we compare the accuracy of the detectors outside our framework
with the same detectors within the SHARD framework and show that the overall accu-
racy is generally maintained, while also offering bigger picture insights. We also discuss
these insights at different levels of the anomaly tree and demonstrate the flexibility of
our framework.

We experimented with four standard anomaly detection algorithms in our frame-
work: 1) the Shewhart algorithm [1], which flags anomalies that are x standard devi-
ations away from the mean; 2) the Cumulative Sum (cusum) algorithm, which tracks
the mean of all previous elements and compares the values to the current element; 3)
entropy (applied to anomalies as described in [7]); and 4) a thresholding version of
Bruenig et. al’s [2] Local Outlier Factor (LOF).

The ranking algorithm used in all of the experiments is RankerA. This ranker first
evaluates the children nodes. If at least half are anomalous, the current (parent) node is
also considered anomalous. Otherwise, the sum of all anomaly scores, one from each
detector, of a node is divided by the number of children nodes.

5.1 Synthetic Data Experiments

For this analysis, we generated three time series with a numeric data value for each
day over a six year period, and one categorical times series. Figure 2 shows each of the
numeric time series for a one year period. As illustrated in the figure, each time series
has different properties and anomalies. Time series X increases in overall magnitude
over time with burst anomalies for 200 random days, one random month of the year (this
includes several of the random anomalous days), and one random year (this includes
approximately 1/3 of its days being anomalous). Time series Y is similar except that
the "normal" comparison values across all 6 years remain relatively steady. Like X , it
contains randomly anomalous days, months and a year- most of which coincide with
the anomalies in time series X . Time series Z is mostly independent of the other two
time series and illustrates a plateau anomaly that starts and ends with anomalies found
inX and Y . It contains the same anomalous month each year in which all values during

8 Robinson et al.Using the same parameters and detectors within our framework, we see that while performance at

the leaf nodes is comparable, we also see a bigger picture of the anomalies.

xx

Single Detectors w/same parameters, leaving out 0.0 precision and recall scores.

Detector Attribute - Path Precision Recall

Shewhart

x - yyyy/mm/dd 75.3% 11.6%

x - leaf 100.0% 8.9%

y - yyyy/mm/dd 93.3% 12.5%

y - leaf 100.0% 54.5%

z - yyyy/mm 83.3% 45.5%

z - leaf 3.3% 50.0%

x,y,z - yyyy/dd 100.0% 2.2%

OVERALL 52.9% 12.7%

Entropy

x - yyyy 50.0% 100.0%

x - yyyy/mm 12.5% 50.0%

x - yyyy/mm/dd 29.6% 86.2%

x - leaf 21.6% 63.0%

y - yyyy 100.0% 100.0%

y - yyyy/mm 60.0% 100.0%

y - yyyy/mm/dd 29.1% 85.7%

y - leaf 100.0% 100.0%

z - yyyy/mm 83.3% 45.5%

z - yyyy/mm/dd 0.4% 25.0%

z - leaf 3.3% 50.0%

color - yyyy 25.0% 100.0%

color - yyyy/mm 6.7% 25%

color - leaf 30.2% 95.0%

x,y,z - yyyy 50.0% 100.0%

x,y,z - yyyy/mm 100.0% 52.9%

x,y,z - yyyy/mm/dd 33.9% 88.0%

OVERALL 28.3% 82.2%

LOF(1)
x - yyyy/mm/dd 92.0% 41.1%

y - yyyy/mm/dd 100.0% 29.9%

LOF(3) x,y,z - yyyy/mm/dd 98.1% 46.4%

OVERALL 95.6% 7.9%

Fig. 3. Single detectors

XML - verbatim

Detector Parameters Attribute Precision Recall

Shewhart

thresh=2 x 100.0% 8.9%

" y 100.0% 54.5%

" z 3.8% 50.0%

" color n/a n/a

" x,y,z 100.0% 10.3%

OVERALL 52.6% 24.2%

Entropy

thresh=1.2 x 21.6% 63.0%

" y 100.0% 100.0%

" z 3.8% 50.0%

" color 1.3% 47.8%

" x,y,z 21.8% 62.8%

OVERALL 20.5% 74.3%

LOF

k=15, dim=1 x 9.0% 0.5%

" y 100.0% 5.4%

" z 0.0% 0.0%

" color n/a n/a

k=15,dim=3 x,y,z 85.0% 15.2%

OVERALL 74.6% 6.7%

 (a) Baseline detectors

%JR - due to how LOF uses nodes as points, we don't have the same access to leaf node

values as in the baseline

Multiple Detectors

% JR - still looking for the 'best' configuration

We also show that combining these three detectors in our proposed voting scheme yields more

robust results, generally yielding scores that are comparable to the best detector for each section of the

tree.

xx

Detector Attribute - Path Precision Recall

Shewhart

Entropy

LOF(1)

LOF(3)

x - yyyy/mm/d 88.2% 43.3%

x - leaf 100.0% 8.9%

y - yyyy/mm/d 97.1% 30.4%

y - leaf 100.0% 100.0%

z - yyyy/mm 83.3% 45.4%

z - leaf 3.3% 50.0%

x,y,z - yyyy/mm/d 99.1% 46.4%

OVERALL 68.4% 25.6%

 (b) Ensemble detectors

Fig. 4. Baseline and ensemble detectors

this month are consistent for this month, but still much higher than the normal day value
for the rest of the year. At the individual day level, the only anomalies are the first day
of this month when the values increase and the first of the following month when the
values decrease back to normal. We also include a categorical attribute, Color, that is
dependent on the season in the times series (during months 11,12, 1, 2, 3 {blue, green,
purple}; 4, 5, 10 {yellow, orange}; and 6, 7, 8, 9{red, orange, yellow}). An anomalous
instance is an out-of-season color that corresponds with the Y anomalies’ time points.

Our ontology template for this data set consists of 5 branches underneath the root.
The first three simply aggregate each of the continuous variables by year, month and
day independently:

[DATE-X]/yyyy/mm/dd/x, [DATE-Y]/yyyy/mm/dd/y, [DATE-Z]/yyyy/mm/dd/z
The fourth branch groups all three variables under each unique date:

[DATE-XYZ]/yyyy/mm/dd/x,y,z
Here, the time series are evaluated together, in the context of each other. In other words,
the most anomalous time periods are when all three time series have anomalous be-
havior during the same time period. Note that there are parameters in the XML to nor-
malize or scale multiple values under a single node. In this run, the configuration was
set to Normalize. The final branch, [COLOR][c]/yyyy/mm/color organizes the categor-
ical colors by month and year to capture anomalies in the context of different seasons.
These various branches show the flexibility of the framework for handling different
feature combinations that the user wants to investigate.

Figure 4(a) shows the scores of the baseline algorithms outside of our framework.
The algorithms process each attribute individually and flag individual values as being
anomalous, but give no indication of anomalous months or years. Figure 3 shows the
results of the baseline algorithms within our framework. The overall scores are com-
parable with the record level scores outside of our framework in figure 4(a); however,

SHARD: A Framework for Sequential, Hierarchical Anomaly Ranking and Detection 9

anomalous because it has more events than the other months; 3) one Sunday is anomalous because it is

the only Sunday with an event; and 4) three days are anomalous because they are the only days with

multiple events.

 Using the SHARD framework we specified two parallel branches in the XML script, which

offers two different views of the data. The first was in the form of Month/Day/Hour/Count. This

organization establishes the normal throughputs at intuitive resolutions of per month, day and hours to

which the framework applies the detectors. The second branch was in the form of

Hour/DayOfWeek/Count/id/Count. This branch first establishes normal data behaviour of the 24 hours of

the day across the entire dataset, and then sub-aggregates the data by the day of the week and then the

counts. So, it might establish that the average count for 9:00 am is 3.5 people, and the average for 9:00

am/Wednesday is 5.0 people. The next groupings id/Count, then establish counts from a record by record

basis. Under 9:00 am/Wednesday there may be 10 different counts: 2, 3, 4 and 10; and under these counts

there may be n number of record id's except for node 10, which only has one record id. The flagging of

this id essentially flags the record id (as opposed to a given value) as anomalous. The final leaf node

Count is required by the framework in order to propagate values upward through the tree.

Detector Attribute - Path Precision Recall

Shewhart

mm/dd/hh 21.7% 49.4%

mm/dd/hh/c 25.0% 58.6%

hh 100.0% 9.1%

hh/Day/c 24.9% 43.2%

hh/Day/c/id/c 25.0% 56.5%

OVERALL 24.7% 51.9%

Detectors Attribute - Path Precision Recall

Shewhart

Entropy

LOF(1)

mm/dd/hh/c 72.2% 4.5%

Day 50.0% 4.2%

Day/c 62.8% 4.9%

Day/c/id/c 60.7% 5.5%

OVERALL 63.9% 4.6%

Detector Attribute - Path Precision Recall

Entropy

mm/dd/hh/c 72.2% 4.5%

hh/Day 14.3% 58.3%

hh/Day/c/id/c 60.1% 5.8%

OVERALL 39.5% 4.1%

Detector Attribute - Path Precision Recall

LOF
hh/Day 50.0% 16.7%

hh/Day/c 61.8% 4.9%

OVERALL 59.5% 1.3%

Individual and ensemble anomaly detectors on the CalIt2 dataset, where dd is the day of

month and Day is the day of week.

Inside the SHARD framework with this XML configuration, Shewhart with a threshold of 1

scores 24.7% precision, 51.9% recall on the anomaly tree nodes; Entropy with a threshold of 7.5 scores

39.5% precision, 4.1% recall; LOF where k=5 scores 59% precision and 1.3% recall; and these three

detectors in an ensemble score 63.9% precision and 4.6% recall. Outside of the SHARD framework

Shewhard and Entropy perform comparably on the flat data (pr= 24.8%, re=56.3%, and pr=55.7%,

re=5.4%, respectively), but LOF scores 0% precision and recall.

We offer a few observations. First, the 0 score of LOF outside of our system is probably due to at

least k records with high counts that are not known events. As these points are considered normal

comparison data, no points are flagged anomalous. In our framework this happens less because these

normal high-count records are dispersed throughout different parts of the anomaly tree. Second, the

ensemble run of these three methods produced a higher precision level than any of these three algorithms

independently. Third, the SHARD framework produced insight into many different levels of the anomaly

Table 2. Anomaly detectors on the CalIt2 dataset, (dd = day of month; Day = day of week)

a richer picture is gained using our framework: Shewhart now correctly identifies z’s
anomalous months with much higher accuracy, entropy performs well at nearly all reso-
lutions of the anomaly tree, and LOF’s recall is higher for most variables. Finally, figure
4(b) shows the results of the ensemble of these detectors. While the overall accuracy
and precision is lower than the single detectors in the framework, the interior nodes of
the tree have similar or better precision and accuracy results, demonstrating a potential
benefit of a diverse set of detectors for hierarchical anomaly detection.

5.2 Event Attendance Data Results

We now consider an event data set, the CalIt2 dataset [6], for detecting anomalous
events. This data set contains two observation time series (people flowing in and people
flowing out of the building) over 15 weeks from July to November. There are 48 time
points per day. The ’normal’ behavior of this data set is a periodic, light flow of people
going in and out of this building. When a conference is occurring, the flow increases
for what is considered normal at that day and time, and an anomaly occurs.

Using the SHARD framework we specified two parallel branches in the ontology
template, which offers two different views of the data. The first is Month/Day/Hour/Count
- the intutive hierarchy. The second branch is Hour/DayOfWeek/Count/id/Count. This
branch first establishes normal data behavior of the 24 hours of the day across the entire
dataset, and then sub-aggregates the data by the day of the week and then the counts. So,
it might establish that the average count for 9:00 am is 3.5 people, and the average for
9:00 am/Wednesday is 5.0 people. The next groupings id/Count, then establish counts
based on individual records.

Inside the SHARD framework with this XML configuration, Shewhart with a thresh-
old of 1 scores 24.7% precision, 51.9% recall on the anomaly tree nodes; Entropy with
a threshold of 7.5 scores 39.5% precision, 4.1% recall; LOF where k=5 scores 59%
precision and 1.3% recall; and these three detectors in an ensemble configuration score
63.9% precision and 4.6% recall. Outside of the SHARD framework Shewhard and
Entropy perform comparably on the flat data (pr= 24.8%, re=56.3%, and pr=55.7%,
re=5.4%, respectively), but LOF scores 0% precision and recall.

We offer a few observations. First, the 0 score of LOF outside of our system is
probably due to at least k records with high counts that are not known events. As these

10 Robinson et al.

Fig. 5. El Nino anomaly tree: inverted month-year hierarchies. Anomalous nodes shaded orange.

points are considered normal comparison data, no points are flagged anomalous when
the comparison data consists of all records. In our framework this happens less because
these normal high-count records are dispersed throughout different parts of the anomaly
tree. Second, the ensemble run of these three methods produced a higher precision level
than any of these three algorithms independently. Third, the SHARD framework pro-
duced insight into many different levels of the anomaly tree. Specifically, investigating
the SpaceTree nodes that were flagged anomalous, we determined: November is anoma-
lous because it has no events but very high counts, August is anomalous because it has
more events than the other months, all Saturdays are anomalous because they do not
have any events, one Sunday is anomalous because it is the only Sunday with an event,
and three days are anomalous because they are the only days with multiple events.

5.3 Climatology Data Results

Here we use a data set collected by the Pacific Marine Environmental Laboratory to
study the El Nino and La Nina phenomena [6]. This data set contains climatology data
from 1980-1998, during which there were 6 El Ninos (1982, 1987, 1991, 1992, 1994,
1997) and 1 La Nina (1988). The years in bold were considered very strong. The most
anomalous months with unusually high temperatures are typically December of that
year and January of the following year. There were 178,080 total readings of date,
location, trade winds, humidity and air and sea surface readings.

Using the SHARD framework, we create an XML template that contains a typical,
sequential date hierarchy year/month/day/{attribute} structure for each attribute. Using
Entropy, threshold=1, the framework flags the appropriate El Nino and La Nina years
with 87.5% precision and 58.3% recall using the ocean surface temperature; 88.9%
and 66.7%, respectively, with the air temperature readings. Because we do not have
ground truth weather information to accurately label all anomalous months and days,
the precision and recall cannot be reported for the other levels of the anomaly tree.

We pause to mention that this data set contains many missing values since not every
buoy was equipped to measure all of these attributes. Our framework can handle missing
values by creating tree nodes only for values that are present and then searching for local
anomalies within the tree.

Because of the flexibility of our XML templating, we also considered an alternative
XML template that inverts months with years, so that the hierarchy is month/year/day
as shown in figure 5. This means that for the month of December we have all year nodes

SHARD: A Framework for Sequential, Hierarchical Anomaly Ranking and Detection 11

5.2 Climatology Data Results

In this section we study the El Nino and La Nina phenomena from the UCI repository [?], which

contains climatology data from 1980-1998, during which there where 6 El Ninos (3 considered very

strong) and 1 strong La Nina. There were 178,080 total readings of date, location, trade winds, humidity

and air and sea surface readings. This data set contains many missing values since not every buoy was

equipped to measure all of these attributes. Our framework robustly handled these missing values by

creating tree nodes only for values that were present and then searching for local anomalies within the

tree. Using Entropy, threshold=1, the framework flags the appropriate El Nino and la Nina years with

87.5% precision and 58.3 recall using the ocean surface temperature; 88.9% and 66.7%, respectively, with

the air temperature readings. Due to not having any information on all months, though, the precision and

recall can’t be reported for the other levels of granularity. However, one really interesting deviation from

the multi-granular date approach that we’ve taken so far is to invert months with years on this dataset, so

that the hierarchy is month/year/day. This means that for the month of December we have all year nodes

as children and under each year node all December day measurements. This gives the researcher a very

easy way to learn during which years was December most anomalous. Using this inverse technique, if we

examine December, we find 85.7% precision and 77.7% recall at tagging the appropriate years. More

interestingly, though, the highest ranked nodes correspond perfectly to the 'strong' years.

5.3 Stock Data Results

In these experiments we analyze daily stock quotes from 1998-2008 [maybe it should be 2009

since a correction occurred in 2008] of 34 companies in the Technology, Financial, Services and

Consumer Goods sectors. There is 1 date, 7 numeric attributes and 5 categorical attributes for 14,805

records. We chose these years and industries because much happened in this decade: there was the

dot.com boom, followed by a correction year, 9/11, and another correction year following the real estate

boom.

With the stock data we decided to study the most anomalous years by industry. With entropy.

threshold=1.

Industry Years

Application Software 1999, 2000

Asset Management 2006 - 2008

Beverages - Brewers 2006 - 2008

Investment - Brokerage - Nat. 2000, 2006, 2007

Major Airlines 1998-2001, 2006, 2007

Regional Banks 2004-2007

Regional Airlines 1999, 2001, 2006

%JR - could also show very complex trees and the type of data in it. I just don't know

about the space.

Table 3. Anomalous years in stock data set

as children and under each year node all December day measurements. This gives the
researcher a very easy way to learn during which years December was most anomalous.
Using this inverse technique, if we examine December, we find 85.7% precision and
77.7% recall at tagging the appropriate years. More interestingly, though, the highest
ranked nodes correspond very well to the ’strong’ El Nino years.

5.4 Stock Data Results

In these experiments, we analyze the NASDAQ daily stock quotes from 1998-2009
of 34 companies in the Technology, Financial, Services and Consumer Goods sectors.
There is 1 date attribute, 7 numeric attributes and 5 categorical attributes for 14,805
records. We chose these years and industries because much happened in this decade:
there was the dot.com bubble, followed by a correction year, 9/11, and another cor-
rection year following the real estate bubble. With the stock data we decided to study
the most anomalous years by industry with the XML template configured as Indus-
try/Year/Company Size/Company Name/Month/Day/Closing Price. We again used a
default Entropy detector with a threshold of 1. A brief summary of these results can
be found in table 3. Although we found the correlations between anomalies in Asset
Management and those in Beverages - Brewers unexpected, the rest of the results seem
easily interpretable, Application Software’s dot.com boom and correction are rightly
noted, the airlines show up in 2001, and many financial anomalies start to show up in
2004-2008. These results are consistent with expectations.

5.5 Discussion

The experimental results demonstrate the utility of having a hierarchical anomaly detec-
tion framework. Our synthetic and event attendance detection results indicate that the
ensemble method has fewer false positives than the individual detection methods and
a higher accuracy than any of the individual methods. We believe this results because
the ensemble method is able to capture a more robust image of the data, whereas the
individual algorithms are more suited to detect a particular type of anomaly.

Our results also show that the existence of anomalies at one granularity is not indica-
tive of anomalies in other granularities. Figure 5 depicts a feature with many anomalous
leaf nodes, but the parents of these nodes are not anomalous as indicated by ’Anoma-
lous Nodes Below’. This is consistent with our understanding of point and contextual
anomalies, and that one does not imply the other. Higher granularities are more descrip-
tive of contextual anomalies, and not simply single point anomalies.

12 Robinson et al.

Using the SpaceTree application, we were also able to visualize our results in a
meaningful way. The user is able to access relevant statistics about each node, as well
as quickly see where anomalies are occurring. This is important in our work as mentally
visualizing anomalies at multiple granularities is not an intuitive task.

6 Conclusions and Future Work

This work introduces SHARD, a framework that supports analysis of complex, multi-
dimensional, hierarchical anomalies. Our framework is robust and allows for easy cus-
tomization for different applications, as well as easy extensions for adding additional
anomaly detectors and rankers. Using our prototype system, we illustrate both the flex-
ibility and utility of this framework on both synthetic and real world data sets. Future
work includes expanding the detectors in the framework, allowing for streaming analy-
sis, demonstrating other semantic hierarchies that are not time based, and reducing the
number of user specified parameters. Finally, many of the hierarchical aggregates men-
tioned are examples of cuboids. Extending our tree framework to a cube framework is
another promising direction.

Acknowledgments: This work is supported by the FODAVA program at the National
Science Foundation grant number #CCF0937070.

References

1. G.A. Barnard. Control charts and stochastic processes. Journal of the Royal Statistical
Society, B21:239–271, 1959.

2. Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: identifying
density-based local outliers. SIGMOD Record, 29:93–104, May 2000.

3. V. Chandola. Anomaly detection for symbolic sequences and time series data. PhD thesis,
University of Minnesota, 2009.

4. Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A survey. ACM
Computer Surveys, 41(3):1–58, 2009.

5. AL Oliveira CM Antunes. Temporal data mining: An overview. In KDD Workshop on
Temporal Data Mining, 2001.

6. A. Frank and A. Asuncion. UCI machine learning repository, 2010.
7. Zengyou He, Shengchun Deng, and Xiaofei Xu. An optimization model for outlier detection

in categorical data. In ICIC, Part I, LNCS 3644, page 400 âĂŞ 409. Springer-Verlag, 2005.
8. Victoria Hodge and Jim Austin. A survey of outlier detection methodologies. Artificial

Intelligence Review, 22:85–126, 2004.
9. C. Joslyn and E. Hogan. Order metrics for semantic knowledge systems. Hybrid Artificial

Intelligence Systems, pages 399–409, 2010.
10. Eamonn Keogh, Stefano Lonardi, and Bill Chiu. Finding surprising patterns in a time series

database in linear time and space. In ACM KDD, pages 550–556. ACM, 2002.
11. Xiaolei Li and Jiawei Han. Mining approximate top-k subspace anomalies in multi-

dimensional time-series data. In VLDB, pages 447–458. VLDB Endowment, 2007.
12. R. Nemani, H. Hashimoto, P. Votava, and F. et al Melton. Monitoring and forecasting ecosys-

tem dynamics using the terrestrial observation and prediction system (tops). Remote Sensing
of Environment, 113(7):1497–1509, 2009.

SHARD: A Framework for Sequential, Hierarchical Anomaly Ranking and Detection 13

13. A. Patcha and J.M. Park. An overview of anomaly detection techniques: Existing solutions
and latest technological trends. Computer Networks, 51(12):3448–3470, 2007.

14. Catherine Plaisant, Jesse Grosjean, and Benjamin B. Bederson. Spacetree: Supporting explo-
ration in large node link tree, design evolution and empirical evaluation. IEEE Symposium
on Information Visualization, 0:57, 2002.

