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Data Mining
Mauro Maggioni

Data collected from a variety of sources has been
accumulating rapidly. Many fields of science have
gone from being data-starved to being data-rich
and needing to learn how to cope with large data
sets. The rising tide of data also directly affects
our daily lives, in which computers surrounding us
use data-crunching algorithms to help us in tasks
ranging from finding the quickest route to our
destination considering current traffic conditions
to automatically tagging our faces in pictures; from
updating in near real time the prices of sale items
to suggesting the next movie we might want to
watch.

The general aim of data mining is to find useful
and interpretable patterns in data. The term can
encompass many diverse methods and therefore
means different things to different people. Here we
discuss some aspects of data mining potentially of
interest to a broad audience of mathematicians.

Assume a sample data point xi (e.g., a picture)
may be cast in the form of a long vector of numbers
(e.g., the pixel intensities in an image): we represent
it as a point in RD. Two types of related goals
exist. One is to detect patterns in this set of points,
and the other is to predict a function on the data:
given a training set (xi , f (xi))i , we want to predict
f at points outside the training set. In the case of
text documents or webpages, we might want to
automatically label each document as belonging
to an area of research; in the case of pictures, we
might want to recognize faces; when suggesting the
next movie to watch given past ratings of movies
by a viewer, f consists of ratings of unseen movies.
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Typically, xi is noisy (e.g., noisy pixel values), and
so is f (xi) (e.g., mislabeled samples in the training
set).

Of course mathematicians have long concerned
themselves with high-dimensional problems. One
example is studying solutions of PDEs as func-
tions in infinite-dimensional function spaces and
performing efficient computations by projecting
the problem onto low-dimensional subspaces (via
discretizations, finite elements, or operator com-
pression) so that the reduced problem may be
numerically solved on a computer. In the case
of solutions of a PDE, the model for the data
is specified: a lot of information about the PDE
is known, and that information is exploited to
predict the properties of the data and to construct
low-dimensional projections. For the digital data
discussed above, however, typically we have little
information and poor models. We may start with
crude models, measure their fitness to the data and
predictive ability, and, those being not satisfactory,
improve the models. This is one of the key pro-
cesses in statistical modeling and data mining. It
is not unlike what an applied mathematician does
when modeling a complex physical system: he may
start with simplifying assumptions to construct a
“tractable” model, derive consequences of such a
model (e.g., properties of the solutions) analytically
and/or with simulations, and compare the results
to the properties exhibited by the real-world phys-
ical system. New measurements and real-world
simulations may be performed, and the fitness
of the model reassessed and improved as needed
for the next round of validation. While physics
drives the modeling in applied mathematics, a
new type of intuition, built on experiences in the
world of high-dimensional data sets rather than
in the world of physics, drives the intuition of the
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mathematician set to analyze high-dimensional
data sets, where “tractable” models are geomet-
ric or statistical models with a small number of
parameters.

One of the reasons for focusing on reduc-
ing the dimension is to enable computations,
but a fundamental motivation is the so-called
curse of dimensionality. One of its manifestations
arises in the approximation of a 1-Lipschitz func-
tion on the unit cube, f : [0,1]D → R satisfying
|f (x) − f (y)| ≤ ||x − y|| for x, y ∈ [0,1]D. To
achieve uniform error ε, given samples (xi , f (xi)),
in general one needs at least one sample in each
cube of side ε, for a total of ε−D samples, which is
too large even for, say, ε = 10−1 and D = 100 (a
rather small dimension in applications). A common
assumption is that either the samples xi lie on
a low-dimensional subset of [0,1]D and/or f is
not simply Lipschitz but has a smoothness that
is suitably large, depending on D (see references
in [3]). Taking the former route, one assumes
that the data lies on a low-dimensional subset in
the high-dimensional ambient space, such as a
low-dimensional hyperplane or unions thereof, or
low-dimensional manifolds or rougher sets. Re-
search problems require ideas from different areas
of mathematics, including geometry, geometric
measure theory, topology, and graph theory, with
their tools for studying manifolds or rougher sets;
probability and geometric functional analysis for
studying random samples and measures in high
dimensions; harmonic analysis and approximation
theory, with their ideas of multiscale analysis and
function approximation; and numerical analysis,
because we need efficient algorithms to analyze
real-world data.

As a concrete example, consider the following
construction. Given n points {xi}ni=1 ⊂ RD and ε >
0, construct Wij = exp(− ||xi−xj ||

2

2ε ), Dii =
∑
j Wij ,

and the Laplacian matrix L = I − D− 1
2WD−

1
2 on

the weighted graph G with vertices {xi} and edges
weighted by W . When xi is sampled from a man-
ifold M and n tends to infinity, L approximates
(in a suitable sense) the Laplace-Beltrami operator
on M [2], which is a completely intrinsic object.
The random walk on G, with transition matrix
P = D−1W , approximates Brownian motion onM.
Consider, for a time t > 0, the so-called diffusion
distance dt(x, y) := ||P t(x, ·)− P t(y, ·)||L2(G) (see
[2]). This distance is particularly useful for cap-
turing clusters/groupings in the data, which are
regions of fast diffusion connected by bottlenecks
that slow diffusion. Let 1 = λ0 ≥ λ1 ≥ · · · be
the eigenvalues of P and ϕi be the correspond-
ing eigenvectors (ϕ0, when G is a web graph, is
related to Google’s pagerank). Consider a diffu-
sion map Φtd that embeds the graph in Euclidean
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Figure 1. Top: Diffusion map embedding of the
set of configurations of a small biomolecule
(alanine dipeptide) from its 36-dimensional state
space. The color is one of the dihedral angles
ϕ,ψϕ,ψϕ,ψ of the molecule, known to be essential to
the dynamics [4]. This is a physical system
where (approximate) equations of motion are
known, but their structure is too complicated
and the state space too high-dimensional to be
amenable to analysis. Bottom: Diffusion map of a
data set consisting of 1161 Science News
articles, each modeled by a 1153-dimensional
vector of word frequencies, embedded in a
low-dimensional space with diffusion maps, as
described in the text and in [2].

space, where Φtd(x) := (
√
λt1ϕ1(x), . . . ,

√
λtdϕd(x)),

for some t > 0 [2]. One can show that the Euclidean
distance between Φtd(x) and Φtd(y) approximates
dt(x, y), the diffusion distance at time scale t
between x and y on the graph G.
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In Figure 1 we apply this technique to two
completely different data sets. The first one is a set
of configurations of a small peptide, obtained by a
molecular dynamics simulation: a point xi ∈ R12×3

contains the coordinates in R3 of the 12 atoms
in the alanine dipeptide molecule (represented
as an inset in Figure 1). The forces between the
atoms in the molecule constrain the trajectories
to lie close to low-dimensional sets in the 36-
dimensional state space. In Figure 1 we apply the
construction above1 and represent the diffusion
map embedding of the configurations collected [4].
The second one is a set of text documents (articles
from Science News), each represented as a R1153

vector whose kth coordinate is the frequency of the
kth word in a 1153-word dictionary. The diffusion
embedding in low dimensions reveals even lower-
dimensional geometric structures, which turn out
to be useful for understanding the dynamics of
the peptide considered in the first data set and for
automatically clustering documents by topic in the
case of the second data set. Ideas from probability
(random samples), harmonic analysis (Laplacian),
and geometry (manifolds) come together in these
types of constructions.

This is only the beginning of one of many re-
search avenues explored in the last few years. Many
other exciting opportunities exist, for example the
study of stochastic dynamic networks, where a
sample is a network and multiple samples are
collected in time: quantifying and modeling change
requires introducing sensible and robust metrics
between graphs.

Further reading: [5, 3, 1] and the references
therein.
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1We use here a slightly different definition of the weight
matrix W , which uses distances between molecular con-
figurations up to rigid affine transformations, instead of
Euclidean distances.
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