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Abstract Problem 2. (Subspace Clustering) With the same data as
in Problem1 and prior knowledge on the model parameters
Modeling data by multiple low-dimensional planesis an K, (dx)&_,, cluster the data intd< groups corresponding
important problem in many applications such as computer to the model planes.
vision and pattern recognition. In the most general set-
ting where only coordinates of the data are given, the prob- ) k
lem asks to determine the optimal model parameters (i.e.,2tUre, which has mostly focused on ProblémWe think
number of planes and their dimensions), estimate the modelt IS important to keep them separate as their complexity
planes, and cluster the data accordingly. Though many al- 1S quite different, and so should be algorithms attempting
gorithms have been proposed, most of them need to assum_@e'r solution. Probler2 ha_ls been studied extensively dur-
prior knowledge of the model parameters and thus addressiNd the past decade, leading to a handful of proposed algo-
only the last two components of the problem. In this paper thms [15, 19, 20, 13, 8, 14, 1, 5, 21, 17]; for a compre-
we propose an efficient algorithm based on multiscale SVD hensive review of the subspace clustering methods, we re-
analysis and spectral methods to tackle the problem in full fer the reader tol[]. However, even several latest methods

. o )
generality. We also demonstrate its state-of-the-artgrerf [ 1% 1, 5, 21, 17 requireK” and/or(dy ), asinputs. To the
mance on both synthetic and real data. best of our knowledge, the only method that can solve Prob-

lem 1 is Agglomerative Lossy Coding (ALC)L[]. Never-
theless, ALC has an unknown tolerance parameter whose
different values lead, in theory and in practice, to differ-
ent numbers of clusters. Moreover, ALC is observed to
It is of interest in various applications to model data by be a slow method (see Secti)) with an unknown num-
hybrid linear models, i.e., using a union of low-dimensiona ber of iterations needed for convergence, and has no finite-
planes. In examples such as image processin fom- sample guarantees, albeit it seems to perform well with
puter vision [L5], and pattern recognitior.}], these mod- ~ small amounts of data and with ideal settings of the tol-
els have shown promise in solving modeling, clustering erance. Iterative methods,[16, 9] that alternate between
and classification tasks. Notwithstanding much recentthe subspace estimation and data clustering steps also ex-
work [18], the problem of finding a set of planes approx- ist. Typically, these methods are initialized with a random
imating a point cloud is still open at least from two perspec- guess of the planes or of the clusters. Though extremely
tives: from a theoretical standpoint most existing algomis ~ fast, they often converge to alocal optimal solution, fandr
do not have finite-sample guarantees, and from a practicathe global optimal one, especially in the cases of affine sub-
standpoint they require that the number of planes and theirspaces and of mixed dimensions. This makes iterative meth-
dimensions be given. Finally, computational efficiency is 0ds more suitable as a post-optimization tool for improving
also important, and several existing algorithms are slow in other algorithms, than as a clustering method on their own.
theory and in practice. We formulate the following prob- Therefore, we will not discuss iterative methods in the rest

The two problems are sometimes confused in the liter-

1. Introduction

lems: of the paper.
In this paper, we propose a new algorithm solving Prob-

Problem 1. (Model Selection) Given a data setY = lems 1, 2. Our approach is inspired by ideas from Mul-
{x1,...,xy} C RP sampled around a collection of tiscale Singular Value Decomposition (MSVD) 1] and
planesr,...,mx of dimensionsiy,...,dx respectively  spectral methods2, 1]. It only requires as inputs up-
(whereK andd,. are both unknown), determine the model per boundsik,,.. andd,,.x for the number of planes and
parametersk, (d)r_, and{m; 5 ,. their dimensions, respectively. Then, it automatically de

termines the model parametérs; d1, ..., dx, 71, ..., TK)
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with a near-optimal number of samples and computationalbe a probability measure iR” which is supported in
cost, and, upon request and with additional cost, clusters(Uf_, ;) N[—M, +M]P where{r,} are affined-planes.
the data accordingly. Moreover, it is robust to noise and ex- We shall assume thaty (7, N mg,) = 0 if k1 # ko, and
tremely fast. Finally, it may also be used to estimate citucia that the probability is well-distributed across the plamnes,
parameters needed by other state-of-the-art algorithofs su Jc¢; : px (7)) > ¢i/K, for all k. Conditioningux to

as those mentioned above. 7, We obtain a probability measuye, x, for which we
The rest of the paper is organized as follows. Secfion assume two types of regularity around a painte m:
presents our methodology for solving Problefnand 2. (a) volume regularity, i.e.dcy : Vr < M, cglr‘ik <

Numerical experiments are then conducted in Seclitm pkx(Bx(r)) < cor®, where By(r) is the RP-ball cen-
test the algorithm against existing methods. Finally, tae p tered atx of radiusr; (b) shape regularity, i.e., for any

per is concluded in Sectioh r > 0 and a random variabl&, x , ~ u x (restricted
on Bx(r)), the set of eigenvalues of its covariance sat-
2. Methodology isfy A(cov(Xgx.r)) C %[/\min, Amax] for fixed constants

We start by tackling Problert. First of all, we discuss ~ Amins Amax > 0. Let Ex := {r > 0 : By(r) N (UL, ;) C
the complexity of the problem at hand: the cost of encod- 7k}, andfz := sup Ex. We call ther € Ey good scales
ing the K planes (in generic position) 5, -, - dx D = atx, and R} the maximal good scaleR% is Iarge ifx is
O(K D max;, di,), since in order to encode, we need to far from other planes. We assume that th(le pakntare cor-
storedy, vectors inR”. Ideally, we would like to produce  upted by random Gaussian noige~ o D=2 N (0, Ip) (al-
an algorithm with comparable computational and sampling Peit assuming subgaussian distributions would be enough),
complexity. Note that this is independent 8f, and in and we will abuse notation to still denote the noisy samples
particular much smaller than the complexity of Problgm by x;. Finally, we assume thatc; < 1 (small enough:
which requires at the very least visiting every one of the Hk.x (R > 20) > 1 — c3, i.e. there is a substantial proba-
N points in the given data. Our algorithm will indeed have Dility that a,.., x-distributed random sample has a maximal
computational complexitg) (K maxdimax (dmax + Kmax) D), good scale above the noise scale.
whered ., Knax are given upper bounds ap and K, up
to some logarithmic factors id,,,,. and K., and with a
constant that depends only on a notion of “geometric com-  Suppose we samptey,...,x,, according touy: as
plexity of the problem” and on the size of the noise that soon asny > c4K log K we have with high probability
affects the points. Our approach will favor configurations (w.h.p.) Q(nopx (7)) = Q(52) = Q(cs) samples in
of the K planes such that a random poitc 7, has a  eachw, (as in the coupon collector's problem, with the
largeR” neighborhood that only interseets, and noother K planes representing coupons). If in addition we sam-
plane. The average size of such neighborhoods is a naturgble n ~ c5nodmax 1og dmay PoINts to form a random sub-
measure of complexity of the underlying geometry that cap- setX,,, with c5 = c5(c2, c3, o) large enough, then w.h.p. a
tures the intuition that configurations with planes with pan  large fraction of such points has a maximal scalg > o,
intersections and/or close-by are harder to resolve,if.e., which is large enough to contai(d,,.x 10g dmax) poiNts
will require more samples and possibly smaller noise for in X,,. For anyx € 7, among such points, at appropriate
the planes to be correctly identified. scalesoc < r < RZ, with only Q(dj log di) noisy sam-
Our approach to Problemd makes use of this as- ples it is possible to obtain an accurate empirical estimate
sumption and starts by findingy = O(Kax log Kinax) of cov(Xy x,-) [11]. The MSVD analysis of such matrices,
good local regions, together with their dimension estimate for varying values of-, yields accurate estimatds and#,
(dk)y2, and best approximating plang¢s; };2, by using  for 4, andn;, respectively. Moreover, by monitoring an em-
a Multiscale SVD analysis (MSVD)1[}, 4]. Then these pirical estimate of the fitting error of the data by the planes
planes{7; };2, are aligned together by a spectral method constructed as we increasg, with O(n) points as above
to generate the final estimates of the model parametersye produce a model with)(K) planes, that, w.h.p., is ac-
(Ksdy, . drc, T, 7). At this point, upon request,  curate in the sense thaty", ., ming dist®(x;, 74)2 ~
and with gddmo.nal cost, we may.proceed to solve Proble_m 1y~ miny, dist(x;, ) and this error is w.h.p. as
2 and assign points to planes. This type of approach was in-2 .2 S

) ) : ¢ small as can be expected. At this point we use spectral
spired by [L1], suggested in{] and independently inf]. clustering on a matrix of assignments of points to planes

2.1. Setup and assumptions to estimatel’, merge the estimated planes and (if requested
to solve Problen?) make the final point assignment. This

Our assumptions are that the probability of sampling yeasoning can be made rigorod [
from each plane is roughly/K and that the points on

each plane are well-distributed. More precisely, gt Theorem 2.1. With the above assumptions there exists

2.2. Sketch of the analysis
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an algorithm whose inputs are upper bounll§, .., dmax this strategy to infer the local dimensions at a subsetyof
for the number of planes and their dimensions, re- randomly sampled points fromy; Figurel illustrates its
spectively, such that the following holds: by access- behavior on a toy data set.

ing n < CdpaxKmax 10g Kiax log dmax Samples dis-
tributed according touy, whereC' = Cf(c1,co,0) is a Algorithm 1 Linear-manifolds Multiscale SVD (LMSVD)
constant, it returns w.h.p. the correct model parameters Input: Upper boundiy. for all di; sampling parametety.

(K;da,...,dr), and accurate approximations tory } 5, Output: no sampled pointsc;, maximal good regions;, lo-
intimeO (D K maxdmax (dmax + Kmax) 108 Kmax 10g dimax)- cal dimensionsl;, bestd;-planest; approximatingk; and the
o . . least squares erroés.

The finite sample and running time guarantees are the Steps:
strongest among the existing algorithms (most of which . Randomly sampleo points{xi, xa, .. ., xn, } according
have in fact no guarantees), and near optimal. Because of t0 px, letn; = jdmax 10g dmax, 1 < j < J = 50,
space constraint we cannot provide here the fully quantita- a0 = 0.3/vdmax.
tive result, nor the most general version of the above state- fori=1:no
ment, nor its proof, and we focus instead on the algorithm — For eachl < j < J, perform SVD analysis or;
itself, its implementation and performance, on syntheiit a and itsn; nearest neighbors using)(
real data, relative to the current state of the art. — Detect and discard the first few scaleswhere all

. . . theo;, grow linearly with slope> «q due to noise
2.3. Multiscale SVD analysis for multiple planes (thiséorresponds whp. 19 < o).

The first step of the algorithm is to estimate several lo- — Find the maximumi};, of subsequent scales within
cal planes from random samples from the distribution which the first fewo;, grow linearly while the
Our technique is based on the Multiscale Singular Value remaining ones are relatively flat, by thresholding
Decomposition (MSVD) 1], originally applied for esti- 5|0p§5 atv.
mating the intrinsic dimension of a point cloud. Singu- — Let R; be the subset containing; and its nearest
lar values computed in increasingly larger neighborhoods neighbors that are within distande;,, andd;, the
(scales) of each point are used to identify a range of scales number of the singular values with linear growth in
within which the singular values corresponding to the local the range, be the local dimensiomat
tangent plane, curvature and noise exhibit different ghowt — Let; be the best/;-plane approximatingt;, and
rates (as functions of scale). Here we only discuss our adap- o compute the corresponding least squares égror

tation of MSVD to the case of plane arrangements, to yield
a collection of good local pieces of the underlying planes, _ .
together with estimates of their intrinsic dimensions,tbes ~ We estimate the model error by the quantity

fitting planes and approximation errors.

n A
We fix a sequence of = O(1) positive integers:; ~ 72 = D ZO: & — 2)
[jdmax10gdmax],j = 1,...,J. We draw a point; ac- no = D —d;
cording topx, sayx; € m, and for eachy, lety, ..., yn; R
be then; nearest neighbors of;. We compute the top few  whered;, ¢; are the local dimensions and errors returned by
singular values;,,p = 1,. .., dmax, Of then; + 1 points Algorithm 1. Observe that an unbiased estimator for the true

error may be obtained by using a validation set of size no
larger than the set of points used to estinfater is (w.h.p.)
wherem; is the mean ok; and they’s (points are thought ~ close to the expected error. It will be used in Secfioh.2

of as column vectors). We let; := Hxi _ynjH, for to estimateK (when not given). We remark that many
j =1,...,J, be the local scales. The;, andr; depend  state-of-the-art algorithms such as ALC, SSC [], and

on the particular poink;, but we have dropped this depen- GPCA [14] crucially rely on the parameter, therein re-
dence from the notation. We will use the multiscale sin- ferred to as a “tolerance level”. The ALC method when
gular values{o;,};,1 < p < dmax and the local scales given the correct error tolerance estimates the right numbe
{r;}, to determine the local dimension &f. In [3] we of clustersK while clustering data, and otherwise fails to
prove that w.h.p. for < r; < R} the topdy, singular val- ~ do so, in general, as we shall discuss later.

uesc;, grow linearly inr; (as do their expected values, by
our assumptions oeov(Xy «,-)), While the remaining

YJ = (nj+1)71/2 [Xi—lle,Yl—mj, s 7Y7lj_mj]7 (1)

2.4. Plane alignment for modeling data

areO(o) (by the assumptions on the noigg. At scales Given the upper bound dimensiaeh,,, and the sam-
r; > Ry, atleasto;q, 11 also starts growing linearly, as  pling parameten,, Algorithm1 returnsn, random samples
intersections and points on other plangs, ¥ # k, en- x;, their optimal local region$; and associated parame-

ter the neighborhood of;. Algorithm 1 below implements ters(cZi, 74, €;). In this section we present how to use these
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Pointwise Dimension Estimates

(a) Dimension estimates afy = 60 randomly chosen samples (left) and

Optimal Local Scales

corresponding values of maximal good sc&k (right).

Est. Dim. =1

Est. Dim. =2

(b) Two points (indicated by black- symbols) among the ones above,

with corresponding dimension (title) and scale estimated Kegions).

Est. Dim. = 1

Sing.vals.

Sing.Vals.

Est. Dim. =2

01 015 02 025 03 03 04
Scale

(c) Plots of the multiscale singular values (for the two p®imbove) and
the detected local dimensions and good scales (betweemesyl |

Figure 1. lllustration of Algorithril (with no = 60) on a data set
of two lines and one plane iR?, each containing 200 points and
corrupted with Gaussian noise with= .04.

information to recover the hybrid linear model and corre-
spondingly partition the data ir. We first assume that the
number of subspaces is given to us (Sectiod.4.1), and
then discuss (in Sectich4.2 how to estimates when it is
unknown (using the tolerance &)j. Finally, we formulate
an algorithm (Sectio.4.3.

2.4.1 When the number of clustersk is given

We setny = Q(Klog K): we can show that (w.h.p.) a
constant fraction of the, planesr; approximates well one
of the true planes;. DefineX,,
collection of all samples and their nearest neighbors withi

0.45

= Uiicn, Ri C X, the

the optimal scales. We recall that the cardinalitpf X,

is O(nodmax10g dmax)-

This is the data that we will use,
together with the planes;, to estimate the model.

We define am x nq affinity matrix

distz(xi,ﬁj)

3)

Note thaté;, the local error estimate, serves as a tuning
parameter in the Gaussian kernel, and is locally adaptive.
Also, each rowA ;. maps the poink; to a feature vector

in R™° encoding the distances frox to the planes;. We
expect points generated in the same plane to be clumped
together in the feature space, and conversely points from
different planes in almost orthogonal directions; thiss e
emplified in the top left plot of Figura.

We next follow the corresponding steps of the SCC al-
gorithm [2] to partition the data inY,, into K subsets re-
specting the model. That is, after proper normalization of
the matrixA, we extract its top left singular vectors and
use them as columns to form a matfix The rows ofU
(regarded as points iR”), again properly normalized, are
used as new coordinates of the datatin We then apply
the K-means algorithm to these rows and obt&irclusters
X}, of X,,, We use thet},’s to provide updated estimates for
the model parameters. For example the intrinsic dimension
dy, of 7, is estimated through an internal voting procedure,
i.e., it is set to be the most frequent dimension of the sam-
plesx; that are assigned to this cluster. Finally, we7gt
be thed,, dimensional PCA plane of the clustéf,, and
partition the original data itt’ by assigning points to their
closest planes;,.

2.4.2 When the number of clustersk is unknown

When we do not knowk, we will apply the strategy in
the preceding section to the data Ap, (but with ny =
Q(Kmax log Kimax)), for K = k starting att = 1 and in-
creasing it by one at every iteration (or, better, by binary
search). In each iteration we compute the corresponkling
planest;;, 1 < j <k ofdimensionsijk approximating the
clusters¥;;, and error

BXk: dlbt Xl,ﬂ'Jk) @)
n D—dj.

I=1x; e X,

We gradually increask until we find the first: so thate(k)

is below the tolerance estimated in%): Kk = min{k :

e(k) < 7). This K is expected to be the true number of
clusters: fork < K, the corresponding-plane model can-

not accurately fit the data because their dimensions are cho-
sen among local dimension estimates, thus always under-
fitting the data and leading to large errefg). Note also

that we never need to check thdse- K.

2.4.3 The Multiscale Analysis of Plane Arrangements
(MAPA) algorithm

We present in Algorithn2 our solution to Problem$and2
and illustrate it in Figur& on the data of Figuré.
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Algorithm 2 MAPA

Input:  Upper bound$lmax, Kmax-

Output: Model parameterS K;di,...,dg;71,. ..
associated clustering.
Steps:

. Replace the original dat& with a random subset, which
with abuse of notation we still denote with’, of size
min{100 K max dmax 10g Kmax 10g dmax, N }.

. Apply Algorithm 1 to obtainng := 20 Kmax 10g Kmax
local regionsfzi and their associated statisti(mé, iy i)
Also, compute the tolerancein (2).

. Setk = 1 andd = mode{d; | 1 < i < no}. Compute
d-dimensional PCA plane fot’; lete(1) be as in §).

. If e(1) < 7, stop and return; otherwise forA as in
(3) and normalize it tol. = D~/?A, whereD
diag(AA'1). LetU := [uy,...,uk,,,]| the matrix of
the top left singular vectors dt.

. whilee(k) > 7

— Incrementk by 1 and letUy, = [ua, ..., ux].

— Normalize the row vectors dJ, to have unit length
to produce the matri¥,, and applyK-means to the
row vectors ofV, to find k clusters{.X;, }5_;.

,7g), and

— Let the dimensionijk of )Ejk be the mode number
of thed,’s of the sampled points assignedo;.
— Compute the best fitting planés;, of clus’[ers)ej;c
and approximation errar(k) using @).
end
. RetunK = k,d; = djx,#; = 7. If also solving
Problem?2, use; to cluster the original data i’ by
assigning points to their nearest planes.

2.5. Algorithmic complexity

For the solution of Problerh, we assume the algorithm
has access, at the ca@3{D), to any data point, and do not

Final Model: K =3,d, =1 1 2

10
3

Clusters in V Space (obtained by Kmeans)

- %@9@@00 !

Y%

Final Clusters in Original Space

o 9
& HYG
+ i

: +
o W LA

o4 02 O

Figure 2. lllustration of Algorithn® on the data of Figuré&. Note
that the errore(k) = 0 whenk > 3, indicating that MAPA
stopped ak: = 3 and thus did not examine those larger

3. Experiments

We extensively test the MAPA algorithm on simulated
and real data and compare it with ALCJ, GPCA-
voting [14], SCC [2], SSC ], LRR [17], and LBF [21].
Among these algorithms, only ALC estimates a model
given a tolerance level (though it is not completely clear
how ALC would infer the subspace dimensions once the
clusters are formed). The LBF algorithm estimates the
number of clusters only when al}, are equal and known.
Therefore, for each simulated or real data set, we will
compare MAPA only with ALC and LBF (for the lat-
ter we input the maximum of the dimensions when not
all equal) in terms of theK-modeling error i.e., fre-
qguency of incorrect identification of the model parame-
ter K, while reporting thed,-modeling errorfor MAPA
alone, i.e., frequency of incorrect identification of the di
mensionsdy, ..., dx. (Note that thel,-modeling error is

include the data storage in the space requirements. We als©0 smaller than thé{-modeling error.) In the meantime,

droplog factors in the following calculation. The space re-
quirement then i€ (K. D), driven by the cost of stor-
ing theny = Q(Kax) estimated planes. The total com-
putational cost of the algorithm I© (K nmaxdmax(dmax +
Kmax)D); in particular, it is independent oV, and is
only marginally higher that® (K d,,.x D), the cost of just
encoding the planes. It is computed as follows: if we
let n = O(Kmaxdmax), then in timeO(nonD) we may
compute the distances frompoints ton, points, in time
O(no(dmax + d2,,,. D)) we can find theO(dmax) Nearest
neighbors of each of the, points and perform MSVD,
in time O(nnodmaxD) We can construcA and in time
O(nno K max) we can comput®J, and in timeO (K ,.xn D)

we may computd(,,,..-means (as in]). In order to solve
Problem2, we simply add the cost of assigning points to
planes, which i$)(N K dyax D).

we also report thelustering errorandrunning timeof all
algorithms (run on Core 2 Duo 8400 3.0Ghz machines with
4GB of RAM). The Matlab code of MAPA, together with
links to the other algorithms’ webpages, can be found at
http://www.math.duke.edu/ ~mauro/code.html

3.1. Simulations

We generate many instances of artificial data using
code from the GPCA-voting package. We denote a col-
lection of planes of dimensiond,,...,dx in R” by
(di,...,dx; D). We will test MAPA against other meth-
ods in the following six instancegl, 1, 2; 3), (1,2, 2;3),
(2,2,2:3),(1,1,2,2;3),(1,2,3;4), and(1, 1, 3, 3; 6).

1The paper suggests to threshold the singular values of tistecs in
order to estimate their dimensions, however, neither itin@Matlab code
provides any further detail regarding how to implement iairobust way.
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1,1,23) 1,2,2%;3) (2,2,2;3) (1,2,1,2;3) 1,2,3:,4) (1,1,3,3;6)

L [ A L | A L | A C | A L [ A L | A

d. [MAPA] 0 0 0 0 0 0 1 0 0 0 7 0
K |[MAPA| 0 0 0 0 0 0 0 0 0 0 0 0
ALC | © 6 0 15 0 20 0 24 0 1 0 0

LBF || 81 23 0 2 1 0 77 15 71 19 72 30

ey | REF || 3.2t08| 1.9:12 || 3.8x09| 3.1t16 || 5.5¢12 | 3.6+13 || 4.6x0s | 3.6415 || 3.3x0s | 2.1x11 2.5:t05 | 0.0x00
MAPA || 3.2+07| 1.9+11 || 3.8t0s| 3.0+16 || 5.6+12 | 3.6+13 || 4.8tos | 3.7+14 || 3.4tos | 2.0:12 2.6+11 | 0.0xo00
ALC || 2.0t07| 1.3t54 || 3.2+12| 4.4+100|| 8.3+20| 7.6+126 || 4.0t12 | 7.4+127| 0.5:03 | 0.l:o2 0.8+03 | 0.0xo00
SCC || 3.5:10| 0.8:08 || 4.0£11| 2.4+16 || 5.6£11| 3.5t16 || 6.9456 | 2.4421 || 2.1+0s | 0.3+04 25+179 | 0.0xo00
GPCA || 6.0+94| 5.4+98 || 4.0t10| 9.6+09 || 5.7+11 | 5.1428 || 11.8t120| 24+130 || 4.2+29 | 5.2+78 || 19.9t128| 0.0xo00
LBF 33+36 | 11.0:131 || 5.6+£12 | 4.8+66 || 6.0£a6 | 3.8+15 27+38 | 9.2+85 31+72 | 10.0:125 || 19.5¢103 | 7.5+15
SSC || 29+166| 23+136 || 28+122| 34+131 || 354114 | 40+108 || 40+121 | 39+m2 || 17.5c115 | 15.4c122 || 4.2 180 | 1.1x17
LRR || 39456 | 27+113 || 48+54 | 34+122 || 55439 | 344117 || 53+33 | 39+s1 39+70 234127 || 18.8t54 | 19.5¢t130
t | MAPA .69 72 .64 .68 .60 .64 0.97 1.02 .70 77 1.26 1.53
ALC 15.4 27.1 15.2 | 30.2 146 | 33.8 29.3 57.7 16.4 40.2 34.2 83.8
SCC 1.42 1.19 2.08 | 1.94 2.74 | 2.56 4.45 4.06 3.26 3.04 5.12 5.04
GPCA| 3.44 4.18 3.74 | 7.36 1.39 | 2.04 5.97 11.65 12.0 12.9 32.1 34.6
LBF 10.5 11.5 104 | 11.3 17.4 | 19.3 12.2 13.5 17.9 19.4 25.2 27.4
SSC 167 120 171 126 165 124 251 180 179 134 298 222
LRR 240 236 272 267 288 284 694 684 290 286 731 678

Table 1. Comparison among various algorithms in six ingaraf hybrid linear modeling, including both linear (L) arffiree (A) data.
The experiment in each instance is repeated 100 times, sthéheneans foeq, (in percentage); (in seconds) and standard deviation for
ev, as well as modeling error rates far, di,, can be reported. The MAPA algorithm is applied usinng= 20- K. All the other algorithms
are given the truth for the necessary model and tuning paeas€The clustering errors of all algorithms are comparéh wreference
(REF) algorithm which directly assigns points to the nelagesund-truth planes.

Ineachinstancéls,...,dk; D), we firstrandomly gen-  can be regarded the same). It seems that ALC always does
erate a collection of' linear subspaces of dimensions worse in the affine case, which is the easier case for MAPA
di,...,dg in RP. We then randomly dra\200 samples  (due to better separation). A significant advantage of MAPA
from each subspace, and corrupt them with 4% Gaussians its fast speed (at least 20 times faster than ALC with a sin-
white noise. We refer to such datalim®ar datg as opposed  gle tolerance), parallelizability, and of course the faeit tit
to affine datai.e., data sampled from affine subspaces, gen-can solve Problerh much faster than Probleth MAPA is
erated by translating each cluster of the linear data by-a ran essentially parameter free (it only reqQuif€s, ., dmax); IN

dom vectorc € R, withc ~ N(0, Ip). contrast, ALC has the tolerance level as a crucial parameter
We apply the MAPA algorithm to such linear and affine POssibly hard to acquire in most practical applications.
data withng = 20 K. We examine both thé& -modeling Meanwhile, we report in the same table the clustering

andd,-modeling errors, and in addition, for the estimates errors and running times of SCC, GPCA, SSC and LRR on
K, dj and an associated clustering of the data, compute athe same data generated above. We give all the necessary
clustering erroey, (i.e., percentage of misclassified points). true model parameters to each of these algorithms. We set
We also apply the ALC algorithm: in order to ensure the the sampling parameter= 100K in SCC and the tuning
best possible results for ALC, we (a) set its tolerance pa-parameter = 0.01 in LRR, as used in the corresponding
rameter equal to theeue model error; (b) use the optimal papers. The SSC algorithm also contains an important tol-
coding length function depending on whether the planes areerance parameter for which we provide the true model error.
linear or affine. For LBF, we useax;, d;, as dimension of  We use the different versions of the SSC code to deal with
the planes, and as above provide the linear/affine informa-linear and affine data accordingly.
tion. We use the default values for the other parameters in - opserve that SCC also achieves excellent clustering re-
LBF, in particular,Kax = 10. sults in all scenarios, with a relatively fast speed. The SSC
We repeat the above experiment, for the three algorithms,algorithm only works well in the last case where the am-
100 times and record in Tablehe modeling errors, the av-  bient dimensionD is relatively high, so that the subspaces
erage clustering errors (with standard deviation), and theare nearly independent of each other, a known necessary
running times. Observe that both MAPA and ALC achieve assumption for SSC. Also, note that SSC and LRR are the
excellent results in all instances, while LBF performs well slowest methods (several hundred seconds), primarily due
only in two cases (where the dimensions are the same, oito the need to solve sparse coding problems per point.
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3.2. Applications to real data

The algorithm could be applied to problems wherever

one needs to model data using a union of subspaces. How=

ever, due to page limit, we only study two applicatioms;-
tion segmentatioandface clusteringin this paper.
3.2.1 Motion segmentation with affine camera models

We investigate the motion segmentation problem already
studied in a few paperg[14, 15]. Suppose that a camera is

7 =.001, .01, respectively, lead to incorreéf.

3.2.2 Clustering of facial images

We next consider the problem of clustering a collection of
images of human faces in fixed pose under varying illumi-
nation conditions. A well-known such dataset is the Yale
Face Database B/]. In general we know that for a Lam-

bertian object the set of all its images under a variety of
lighting conditions approximately span a low-dimensional
linear subspaced]. Moreover, images of different objects

tracking a dynamic scene and captures a video sequence gfe in different subspaces, so that this problem may be tack-

F frames of the scene, and also tiéatfeature points have
been selected from the moving objects. Then, given only
the trajectories of the feature points along the sequehee, t
problem is to segment the different motion$5,[14] show
that this is a subspace clustering problem, since undeeaffin
camera models the trajectory vectors corresponding to dif-
ferent moving objects acrogsimage frames live in distinct
linear subspaces of dimension at maésh R2F, or affine
subspaces of dimension at m@swithin those linear sub-
spaces. The boundglinear) and3 (affine) have been used
by the algorithmsi, 14] as the common dimension of the
subspaces in this setting.

However, the dimensions of the planes are still not pre-
cisely known. Moreover, the number of motiohSis re-
vealed as input to those algorithms. Here, we use MAPA to
infer the best model for the motion data, in addition to clus-

led by segmenting an arrangement of linear subspaces.
We use the frontal face images of all ten human sub-
jects in the Yale database. Overall, there @t@ images
(64 images per subject), of siBd0 x 480. We would like
to separate these images infbgroups, one per subject. We
apply the same preprocessing asir]] i.e., downsample
the images tal60 x 120 and apply SVD to project them
into R3°. We apply both MAPA and ALC on the prepro-
cessed images to estimate the number of subjects in the col-
lection and cluster the facial images. For MAPA, we set
ng = N to avoid randomness. It correctly identifies 10
groups and obtains a zero clustering error. In addition, the
dimensions of the planes are estimated to be a mixture of 2
and 3:d, = 3,3,3,3,3,2,3,2,3,3. These results are sum-
marized in Figurel. Also, MAPA estimates that = 1119
which is supplied to ALC as tolerance, in which case ALC

tering the motions. We use as examples the three Kanatanjjso correctly identifiedd = 10 together with zero cluster-

sequences that are originally producedin][and studied
in [2, 14]. These three data sets are also part of a large
database of 155 video sequenced,[but due to page limit
we will not test our algorithm on this extensive dataset. As

ing error. However, with another toleranece= 100 ALC
returnsl1 clusters.

4. Conclusions

a preprocessing step to suppress noise, we apply PCA to

project the data ont®&'° in which we then test our method
against the ALC algorithm.

We first apply MAPA to the projected data with = N
in order to avoid randomness: the results are reported in
Figure3. The number of motion&’ is correctly identified,
the underlying planes are determined to all have dimension
2, and the clusters are also perfectly recovered (up to a fe
errors in the third example). The model errors are estimate
to be.0507,.0405,.2391 using @) for the three sequences,
respectively. These numbers will be supplied to ALC as its
tolerance levels in the experiment below.

We next apply the ALC algorithm to the three sequences
and compare modeling and clustering errors. When ALC is
provided with the tolerance parameter estimated by MAPA,
it produces the corredt and has zero clustering error for
sequences 1 and 3, while overestimatiidor sequence 2.
We also test a few other values to further study the sensi-
tivity of the tolerance parameter. We find that for sequence
2 ALC returnsK = 3 wheneverr < 0.0560, but X' = 2
whent > 0.0565 (see Figure3); for sequences 1 and 3,

d

W

We presented an efficient and effective algorithm for es-
timating plane arrangements. It starts by finding many local
pieces of the underlying clusters, viaaltiscaleapproach,
and then aligns their best approximating planes, using a
spectralapproach, to recover the plane arrangement. It has
a computational complexity essentially comparable to that
of encoding the answer to the problems; in particular itis in
dependent of the number of points when solving Proklem
and it estimates the parameters of the model rather than re-
quiring them as inputs. The algorithm gives state-of-thte-a
results when compared with the current best algorithms, on
both synthetic and real data, and is faster.
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Figure 3. Results obtained by MAPA on sequences 1 and 3 (first
two rows) and by ALC on sequence 2 (last row) of the Kanatani [

dataset. MAPA achieves perfect result on sequence 2 (natrgho
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Figure 4. Results obtained by MAPA (witl, = N) on all 10
subjects in the Yale database using only their frontal fatages.

MAPA determined the best model to be 10 planes of mixed dimen-

sions 2 and 3, and achieved zero clustering error.
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