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Abstract

Modeling data by multiple low-dimensional planes is an
important problem in many applications such as computer
vision and pattern recognition. In the most general set-
ting where only coordinates of the data are given, the prob-
lem asks to determine the optimal model parameters (i.e.,
number of planes and their dimensions), estimate the model
planes, and cluster the data accordingly. Though many al-
gorithms have been proposed, most of them need to assume
prior knowledge of the model parameters and thus address
only the last two components of the problem. In this paper
we propose an efficient algorithm based on multiscale SVD
analysis and spectral methods to tackle the problem in full
generality. We also demonstrate its state-of-the-art perfor-
mance on both synthetic and real data.

1. Introduction

It is of interest in various applications to model data by
hybrid linear models, i.e., using a union of low-dimensional
planes. In examples such as image processing [10], com-
puter vision [15], and pattern recognition [14], these mod-
els have shown promise in solving modeling, clustering
and classification tasks. Notwithstanding much recent
work [18], the problem of finding a set of planes approx-
imating a point cloud is still open at least from two perspec-
tives: from a theoretical standpoint most existing algorithms
do not have finite-sample guarantees, and from a practical
standpoint they require that the number of planes and their
dimensions be given. Finally, computational efficiency is
also important, and several existing algorithms are slow in
theory and in practice. We formulate the following prob-
lems:

Problem 1. (Model Selection) Given a data setX =
{x1, . . . ,xN} ⊂ R

D sampled around a collection ofK
planesπ1, . . . , πK of dimensionsd1, . . . , dK respectively
(whereK anddk are both unknown), determine the model
parametersK, (dk)Kk=1 and{πk}

K
k=1.

Problem 2. (Subspace Clustering) With the same data as
in Problem1 and prior knowledge on the model parameters
K, (dk)

K
k=1, cluster the data intoK groups corresponding

to the model planes.

The two problems are sometimes confused in the liter-
ature, which has mostly focused on Problem2. We think
it is important to keep them separate as their complexity
is quite different, and so should be algorithms attempting
their solution. Problem2 has been studied extensively dur-
ing the past decade, leading to a handful of proposed algo-
rithms [15, 19, 20, 13, 8, 14, 1, 5, 21, 12]; for a compre-
hensive review of the subspace clustering methods, we re-
fer the reader to [18]. However, even several latest methods
[14, 1, 5, 21, 12] requireK and/or(dk)Kk=1 as inputs. To the
best of our knowledge, the only method that can solve Prob-
lem 1 is Agglomerative Lossy Coding (ALC) [13]. Never-
theless, ALC has an unknown tolerance parameter whose
different values lead, in theory and in practice, to differ-
ent numbers of clusters. Moreover, ALC is observed to
be a slow method (see Section3), with an unknown num-
ber of iterations needed for convergence, and has no finite-
sample guarantees, albeit it seems to perform well with
small amounts of data and with ideal settings of the tol-
erance. Iterative methods [6, 16, 9] that alternate between
the subspace estimation and data clustering steps also ex-
ist. Typically, these methods are initialized with a random
guess of the planes or of the clusters. Though extremely
fast, they often converge to a local optimal solution, far from
the global optimal one, especially in the cases of affine sub-
spaces and of mixed dimensions. This makes iterative meth-
ods more suitable as a post-optimization tool for improving
other algorithms, than as a clustering method on their own.
Therefore, we will not discuss iterative methods in the rest
of the paper.

In this paper, we propose a new algorithm solving Prob-
lems 1, 2. Our approach is inspired by ideas from Mul-
tiscale Singular Value Decomposition (MSVD) [11] and
spectral methods [20, 1]. It only requires as inputs up-
per boundsKmax anddmax for the number of planes and
their dimensions, respectively. Then, it automatically de-
termines the model parameters(K; d1, ..., dK , π1, . . . , πK)
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with a near-optimal number of samples and computational
cost, and, upon request and with additional cost, clusters
the data accordingly. Moreover, it is robust to noise and ex-
tremely fast. Finally, it may also be used to estimate crucial
parameters needed by other state-of-the-art algorithms such
as those mentioned above.

The rest of the paper is organized as follows. Section2
presents our methodology for solving Problems1 and 2.
Numerical experiments are then conducted in Section3 to
test the algorithm against existing methods. Finally, the pa-
per is concluded in Section4.

2. Methodology

We start by tackling Problem1. First of all, we discuss
the complexity of the problem at hand: the cost of encod-
ing theK planes (in generic position) is

∑

1≤k≤K dkD =
O(KDmaxk dk), since in order to encodeπk we need to
storedk vectors inRD. Ideally, we would like to produce
an algorithm with comparable computational and sampling
complexity. Note that this is independent ofN , and in
particular much smaller than the complexity of Problem2,
which requires at the very least visiting every one of the
N points in the given data. Our algorithm will indeed have
computational complexityO(Kmaxdmax(dmax+Kmax)D),
wheredmax,Kmax are given upper bounds ondk andK, up
to some logarithmic factors indmax andKmax, and with a
constant that depends only on a notion of “geometric com-
plexity of the problem” and on the size of the noise that
affects the points. Our approach will favor configurations
of the K planes such that a random pointx ∈ πk has a
largeRD neighborhood that only intersectsπk, and no other
plane. The average size of such neighborhoods is a natural
measure of complexity of the underlying geometry that cap-
tures the intuition that configurations with planes with many
intersections and/or close-by are harder to resolve, i.e.,it
will require more samples and possibly smaller noise for
the planes to be correctly identified.

Our approach to Problem1 makes use of this as-
sumption and starts by findingn0 = O(Kmax logKmax)
good local regions, together with their dimension estimates
(d̂k)

n0

k=1 and best approximating planes{π̂k}
n0

k=1 by using
a Multiscale SVD analysis (MSVD) [11, 4]. Then these
planes{π̂k}

n0

k=1 are aligned together by a spectral method
to generate the final estimates of the model parameters
(K; d1, ..., dK , π1, . . . , πK). At this point, upon request,
and with additional cost, we may proceed to solve Problem
2 and assign points to planes. This type of approach was in-
spired by [11], suggested in [4] and independently in [21].

2.1. Setup and assumptions

Our assumptions are that the probability of sampling
from each plane is roughly1/K and that the points on
each plane are well-distributed. More precisely, letµX

be a probability measure inRD which is supported in
(

∪K
k=1πk

)

∩ [−M,+M ]D where{πk} are affinedk-planes.
We shall assume thatµX (πk1

∩ πk2
) = 0 if k1 6= k2, and

that the probability is well-distributed across the planes, i.e.,
∃c1 : µX (πk) ≥ c1/K, for all k. ConditioningµX to
πk we obtain a probability measureµk,X , for which we
assume two types of regularity around a pointx ∈ πk:
(a) volume regularity, i.e.,∃c2 : ∀r ≤ M, c−1

2 rdk ≤
µk,X (Bx(r)) ≤ c2r

dk , whereBx(r) is theR
D-ball cen-

tered atx of radiusr; (b) shape regularity, i.e., for any
r > 0 and a random variableXk,x,r ∼ µk,X (restricted
on Bx(r)), the set of eigenvalues of its covariance sat-
isfy λ(cov(Xk,x,r)) ⊂ r2

dk
[λmin, λmax] for fixed constants

λmin, λmax > 0. LetEx := {r > 0 : Bx(r) ∩ (∪K
j=1πj) ⊆

πk}, andR∗
x
:= supEx. We call ther ∈ Ex good scales

at x, andR∗
x

the maximal good scale.R∗
x

is large ifx is
far from other planes. We assume that the pointsxi are cor-
rupted by random Gaussian noiseηi ∼ σD− 1

2N(0, ID) (al-
beit assuming subgaussian distributions would be enough),
and we will abuse notation to still denote the noisy samples
by xi. Finally, we assume that∃c3 < 1 (small enough) :
µk,X (R∗

x
> 2σ) ≥ 1 − c3, i.e. there is a substantial proba-

bility that aµk,X -distributed random sample has a maximal
good scale above the noise scale.

2.2. Sketch of the analysis

Suppose we samplex1, . . . ,xn0
according toµX : as

soon asn0 ≥ c4K logK we have with high probability
(w.h.p.) Ω(n0µX (πk)) = Ω(n0

K ) = Ω(c4) samples in
eachπk (as in the coupon collector’s problem, with the
K planes representing coupons). If in addition we sam-
ple n ∼ c5n0dmax log dmax points to form a random sub-
setXn, with c5 = c5(c2, c3, σ) large enough, then w.h.p. a
large fraction of such points has a maximal scaleR∗

x
> σ,

which is large enough to containΩ(dmax log dmax) points
in Xn. For anyx ∈ πk among such points, at appropriate
scalesσ . r ≤ R∗

x
, with only Ω(dk log dk) noisy sam-

ples it is possible to obtain an accurate empirical estimate
of cov(Xk,x,r) [11]. The MSVD analysis of such matrices,
for varying values ofr, yields accurate estimateŝdk andπ̂k

for dk andπk respectively. Moreover, by monitoring an em-
pirical estimate of the fitting error of the data by the planes
constructed as we increasen0, with O(n) points as above
we produce a model withO(K) planes, that, w.h.p., is ac-
curate in the sense that1n

∑

xi∈Xn
mink dist

2(xi, π̂k)
2 ∼

1
n

∑

xi∈Xn
mink dist

2(xi, πk) and this error is w.h.p. as
small as can be expected. At this point we use spectral
clustering on a matrix of assignments of points to planes
to estimateK, merge the estimated planes and (if requested
to solve Problem2) make the final point assignment. This
reasoning can be made rigorous [3]:

Theorem 2.1. With the above assumptions there exists
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an algorithm whose inputs are upper boundsKmax, dmax

for the number of planes and their dimensions, re-
spectively, such that the following holds: by access-
ing n ≤ CdmaxKmax logKmax log dmax samples dis-
tributed according toµX , whereC = C(c1, c2, σ) is a
constant, it returns w.h.p. the correct model parameters
(K; d1, ..., dK), and accurate approximations to{πk}

K
k=1,

in timeO(DKmaxdmax(dmax+Kmax) logKmax log dmax).

The finite sample and running time guarantees are the
strongest among the existing algorithms (most of which
have in fact no guarantees), and near optimal. Because of
space constraint we cannot provide here the fully quantita-
tive result, nor the most general version of the above state-
ment, nor its proof, and we focus instead on the algorithm
itself, its implementation and performance, on synthetic and
real data, relative to the current state of the art.

2.3. Multiscale SVD analysis for multiple planes

The first step of the algorithm is to estimate several lo-
cal planes from random samples from the distributionµX .
Our technique is based on the Multiscale Singular Value
Decomposition (MSVD) [11], originally applied for esti-
mating the intrinsic dimension of a point cloud. Singu-
lar values computed in increasingly larger neighborhoods
(scales) of each point are used to identify a range of scales
within which the singular values corresponding to the local
tangent plane, curvature and noise exhibit different growth
rates (as functions of scale). Here we only discuss our adap-
tation of MSVD to the case of plane arrangements, to yield
a collection of good local pieces of the underlying planes,
together with estimates of their intrinsic dimensions, best
fitting planes and approximation errors.

We fix a sequence ofJ = O(1) positive integersnj ∼
⌈jdmax log dmax⌉, j = 1, . . . , J . We draw a pointxi ac-
cording toµX , sayxi ∈ πk, and for eachj, lety1, . . . ,ynj

be thenj nearest neighbors ofxi. We compute the top few
singular valuesσjp, p = 1, . . . , dmax, of thenj + 1 points

Yj := (nj+1)−1/2 [xi−mj,y1−mj, . . . ,ynj
−mj], (1)

wheremj is the mean ofxi and they’s (points are thought
of as column vectors). We letrj :=

∥

∥xi − ynj

∥

∥, for
j = 1, . . . , J , be the local scales. Theσjp andrj depend
on the particular pointxi, but we have dropped this depen-
dence from the notation. We will use the multiscale sin-
gular values{σjp}j , 1 ≤ p ≤ dmax and the local scales
{rj}j to determine the local dimension atxi. In [3] we
prove that w.h.p. forσ < rj < R∗

xi
the topdk singular val-

uesσjp grow linearly inrj (as do their expected values, by
our assumptions oncov(Xk,x,r)), while the remainingσjp

areO(σ) (by the assumptions on the noiseηi). At scales
rj > R∗

xi
at leastσj,dk+1 also starts growing linearly, as

intersections and points on other planesπk′ , k′ 6= k, en-
ter the neighborhood ofxi. Algorithm 1 below implements

this strategy to infer the local dimensions at a subset ofn0

randomly sampled points fromµX ; Figure1 illustrates its
behavior on a toy data set.

Algorithm 1 Linear-manifolds Multiscale SVD (LMSVD)
Input: Upper bounddmax for all dk; sampling parametern0.
Output: n0 sampled pointsxi, maximal good regionŝRi, lo-

cal dimensionŝdi, bestd̂i-planesπ̂i approximatingR̂i and the
least squares errorŝǫi.
Steps:

. Randomly samplen0 points{x1,x2, . . . ,xn0
} according

to µX , let nj = jdmax log dmax, 1 ≤ j ≤ J = 50,
α0 = 0.3/

√
dmax.

. for i = 1 : n0

– For each1 ≤ j ≤ J , perform SVD analysis onxi

and itsnj nearest neighbors using (1).

– Detect and discard the first few scalesrj where all
theσjp grow linearly with slope≥ α0 due to noise
(this corresponds w.h.p. torj < σ).

– Find the maximumR̂∗
xi

of subsequent scales within
which the first fewσjp grow linearly while the
remaining ones are relatively flat, by thresholding
slopes atα0.

– Let R̂i be the subset containingxi and its nearest
neighbors that are within distancêR∗

xi
, andd̂i, the

number of the singular values with linear growth in
the range, be the local dimension atxi.

– Let π̂i be the best̂di-plane approximatinĝRi, and
compute the corresponding least squares errorǫ̂i.

end

We estimate the model error by the quantity

τ2 =
D

n0

n0
∑

i=1

ǫ̂2i

D − d̂i
, (2)

whered̂i, ǫ̂i are the local dimensions and errors returned by
Algorithm1. Observe that an unbiased estimator for the true
error may be obtained by using a validation set of size no
larger than the set of points used to estimateπ̂i. τ is (w.h.p.)
close to the expected error. It will be used in Section2.4.2
to estimateK (when not given). We remark that many
state-of-the-art algorithms such as ALC [13], SSC [5], and
GPCA [14] crucially rely on the parameterτ , therein re-
ferred to as a “tolerance level”. The ALC method when
given the correct error tolerance estimates the right number
of clustersK while clustering data, and otherwise fails to
do so, in general, as we shall discuss later.

2.4. Plane alignment for modeling data

Given the upper bound dimensiondmax and the sam-
pling parametern0, Algorithm1 returnsn0 random samples
xi, their optimal local regionŝRi and associated parame-
ters(d̂i, π̂i, ǫ̂i). In this section we present how to use these
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Figure 1. Illustration of Algorithm1 (with n0 = 60) on a data set
of two lines and one plane inR3, each containing 200 points and
corrupted with Gaussian noise withσ = .04.

information to recover the hybrid linear model and corre-
spondingly partition the data inX . We first assume that the
number of subspacesK is given to us (Section2.4.1), and
then discuss (in Section2.4.2) how to estimateK when it is
unknown (using the tolerance of (2)). Finally, we formulate
an algorithm (Section2.4.3).

2.4.1 When the number of clustersK is given

We setn0 = Ω(K logK): we can show that (w.h.p.) a
constant fraction of then0 planeŝπi approximates well one
of the true planesπk. DefineXn =

⋃

1≤i≤n0
R̂i ⊆ X , the

collection of all samples and their nearest neighbors within
the optimal scales. We recall that the cardinalityn of Xn

is O(n0dmaxlog dmax). This is the data that we will use,
together with the planeŝπi, to estimate the model.

We define ann× n0 affinity matrix

Aij := e
−

dist
2(xi,π̂j)
2ǫ̂2

j . (3)

Note that ǫ̂j , the local error estimate, serves as a tuning
parameter in the Gaussian kernel, and is locally adaptive.
Also, each rowAi : maps the pointxi to a feature vector
in R

n0 encoding the distances fromxi to the planeŝπj . We
expect points generated in the same plane to be clumped
together in the feature space, and conversely points from
different planes in almost orthogonal directions; this is ex-
emplified in the top left plot of Figure2.

We next follow the corresponding steps of the SCC al-
gorithm [2] to partition the data inXn into K subsets re-
specting the model. That is, after proper normalization of
the matrixA, we extract its topK left singular vectors and
use them as columns to form a matrixU. The rows ofU
(regarded as points inRK), again properly normalized, are
used as new coordinates of the data inXn. We then apply
theK-means algorithm to these rows and obtainK clusters
Xk of Xn, We use theXk ’s to provide updated estimates for
the model parameters. For example the intrinsic dimension
d̂k of πk is estimated through an internal voting procedure,
i.e., it is set to be the most frequent dimension of the sam-
plesxi that are assigned to this cluster. Finally, we letπ̂k

be thed̂k dimensional PCA plane of the clusterXk, and
partition the original data inX by assigning points to their
closest planeŝπk.

2.4.2 When the number of clustersK is unknown

When we do not knowK, we will apply the strategy in
the preceding section to the data inXn (but with n0 =
Ω(Kmax logKmax)), for K = k starting atk = 1 and in-
creasing it by one at every iteration (or, better, by binary
search). In each iteration we compute the correspondingk
planeŝπjk, 1 ≤ j ≤ k of dimensionŝdjk approximating the
clustersX̂jk, and error

e2(k) =
D

n

k
∑

j=1

∑

xi∈X̂jk

dist2(xi, π̂jk)

D − d̂jk
. (4)

We gradually increasek until we find the firstk so thate(k)
is below the toleranceτ estimated in (2): K̂ = min{k :
e(k) ≤ τ}. This K̂ is expected to be the true number of
clusters: fork < K̂, the correspondingk-plane model can-
not accurately fit the data because their dimensions are cho-
sen among local dimension estimates, thus always under-
fitting the data and leading to large errorse(k). Note also
that we never need to check thosek > K.

2.4.3 The Multiscale Analysis of Plane Arrangements
(MAPA) algorithm

We present in Algorithm2 our solution to Problems1 and2
and illustrate it in Figure2 on the data of Figure1.
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Algorithm 2 MAPA
Input: Upper boundsdmax,Kmax.
Output: Model parameters(K̂; d̂1, . . . , d̂K̂ ; π̂1, . . . , π̂K̂), and

associated clustering.
Steps:

. Replace the original dataX with a random subset, which
with abuse of notation we still denote withX , of size
min{100Kmaxdmax logKmax log dmax, N}.

. Apply Algorithm 1 to obtainn0 := 20Kmax logKmax

local regionsR̂i and their associated statistics(d̂i, π̂i, ǫ̂i).
Also, compute the toleranceτ in (2).

. Setk = 1 andd = mode{d̂i | 1 ≤ i ≤ n0}. Compute
d-dimensional PCA plane forX ; let e(1) be as in (4).

. If e(1) ≤ τ , stop and return; otherwise formA as in
(3) and normalize it toL = D

−1/2
A, whereD =

diag(AA
′
1). Let U := [u1, . . . ,uKmax

] the matrix of
the top left singular vectors ofL.

. while e(k) > τ

– Incrementk by 1 and letUk = [u1, . . . ,uk].

– Normalize the row vectors ofUk to have unit length
to produce the matrixVk, and applyK-means to the
row vectors ofVk to findk clusters{X̂jk}kj=1.

– Let the dimension̂djk of X̂jk be the mode number
of the d̂i’s of the sampled points assigned tôXjk.

– Compute the best fitting planeŝπjk of clustersX̂jk

and approximation errore(k) using (4).
end

. ReturnK̂ = k, d̂j = d̂jk, π̂j = π̂jk. If also solving
Problem2, use π̂j to cluster the original data inX by
assigning points to their nearest planes.

2.5. Algorithmic complexity

For the solution of Problem1, we assume the algorithm
has access, at the costO(D), to any data point, and do not
include the data storage in the space requirements. We also
droplog factors in the following calculation. The space re-
quirement then isO(KmaxD), driven by the cost of stor-
ing then0 = Ω(Kmax) estimated planes. The total com-
putational cost of the algorithm isO(Kmaxdmax(dmax +
Kmax)D); in particular, it is independent ofN , and is
only marginally higher thanO(KdmaxD), the cost of just
encoding the planes. It is computed as follows: if we
let n = O(Kmaxdmax), then in timeO(n0nD) we may
compute the distances fromn points ton0 points, in time
O(n0(dmax + d2maxD)) we can find theO(dmax) nearest
neighbors of each of then0 points and perform MSVD,
in time O(nn0dmaxD) we can constructA and in time
O(nn0Kmax)we can computeU, and in timeO(KmaxnD)
we may computeKmax-means (as in [2]). In order to solve
Problem2, we simply add the cost of assigning points to
planes, which isO(NKdmaxD).

Elements of the Matrix A
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Figure 2. Illustration of Algorithm2 on the data of Figure1. Note
that the errorse(k) = 0 when k > 3, indicating that MAPA
stopped atk = 3 and thus did not examine those largerk.

3. Experiments

We extensively test the MAPA algorithm on simulated
and real data and compare it with ALC [13], GPCA-
voting [14], SCC [2], SSC [5], LRR [12], and LBF [21].
Among these algorithms, only ALC estimates a model
given a tolerance level (though it is not completely clear
how ALC would infer the subspace dimensions once the
clusters are formed).1 The LBF algorithm estimates the
number of clusters only when alldk are equal and known.
Therefore, for each simulated or real data set, we will
compare MAPA only with ALC and LBF (for the lat-
ter we input the maximum of the dimensions when not
all equal) in terms of theK-modeling error, i.e., fre-
quency of incorrect identification of the model parame-
ter K, while reporting thedk-modeling error for MAPA
alone, i.e., frequency of incorrect identification of the di-
mensionsd1, . . . , dK . (Note that thedk-modeling error is
no smaller than theK-modeling error.) In the meantime,
we also report theclustering errorandrunning timeof all
algorithms (run on Core 2 Duo 8400 3.0Ghz machines with
4GB of RAM). The Matlab code of MAPA, together with
links to the other algorithms’ webpages, can be found at
http://www.math.duke.edu/ ˜ mauro/code.html .

3.1. Simulations

We generate many instances of artificial data using
code from the GPCA-voting package. We denote a col-
lection of planes of dimensionsd1, . . . , dK in R

D by
(d1, . . . , dK ;D). We will test MAPA against other meth-
ods in the following six instances:(1, 1, 2; 3), (1, 2, 2; 3),
(2, 2, 2; 3), (1, 1, 2, 2; 3), (1, 2, 3; 4), and(1, 1, 3, 3; 6).

1The paper suggests to threshold the singular values of the clusters in
order to estimate their dimensions, however, neither it northe Matlab code
provides any further detail regarding how to implement it ina robust way.
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(1, 1, 2; 3) (1, 2, 2; 3) (2, 2, 2; 3) (1, 2, 1, 2; 3) (1, 2, 3; 4) (1, 1, 3, 3; 6)
L A L A L A L A L A L A

dk MAPA 0 0 0 0 0 0 1 0 0 0 7 0
K MAPA 0 0 0 0 0 0 0 0 0 0 0 0

ALC 0 6 0 15 0 20 0 24 0 1 0 0
LBF 81 23 0 2 1 0 77 15 71 19 72 30

e% REF 3.2±0.8 1.9±1.2 3.8±0.9 3.1±1.6 5.5±1.2 3.6±1.3 4.6±0.8 3.6±1.5 3.3±0.8 2.1±1.1 2.5±0.5 0.0±0.0

MAPA 3.2±0.7 1.9±1.1 3.8±0.8 3.0±1.6 5.6±1.2 3.6±1.3 4.8±0.8 3.7±1.4 3.4±0.8 2.0±1.2 2.6±1.1 0.0±0.0

ALC 2.0±0.7 1.3±5.4 3.2±1.2 4.4±10.0 8.3±2.0 7.6±12.6 4.0±1.2 7.4±12.7 0.5±0.3 0.1±0.2 0.8±0.3 0.0±0.0

SCC 3.5±1.0 0.8±0.8 4.0±1.1 2.4±1.6 5.6±1.1 3.5±1.6 6.9±5.6 2.4±2.1 2.1±0.8 0.3±0.4 25±17.9 0.0±0.0

GPCA 6.0±9.4 5.4±9.8 4.0±1.0 9.6±9.9 5.7±1.1 5.1±2.8 11.8±12.9 24±13.9 4.2±4.9 5.2±7.8 19.9±14.8 0.0±0.0

LBF 33±3.6 11.0±13.1 5.6±1.2 4.8±6.6 6.0±4.6 3.8±1.5 27±3.8 9.2±8.5 31±7.2 10.0±12.5 19.5±10.3 7.5±11.5

SSC 29±16.6 23±13.6 28±12.2 34±13.1 35±11.4 40±10.8 40±12.1 39±11.2 17.5±11.5 15.4±12.2 4.2±8.0 1.1±1.7

LRR 39±5.6 27±11.3 48±5.4 34±12.2 55±3.9 34±11.7 53±3.3 39±8.1 39±7.0 23±12.7 18.8±5.4 19.5±13.0

t MAPA .69 .72 .64 .68 .60 .64 0.97 1.02 .70 .77 1.26 1.53
ALC 15.4 27.1 15.2 30.2 14.6 33.8 29.3 57.7 16.4 40.2 34.2 83.8
SCC 1.42 1.19 2.08 1.94 2.74 2.56 4.45 4.06 3.26 3.04 5.12 5.04

GPCA 3.44 4.18 3.74 7.36 1.39 2.04 5.97 11.65 12.0 12.9 32.1 34.6
LBF 10.5 11.5 10.4 11.3 17.4 19.3 12.2 13.5 17.9 19.4 25.2 27.4
SSC 167 120 171 126 165 124 251 180 179 134 298 222
LRR 240 236 272 267 288 284 694 684 290 286 731 678

Table 1. Comparison among various algorithms in six instances of hybrid linear modeling, including both linear (L) and affine (A) data.
The experiment in each instance is repeated 100 times, so that the means fore% (in percentage),t (in seconds) and standard deviation for
e%, as well as modeling error rates forK, dk, can be reported. The MAPA algorithm is applied usingn0 = 20 ·K. All the other algorithms
are given the truth for the necessary model and tuning parameters. The clustering errors of all algorithms are compared with a reference
(REF) algorithm which directly assigns points to the nearest ground-truth planes.

In each instance(d1, . . . , dK ;D), we first randomly gen-
erate a collection ofK linear subspaces of dimensions
d1, . . . , dK in R

D. We then randomly draw200 samples
from each subspace, and corrupt them with 4% Gaussian
white noise. We refer to such data aslinear data, as opposed
to affine data, i.e., data sampled from affine subspaces, gen-
erated by translating each cluster of the linear data by a ran-
dom vectorc ∈ R

D, with c ∼ N(0, ID).

We apply the MAPA algorithm to such linear and affine
data withn0 = 20K. We examine both theK-modeling
anddk-modeling errors, and in addition, for the estimates
K, dk and an associated clustering of the data, compute a
clustering errore% (i.e., percentage of misclassified points).
We also apply the ALC algorithm: in order to ensure the
best possible results for ALC, we (a) set its tolerance pa-
rameter equal to thetrue model error; (b) use the optimal
coding length function depending on whether the planes are
linear or affine. For LBF, we usemaxk dk as dimension of
the planes, and as above provide the linear/affine informa-
tion. We use the default values for the other parameters in
LBF, in particular,Kmax = 10.

We repeat the above experiment, for the three algorithms,
100 times and record in Table1 the modeling errors, the av-
erage clustering errors (with standard deviation), and the
running times. Observe that both MAPA and ALC achieve
excellent results in all instances, while LBF performs well
only in two cases (where the dimensions are the same, or

can be regarded the same). It seems that ALC always does
worse in the affine case, which is the easier case for MAPA
(due to better separation). A significant advantage of MAPA
is its fast speed (at least 20 times faster than ALC with a sin-
gle tolerance), parallelizability, and of course the fact that it
can solve Problem1 much faster than Problem2. MAPA is
essentially parameter free (it only requiresKmax, dmax); in
contrast, ALC has the tolerance level as a crucial parameter,
possibly hard to acquire in most practical applications.

Meanwhile, we report in the same table the clustering
errors and running times of SCC, GPCA, SSC and LRR on
the same data generated above. We give all the necessary
true model parameters to each of these algorithms. We set
the sampling parameterc = 100K in SCC and the tuning
parameterλ = 0.01 in LRR, as used in the corresponding
papers. The SSC algorithm also contains an important tol-
erance parameter for which we provide the true model error.
We use the different versions of the SSC code to deal with
linear and affine data accordingly.

Observe that SCC also achieves excellent clustering re-
sults in all scenarios, with a relatively fast speed. The SSC
algorithm only works well in the last case where the am-
bient dimensionD is relatively high, so that the subspaces
are nearly independent of each other, a known necessary
assumption for SSC. Also, note that SSC and LRR are the
slowest methods (several hundred seconds), primarily due
to the need to solve sparse coding problems per point.
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3.2. Applications to real data

The algorithm could be applied to problems wherever
one needs to model data using a union of subspaces. How-
ever, due to page limit, we only study two applications,mo-
tion segmentationandface clustering, in this paper.

3.2.1 Motion segmentation with affine camera models

We investigate the motion segmentation problem already
studied in a few papers [2, 14, 15]. Suppose that a camera is
tracking a dynamic scene and captures a video sequence of
F frames of the scene, and also thatN feature points have
been selected from the moving objects. Then, given only
the trajectories of the feature points along the sequence, the
problem is to segment the different motions. [15, 14] show
that this is a subspace clustering problem, since under affine
camera models the trajectory vectors corresponding to dif-
ferent moving objects acrossF image frames live in distinct
linear subspaces of dimension at most4 in R

2F , or affine
subspaces of dimension at most3 within those linear sub-
spaces. The bounds4 (linear) and3 (affine) have been used
by the algorithms [2, 14] as the common dimension of the
subspaces in this setting.

However, the dimensions of the planes are still not pre-
cisely known. Moreover, the number of motionsK is re-
vealed as input to those algorithms. Here, we use MAPA to
infer the best model for the motion data, in addition to clus-
tering the motions. We use as examples the three Kanatani
sequences that are originally produced in [15] and studied
in [2, 14]. These three data sets are also part of a large
database of 155 video sequences [17], but due to page limit
we will not test our algorithm on this extensive dataset. As
a preprocessing step to suppress noise, we apply PCA to
project the data ontoR10 in which we then test our method
against the ALC algorithm.

We first apply MAPA to the projected data withn0 = N
in order to avoid randomness: the results are reported in
Figure3. The number of motionsK is correctly identified,
the underlying planes are determined to all have dimension
2, and the clusters are also perfectly recovered (up to a few
errors in the third example). The model errors are estimated
to be.0507, .0405, .2391 using (2) for the three sequences,
respectively. These numbers will be supplied to ALC as its
tolerance levels in the experiment below.

We next apply the ALC algorithm to the three sequences
and compare modeling and clustering errors. When ALC is
provided with the tolerance parameter estimated by MAPA,
it produces the correctK and has zero clustering error for
sequences 1 and 3, while overestimatingK for sequence 2.
We also test a few other values to further study the sensi-
tivity of the tolerance parameter. We find that for sequence
2 ALC returnsK = 3 wheneverτ ≤ 0.0560, butK = 2
whenτ ≥ 0.0565 (see Figure3); for sequences 1 and 3,

τ = .001, .01, respectively, lead to incorrectK.

3.2.2 Clustering of facial images

We next consider the problem of clustering a collection of
images of human faces in fixed pose under varying illumi-
nation conditions. A well-known such dataset is the Yale
Face Database B [7]. In general we know that for a Lam-
bertian object the set of all its images under a variety of
lighting conditions approximately span a low-dimensional
linear subspace [9]. Moreover, images of different objects
lie in different subspaces, so that this problem may be tack-
led by segmenting an arrangement of linear subspaces.

We use the frontal face images of all ten human sub-
jects in the Yale database. Overall, there are640 images
(64 images per subject), of size640 × 480. We would like
to separate these images into10 groups, one per subject. We
apply the same preprocessing as in [14], i.e., downsample
the images to160 × 120 and apply SVD to project them
into R

30. We apply both MAPA and ALC on the prepro-
cessed images to estimate the number of subjects in the col-
lection and cluster the facial images. For MAPA, we set
n0 = N to avoid randomness. It correctly identifies 10
groups and obtains a zero clustering error. In addition, the
dimensions of the planes are estimated to be a mixture of 2
and 3:dk = 3, 3, 3, 3, 3, 2, 3, 2, 3, 3. These results are sum-
marized in Figure4. Also, MAPA estimates thatτ = 1119
which is supplied to ALC as tolerance, in which case ALC
also correctly identifiesK = 10 together with zero cluster-
ing error. However, with another toleranceτ = 100 ALC
returns11 clusters.

4. Conclusions

We presented an efficient and effective algorithm for es-
timating plane arrangements. It starts by finding many local
pieces of the underlying clusters, via amultiscaleapproach,
and then aligns their best approximating planes, using a
spectralapproach, to recover the plane arrangement. It has
a computational complexity essentially comparable to that
of encoding the answer to the problems; in particular it is in-
dependent of the number of points when solving Problem1,
and it estimates the parameters of the model rather than re-
quiring them as inputs. The algorithm gives state-of-the-art
results when compared with the current best algorithms, on
both synthetic and real data, and is faster.
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Figure 3. Results obtained by MAPA on sequences 1 and 3 (first
two rows) and by ALC on sequence 2 (last row) of the Kanatani
dataset. MAPA achieves perfect result on sequence 2 (not shown).
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Figure 4. Results obtained by MAPA (withn0 = N ) on all 10
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