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Abstract

This paper investigates the challenge of inte-
grating intelligent systems into varying com-
putational platforms and application mixes
while providing reactive (or soft real-time)
response. We integrate Bayesian network
computation with feedback control, thereby
achieving our reactive objective. As a case
study we investigate fault diagnosis using
Bayesian networks. While we consider the
likelihood weighting and junction tree propa-
gation Bayesian network inference algorithms
in some detail, we hypothesize that the tech-
niques developed can be broadly applied to
achieve reactive intelligent systems. In this
paper�s empirical study we demonstrate re-
active fault diagnosis for an electrical power
system.

1 INTRODUCTION

Substantial progress has been made over the last few
decades in the areas of learning and reasoning using
Bayesian networks (BNs) [29]. While most BN in-
ference problems are computationally hard (NP-hard
or worse) in the general case [6, 33, 28], e¢ cient al-
gorithms have been developed and demonstrated in
a wide range of automated reasoning applications in-
cluding model-based diagnosis [19, 24, 32, 31].

There has recently been an explosion in the number
and types of computers available, capable of running
implementations of sophisticated algorithms including
BN-based algorithms. This is a result of the advance-
ments in both hardware and software platforms now
powering computers, which range from smart phones
and tablet PCs to high-end gaming machines and high-
performance computing (HPC) clusters.

The proliferation of computers of highly varying capa-

bility provides new opportunities for AI systems and
also raises several interesting research questions [21].
Can BN-based algorithms be implemented, adapted,
or �wrapped�such that they reactively (or in soft real-
time) compute meaningful results across a myriad of
commercially available computers? Can algorithms be
optimized such that users may generally continue to
operate their computers normally while also running
AI systems�that is, continue to check email, chat, and
partake in social networking?

To start answering these questions, this paper devel-
ops an architecture that integrates Bayesian network
computation and feedback control. The architecture
contains two feedback loops, a lower-level inner loop
and a higher-level outer loop. What drives the inner
loop is the di¤erence between desired completion time
(or setpoint, set to achieve reactivity) and actual com-
pletion time. The goal of the outer loop is to trade o¤
between higher-level issues such as speed of inference,
resource allocation, and accuracy.

While the architecture is general, we have for valida-
tion purposes used experimental data from an elec-
trical power network located at the NASA Ames Re-
search Center [30]. We demonstrate our novel ap-
proach in the area of fault diagnosis for this electri-
cal power system, and investigate the BN inference
algorithms of likelihood weighting [34], variable elim-
ination [20, 9], junction tree propagation [18, 35],
and belief propagation [29, 26]. Results for �ve di¤er-
ent computers and three di¤erent operating systems
are demonstrated. We show system identi�cation re-
sults for both junction tree propagation and likelihood
weighting, and demonstrate outer loop control by suc-
cessfully changing the setpoint and BN inference algo-
rithm employed.

By integrating control theoretic techniques and un-
certainty processing using BNs, this research aims
to: improve the reactivity and adaptability of uncer-
tainty processing in di¤erent applications; improve the
timeliness of computation under dynamic workloads



on varying computational platforms (smart phones,
GPUs, multi-core CPUs, Hadoop clusters, ...); and re-
duce the e¤ort and cost associated with developing and
deploying BN-based software applications. Our goals
are similar to those of anytime algorithms [8, 37, 3],
which provide a way to trade o¤ between computation
time and solution quality. However, our feedback ap-
proach is more general in that it handles both anytime
and non-anytime algorithms. In fact, we show exper-
imentally how our approach enables us to gracefully
switch, on-line, from a non-anytime algorithm (e.g.,
junction tree propagation) to an anytime algorithm
(e.g., likelihood weighting) while achieving real-time
response.

We are investigating control theory as it applies to soft-
ware and our actuators are computational actuators
rather than control surfaces on an aircraft or wheels
on a robotic vehicle. For example, our actuators may
change the number of processes being handled by a
computer or the input parameters to C or Java pro-
grams that implement algorithms for BN computation.
In contrast, the great majority of previous control the-
ory research has, with several notable exceptions in
computing and software [12, 2], focused on physical
systems governed by Newtonian mechanics. In partic-
ular, we know of no similar work in the area of BN
computation, including computation for diagnosis or
prognosis, where control theory is applied.

The approach developed in this paper applies in sit-
uations where the computational load on a com-
puter running AI (here, BN) applications is a key
concern and where, simultaneously, we can priori-
tize and control the computational processes. Speci�-
cally, we partition computational processes into high-
criticality, medium-criticality, and low-criticality ; the
high-critical processes are reactive. Our experiments
are in the area of electrical power system diagnosis.
However, the techniques are more widely applicable
and we now outline a few areas where this approach
may prove powerful. Examples of high-criticality tasks
in which Bayesian networks (and similar probabilis-
tic graphical models) can be used and for which one
might want to provide a reactive response include med-
ical monitoring, sensor fusion, speech recognition on
a smartphone, gesture recognition, and video recogni-
tion. Examples of low-criticality tasks, which would be
down-prioritized, suspended or killed by our approach
(depending on circumstances) include virus scanning,
backups, disk defragmentation, software updates, and
volunteer computing (such as Seti@Home and Fold-
ing@Home).

What these applications have in common is that reac-
tivity is important for some computational processes.
However, reactivity is not important enough to war-

rant the use of a hard real-time operating system,
which is often used in aerospace and other applica-
tions where safety is paramount. Our approach is
tailored to soft real-time settings where low-criticality
tasks can, if needed, be down-prioritized, suspended
or terminated in order to provide reactive response for
high-criticality tasks.

The rest of this paper is organized as follows. In
Section 2 we provide background on Bayesian net-
work computation, feedback control, and anytime al-
gorithms. Section 3 discusses our architecture inte-
grating feedback control and BN inference algorithms.
In Section 4 we present the experimental setting and
electrical power system data, while Section 5 discusses
empirical results. We conclude and outline future re-
search in Section 6.

2 PRELIMINARIES

2.1 BAYESIAN NETWORK INFERENCE

BNs represent multivariate probability distributions
and are used for reasoning and learning under uncer-
tainty [29]. Probability theory and graph theory form
the basis of BNs: Roughly speaking, random vari-
ables are represented as nodes in a directed acyclic
graph (DAG), while conditional dependencies are rep-
resented as graph edges. Each node is parameterized
by a conditional probability density or distribution. A
BN is a compact representation of a joint probability
distribution if its graph is relatively sparse.

Formally, we let X be the BN nodes, E � X the ev-
idence nodes, and e the evidence. While the nodes
X can represent either discrete and continuous ran-
dom variables, we focus in this paper on the discrete
case in which a node X 2 X has a �nite number of
states 
(X) = fx1; : : : xmg. A BN factorizes a joint
distribution Pr(X), and allows for di¤erent probabilis-
tic queries to be formulated and supported by e¢ -
cient algorithms; they all assume that nodes in E are
clamped to values e. Considering the remaining nodes
R =X �E, the probabilistic queries are with respect
to the posterior distribution P (R j e). Speci�cally,
computation of most probable explanations (MPEs)
amounts to �nding an MPE overR, or MPE(e). Com-
putation of marginals (or beliefs) amounts to inferring
for one or more query nodes Q � R, where Q 2 Q,
the posterior probabilities Pr(Q j e) which we denote
BEL(Q; e). In diagnosis using BNs [19, 24, 32, 31], the
terminology health nodes H, where Q = H, is often
used. By picking, for each Q 2 Q, a most likely state
q 2 
(Q), we obtain the most likely states MLS(Q; e)
from BEL(Q; e). Computation of the maximum a pos-
teriori probability (MAP) generalizes MPE computa-



tion and �nds a most probable instantiation over nodes
Q � R, MAP(Q; e). MAP can be approximated using
MPE and MLS; these two approximations are of inter-
est because of the greater computational complexity of
MAP [28] compared to MPE and BEL [6].

Di¤erent BN inference algorithms can be used to per-
form the above BEL, MPE, and MAP computations.
We distinguish between exact and inexact algorithms.
Exact algorithms for BEL and MPE computation
include belief propagation in singly connected BNs
[29], junction tree propagation [18, 35], conditioning
[29, 14], variable elimination [20, 9], and arithmetic cir-
cuit evaluation [7, 4]. Inexact algorithms such as loopy
belief propagation1 [29, 26] and likelihood weighting
[34] have been used to compute marginals; they have
also been used to compute MPEs [16, 25] and MAPs
[28]. In this paper we focus on computation of mar-
ginals; however the framework also applies to other
queries including MPE and MAP.

2.2 ANYTIME REASONING

An anytime algorithm improves its solutions accord-
ing to the computational resource allocated to it, and
returns an (approximate) answer if interrupted [8].
Fundamentally, this iterative improvement algorithm
framework provides a way to trade o¤between compu-
tation time and solution quality. Anytime algorithms
are a useful tool for real-time system design, and there
are also results on the composition of anytime algo-
rithms [37]. Originally, the anytime approach was
developed for single agents, recently it was extended
to handle multiple agents [3].

Among BN inference algorithms, stochastic local
search [16, 28, 22, 25], likelihood weighting [34], loopy
belief propagation [29, 26], and conditioning [29, 14]
can be considered anytime algorithms. However,
many important and high-performing algorithms�
including junction tree propagation [18, 35], variable
elimination [20, 9], and arithmetic circuit evaluation
[7, 4]� are unfortunately not anytime algorithms.

2.3 FEEDBACK CONTROL

Feedback control involves the manipulation of a sys-
tem in which data, either measured or estimated, is
transformed and utilized to modify the behavior of the
system. This behavior is typically de�ned in terms of
metrics such as stability, boundedness, response time,
or over-shoot. Improving such metrics by means of
feedback control is typically motivated by the desire

1Pearl�s main emphasis was originally on exact propa-
gation in singly connected BNs, however he also mentioned
inexact propagation in arbitrary BNs [29, Exercise 4.7],

to achieve some higher level objective such as ensur-
ing a comfortable ride on a passenger transport jet, an
average production rate on a robotic assembly line, or
a maximal duration of a credit card transaction.

Recently, control theory has been applied to comput-
ing systems including control of HTTP servers [11],
email servers [27], quality of service assurance [36], in-
ternet tra¢ c control [13], and load balancing. Typi-
cally, computing systems are di¤erent from traditional
feedback control applications in robotics and aircraft.
First, modeling of the plant does not typically start
from Newtonian mechanics; rather it often begins with
a black box approach. Second, actuation can in some
cases be almost instantaneous, such as �ipping a bit, or
writing a short integer to memory, i.e. specifying the
maximum number of connections to a server. Third,
measurements are often non-noisy but delayed. In ana-
log sensing, �ltering is used to remove noise, and at the
same time can introduce signi�cant (and unwanted)
phase lag. However, in computing systems, a more
di¢ cult delay appears at the measurement. In appli-
cations such as control of an email server, the (dis-
crete) delay is associated with the completion of a Re-
mote Procedure Call (RPC). This delay is usually not
known. Finally, disturbances can signi�cantly impact
performance. Take the example of the IBM Domino
server [12]: Certain combinations of requests, made
independently by di¤erent users impact CPU utiliza-
tion in a nonlinear manner; this can be regarded as
a stochastic disturbance. These disturbances, which
may depend on time of day and day of week, can have
a signi�cant impact.

3 CONTROLLING BAYESIAN
NETWORK COMPUTATION

Our goal is to support the application of both non-
anytime and anytime BN inference algorithms in re-
active settings by introducing techniques from feed-
back control. A key concept in feedback control is
the plant. Here, the plant to be controlled is a dy-
namic system operating in the discrete time domain.
This de�nition encompasses computers including mo-
bile phones, tablets, laptops, desktops, and multi-core
systems. In this paper, the plant is a digital computer
performing a high-criticality (or reactive) process. The
reactive process runs, in our case, a BN used for di-
agnosis. We also assume that on this computer, low-
and medium-criticality (or background) processes are
running and are competing for CPU cycles, memory,
and other computer resources. The impact that these
background processes have on the reactive process and
its ultimate outcome (detection of a failure event) de-
pends on a number of parameters such as operating



system, RAM, processor type and clock-speed, CPU
cache, etc. Since hardware and software vary im-
mensely, this represents a source of signi�cant uncer-
tainty and presents challenges for both modeling and
control.

We introduce the control system framework illustrated
in Figure 1. The framework supports both anytime
(and inexact) as well as non-anytime (and typically ex-
act) algorithms, and distinguishes between inner and
outer control loops because their objectives di¤er.

Inner Loop: The goal of the inner loop, which is
traditional to feedback control, is to make careful ad-
justments according to the parameters set by the outer
loop. These are key parameters in our integrated ap-
proach: r(k) is desired completion time (or Setpoint)
for sample time k. We would like the computational
process to �nish within this time. y(k) is the actual
completion time (or just Actual) for sample time k.
e(k) = r(k) - y(k) is the error signal at time k; u(k)
is the maximal number of low-criticality processes (or
Max Processes). u(k), also known as the control law,
is taken to be a proportional-derivative controller [12].

We partition computational processes into high-
criticality (and having an r(k) value associated with
them), medium-criticality, and low-criticality (subject
to actuation by control system). High-criticality
processes are reactive and essential. Medium-
criticality processes are non-reactive but essential.
Low-criticality processes are non-reactive and non-
essential. The actual (or measured) number of low-
criticality processes (or Actual Processes) at sample
time k is denoted v(k).

Our approach uses simple black-box prediction tech-
niques, as detailed below. It is the combination of this
black-box approach with the use of a desired compu-
tation time (setpoint r(k) in Figure 1) and an actual
computation time (output y(k) in Figure 1) that makes
it work. The actual computation time is just a mea-
surement of how long a BN computation took. The
desired computation time depends on the frequency of
our reactive process and other factors. For example, a
frequency of 10 Hz means that the desired computa-
tion time is upper-bounded by 100 milliseconds.

Outer Loop: The goal of the outer loop is to jointly
optimize speed of inference, resource allocation, accu-
racy, and other factors. Unlike inexact anytime algo-
rithms, which have a similar objective, our approach
can use exact algorithms. If, for example, the exact
junction tree propagation and variable elimination al-
gorithms are employed, reduced accuracy is not an is-
sue. However, accuracy is in general important, and
accuracy versus computation time trade-o¤s are per-
formed in the outer loop of the framework. For inexact

Figure 1: Our integrated architecture, where we wrap
Bayesian network computation into two feedback con-
trol loops, a traditional inner loop where the Controller
controls a Plant (here, a Computer) and a higher-level
outer loop. While there are several options, this paper
uses desired and actual computation time for setpoint
r(k) and output y(k) respectively.

particle-based algorithms such as likelihood weighting
and particle �ltering, p(k)� the number of particles�
is an example of such a parameter. One would like to
use a very large number of particles for simulation,
since this improves the accuracy of the estimate of
the posterior P (H(k) j e(k)), however this may take
too much time and one needs to carefully restrict the
number of particles. In most experimental results with
likelihood weighting reported in this paper, we assume
that p(k) = p and r(k) = r are �xed (or stationary).2

4 METHODS AND DATA

System health management, which may utilize
Bayesian network, can integrate information from het-
erogenous sensors and perform computation for the
purpose of fault diagnosis, prognosis, and mitigation
[19, 32, 31, 5]. Electrical power system fault diagno-
sis using Bayesian networks is the main focus of the
experiments in this paper.

Data and Bayesian Network: We used experimen-
tal data from a real-world electrical power network,
known as ADAPT, located at the NASA Ames Re-

2However, in Section 5.3 (see Figure 6) we discuss how
and why r(k) can be changed over time.



Com- OS Data R2 MSE
puter Set
Laptop Win7 1 0.824 0.606
Laptop Win7 2 0.906 1.91
Desktop Win7 1 0.810 0.315
Desktop Win7 2 0.906 0.220
High End Suse11 1 0.778 0.024
High End Suse11 2 0.807 0.0051
Server Ubu9 1 0.935 1.17
Server Ubu9 2 0.946 0.450
Old Server Ubu11 1 0.857 0.067
Old Server Ubu11 2 0.813 0.0188

Table 1: Estimation of model parameters for di¤erent
computers, operating systems (OSs), and data sets.

search Center [30]. ADAPT contains capabilities for
power generation, power distribution, and loads rep-
resentative for what can be found in aerospace vehi-
cles. For the purpose of this paper we focus on a small
part of ADAPT containing the following components:
EY183 (relay), DC482 (DC load), E181 (voltage sen-
sor), IT181 (current sensor), and ESH183 (relay feed-
back sensor). Scenarios are taken from Tier 2 of the
DX 2009 competition data set.3 These scenarios con-
sist of nominal runs, with no faults in ADAPT, as well
as runs involving one or more faults in components
or sensors, diagnosed using BNT�s implementation4

of likelihood weighting (LW) [34], variable elimination
(VE) [20, 9], junction tree propagation (JTP) [18, 35],
loopy belief propagation (LBP) [26], and Pearl�s belief
propagation (PBP) [29].5 It has previously been es-
tablished that BNs perform very well in this domain,
with the BN-based ProDiagnose system [32, 31] having
the best performance in 3 of 4 of the DX international
diagnostic challenges in 2009 and 2010.6

Computational Platforms: Five di¤erent comput-
ers, representing a broad spectrum of computing capa-
bility, were used. The Laptop computer is a 2.40GHz
Intel i5 M520 with 4 cores, 8 GB of RAM, and 3 MB
cache memory. The Desktop computer is a 3.20GHz
AMD Phenom II X6 1090T with 6 cores, 8 GB of
RAM, and 3 MB cache memory. The High End com-
puter is a 2.00GHz Intel Xeon X7550 with 64 cores, 126
GB of RAM, and 18 MB cache memory. The Server
computer is a 2.50GHz Intel Core 2 Quad Q8300 with
4 cores, 8GB GB of RAM, and 2 MB cache mem-
ory. The Old Server computer is a 2.80GHz Intel Xeon
with 4 cores, 4 GB of RAM, and 1 MB cache mem-
ory. Broadly speaking, the High End computer is most

3http://www.dx-competition.org/
4http://code.google.com/p/bnt/
5The speci�c BNT functions we use are

pearl_inf_engine (PBP), belprop_inf_engine (LBP),
likelihood_weighting_inf_engine (LW), jtree_inf_engine
(JT), and var_elim_inf_engine (VE).

6http://www.dx-competition.org/

powerful, due to its many cores and large memories,
while the Old Server is least powerful due to its com-
paratively small memories. As re�ected in Table 1,
the operating systems Windows 7 (Win7) and several
Linux variants�Ubuntu (Ubu9 and Ubu11) and Suse
(Suse11) were employed in experiments.

Disturbance Generation: In the following, we
model for simplicity low-criticality process distur-
bances to a computer (including user disturbances) as
a Poisson process with rate �. In the experiments, the
low-criticality OS processes are CPU-intensive and ex-
ecute mathematical operations in a tight loop; there
is no I/O. This introduces a stochastic delay in the
actuation of the plant: even if the control input u(k)
increases at the next time step, u(k + 1) > u(k), the
probability of the number of processes actually increas-
ing is low. The Poisson disturbance term is regarded
as unmodeled dynamics and is not explicitly compen-
sated for in the error term of the ARX model (1). It is
of interest to model this phenomenon by a stochastic
delay in the control input to the plant.

Note that our approach handles situations in which
the resource consumption of low-criticality processes
varies dramatically. For example, there can be many
low-criticality processes (executing in parallel) that are
mostly idle. On the other hand, even a few resource-
hungry low-criticality processes could be too much to
handle. If many �mostly idle� processes are present,
our controller automatically sets the �Max number of
processes� parameter u(k) higher than if there are a
few resource-hungry low-criticality processes. See Fig-
ure 6 and Figure 5 for how u(k) is varied by our con-
troller, due to the varying computational load of low-
criticality and Bayesian network processes. The con-
troller maps, see Figure 1, from a setpoint r(k) (Com-
putation time) to a control signal u(k) (Max number
of processes), and so is able to handle the varying re-
source use of di¤erent processes.

5 EMPIRICAL RESULTS

In this section we present experimental results on
ADAPT data for our reactive approach, as enabled
by feedback control and summarized in Figure 1.

5.1 COMPUTATION AS A PLANT

Control Input: The input to the plant (i.e., the
computer in Figure 1), which ultimately is computed
by a control algorithm, is denoted by u(k). This in-
put determines the number of low-criticality processes
that are allowed to run at any given sample time. De-
note the actual number of low-criticality processes by
v(k) where k denotes a sampling index. In the exam-



(a) Junction tree propagation (JTP) (b) Likelihood weighting (LW)

Figure 2: Results of system identi�cation. Two di¤erent square waves used as input u(k) to system identi�cation,
where we compare Actual completion time y(k) and Model completion time ym(k) on a Laptop for (a) junction
tree propagation versus (b) likelihood weighting.

ples that are used in this paper, if v(k) � u(k), then
processes are terminated until v(k) < u(k).7 The ter-
mination process is nearly instantaneous with respect
to the sampling period.

Plant Modeling: There are several approaches to the
modeling of computation for control applications. The
approach taken here is termed linear Auto-Regressive
modeling with eXogenous input (linear ARX). Nonlin-
ear approaches, such as discrete time neural networks,
may also be used. Nonlinear modeling is more complex
yet may be able to capture inherent nonlinear behav-
ior otherwise unaccounted for in ARX modeling. On
the other hand, linear modeling is generally simpler to
understand and implement.8

Suppose the plant is described by an ARX model with
an additive noise term. Denote P (i), y(i)(k), u(k), and
�(k), the plant operator, scalar output, input, and
noise at sample time k, respectively. The integer i
denotes a speci�c plant or device, such as a particular
laptop or desktop. In general, we will assume that we
have a �nite class of plants P (i) for i 2 [1;M ].

In general, the relationship between these quantities is
given by:

y(i)(k) = P (i)u(k) = �T (k � d)�(i) + �(k) (1)

where �T (k�d) denotes the regression vector and con-
sists of a tapped delay line of input and output mea-
surements, and �(i) denotes a vector of real-valued pa-
rameters corresponding to the ith plant. A number of

7Currently, we randomly terminate one of the low-
criticality OS processes. Additional information, such as
process priority, can easily be used to guide termination.

8The ARX model was chosen for several reasons; most
importantly it gave solid system identi�cation perfor-
mance. Allowing the plant model itself to be a probabilistic
graphical model would be interesting, and stochastic ap-
proaches (based on stochastic di¤erential equations) have
been developed in control theory [10, 15]. In light of its
performance, we believe that the standard ARX approach
is well-justi�ed and leave stochastic control to future work.

methods exist to estimate �(i) in both batch and on-
line modes. Similar ARX models have been used in
modeling a number of digital processes [12].

Open-loop Modeling and Generalization: Fig-
ure 2 shows the result of open-loop system identi�ca-
tion, speci�cally the performance of a model where the
parameters were estimated using least-squares (batch-
mode). This �gure compares, for varying sample time
k, the Actual computation time y(k) (see Figure 1)
with our model�s predicted computation time ym(k)
(or just Model). For both JTP and LW, the rate of
Poisson process creation is 45 seconds for LW and the
sampling rate is 1

5 Hz. Figure 2(a) depicts the perfor-
mance for JTP, while Figure 2(b) shows LW. Overall,
the �t between the model and actual behavior is quite
good in both cases, perhaps slightly less so for JTP.
The following may be the explanation why the JTP
graph is more �blocky�and less of a �t than the LW
graph: JTP is signi�cantly faster than LW, thus JTP
is more sensitive to the other computational processes.

Further details on how open-loop system identi�cation
is performed and generalizes are provided in Figure 3.9

Here, for (1) we simpli�ed y(i)(k) to y(k) and used a
�rst order discrete time model

y(k) = c1y(k � 1) + c2u(k � 1) + c3 (2)

to model a speci�c plant�s input output behavior. In-
put signals used to generate the training and testing
data are shown in Figure 3(a), and consist of pseudo-
random u(k) square waves. Figure 3(b) shows the re-
sult of open-loop system identi�cation for two di¤er-
ent computers. Figure 3(b) shows the performance of
the model where the parameters were estimated us-
ing least-squares (batch-mode), and depicts the per-
formance of the laptop (top) and the server (bottom)
using the regression parameters obtained via laptop-
generated data. It is clear from these empirical results

9While not illustrated in Figure 3, we note that closed
loop system identi�cation is also required and presents ad-
ditional data challenges, for example, data collinearities.



(a) Inputs u(k) (b) Outputs: from u(k) to y(k) and ym(k)

Figure 3: System identi�cation and generalization. (a) Two di¤erent squarewaves, Squarewave 1 and Squarewave
2, used as input u(k). Squarewave 1 was used for training of ym(k) and Squarewave 2 was used for testing. (b)
Application to two di¤erent computers, comparing Actual completion time y(k) and Model completion time
ym(k): (top) Laptop�good �t and (bottom) Server�decent �t.

that models obtained on one platform (here, laptop)
performs best on that platform. The models are likely
to perform less well on another platform (here, server),
but are still of some value.

5.2 INNER LOOP CONTROL

The objective of the control system is to minimize the
error signal given by e(k) = r(k) � y(k) where r(k)
denotes the reference or desired computational time
required for BN computation. The output, y(k), de-
notes the actual time the computer takes to complete
the BN computation and generate the posterior prob-
abilities BEL(Q; e) as discussed above.

From the control engineering perspective, there are
several key issues: (1) Static uncertainty in plant para-
meters: A tablet PC running Windows Vista will be-
have di¤erently from a High Performance Computing
(HPC) cluster running openSUSE Linux. A control
system designed for one computer may not perform
well on another. In other words, the control system pa-
rameters are uncertain and need to be estimated. (2)
Stochastic disturbances: The process that determines
when a low-criticality process is generated by a user
is, in general, stochastic. This is, in itself, an active
area of research [1]. Furthermore, the impact a partic-
ular low-criticality process has on the high-criticality
process may vary substantially. (3) Stochastic delay
in the input process: When the control input u(k) in-
creases, the actual number of processes may or may
not increase. This represents a stochastic delay in the
actuation of the digital system being controlled.

To illustrate how our approach handles the above, we
optimized a linear controller given by the following Z-
transfer function: H(z) = K

1��z�1 , where K and �

are real-valued controller gain parameters. H(z) is the
transfer function from the error signal e(k) to the input
to the plant u(k). Performance for a �xed setpoint is
shown in Figure 6(a). Computation time is maintained
at approximately r(k) = 2 sec, however since this is a
soft real-time approach there are excursions above this
setpoint.

5.3 OUTER LOOP CONTROL

Our proposed research is based on controlling BN com-
putation in an inner loop as well as in an outer loop
(see Figure 1); so far we discussed the inner loop. We
now brie�y discuss the outer loop, where the output
BEL(Q; e) of BN computation, as well as other factors
external to the inner loop, may change desired comple-
tion time and also plant behavior (sampling frequency,
BN computation algorithm, number of particles as-
suming a simulation algorithm, etc.).

Adaptation to Computational Platform (see
Figure 1(c)): Table 1 summarizes results of run-
ning likelihood weighting on the ADAPT BN, using
�ve di¤erent computers and three di¤erent operating
systems. System identi�cation was performed on all
computers using the two input data sets shown in Fig-
ure 3(a). Batch least squares was used to determine
the parameters of a �rst order linear ARX model. Ta-
ble 1 shows the resulting R2 and mean squared error
(MSE) of the parameter �t for the various computers
and operating systems. In most cases, we observed a
low MSE.10

10 It is important to note the underlying variations in
the ARX model parameters, which are used by the control
design process. The diverse set of parameters, omitted
here to save space, illustrate the bene�t of using techniques
from adaptive feedback control, speci�cally learning from



Figure 4: Actual computation time y(k) as a function
of actual number of processes v(k) for �ve di¤erent
BN inference algorithms LBP, VE, JTP, LW, and PBP
running on High End computer.

Optimizing BN Algorithm and Parameters (see
Figure 1(b)): In Figure 4, we show the steady state
computation time results for the �ve BN inference al-
gorithms discussed above. Here, steady state is de�ned
loosely as the time k� such that y(k+1) = y(k) = yss
for all k � k�. Plugging this into (2) yields yss =
c2uss+c3
1�c1 , where u(k) = uss 8k � k�. Thus, the linear

gain coe¢ cient (slopes in Figure 4) for each algorithm
is given by c2

1�c1 .

The results fall into three groups: fast (JTP), medium
(VE and LW), and slow (LBP and PBP) computa-
tions. Also, the standard error in computation time
varies between the algorithms, with JTP again being
the best with a very small standard error.

While JTP is exact and fast, its Achilles�heel is mem-
ory consumption [23]. Consequently, it can be neces-
sary, when running other memory-intensive processes,
to use a less memory-intensive but inexact algorithm
like LW. How should one switch between two algo-
rithms, say the non-anytime algorithm JTP and the
anytime algorithm LW, that have very di¤erent com-
putational resource requirements but operate on the
same BN? Feedback control can help in this regard,
see Figure 5. From a control perspective, this is consid-
ered dynamic uncertainty in plant parameters: Given
a computer P (i), a change in the BN algorithm will
impact the way the plant, P (i), responds. Here, we
switch from JTP to LW around 12:20, while maintain-
ing the setpoint (on average) after a transient period
lasting around 10 seconds.11 This is, to the best of

the computational environment and adapt to changes.
11Note, our approach does not make any hard real-time

guarantees, only soft ones, and consequently the actual
computation time is sometimes greater than the setpoint.

Figure 5: Experiment on Laptop using 1 Hz sampling
rate, showing a successful switch of BN inference algo-
rithm from junction tree propagation (JTP) to likeli-
hood weighting (LW) using feedback control.

our knowledge, the �rst demonstration of a successful
on-line switch between two very di¤erent inference al-
gorithms (from JTP to LW) while a desired completion
time is maintained.

Changing the Setpoint (see Figure 1(a)): There
is both a supply side and a demand side in computing.
On the supply side, one can control the supply of com-
putational resources, in the form of computers, CPUs,
CPU threads, or GPU threads. On the demand side,
the outer loop can vary the Setpoint r(k), perhaps in
combination with varying other outer loop parameters
such as sampling frequency fC(k) and number of par-
ticles p(k) used in likelihood weighting [34] or particle
�ltering [17].

One reason for the outer loop to vary the com-
putational resources allocated to the high-criticality
process is illustrated in the following. Suppose, for
k < k�, that P (H(k) j e(k)) suggested that there was
one or more faults in the ADAPT electrical power sys-
tem, while P (H(k�) j e(k�)) indicated that this was a
false alarm. In this case, we may want to be less strin-
gent about ensuring that computation of P (H(k�+1)
j e(k� +1)), P (H(k� +2) j e(k� +2)), etc. �nishes in
a timely fashion, in other words it makes sense to put
r(k� + 1) > r(k�). Figure 6(b) shows how this type of
step change, at k� � 23:28, is supported by our control-
theoretic framework. The baseline of not varying r(k)
is shown in Figure 6(a). We here assume that sam-
ple frequency fC(k) = fC is constant, and consider (i)
r(k � 1) = r(k) < 1=fC (as when r(k) = 2 sec in both
Figure 6(a) and Figure 6(b)) versus (ii) r(k) � 1=fC
(as when r(k) = 4 sec Figure 6(b)). The advantage
of (i) is that there is a much greater chance that BN
computation �nishes before a new computational cy-



(a) Fixed Setpoint r(k) (b) Varying Setpoint r(k)

Figure 6: Outerloop optimization for LW, using: (a) �xed Setpoint r(k) = 2 and (b) change of Setpoint,
approximately at time 23:28, from r(k) = 2 to r(k) = 4.

cle starts, which is essential when EPS faults are more
likely. The advantage of (ii), on the other hand, is that
more low-criticality processes are allowed to run.

The trade-o¤ between fast inference for the high-
criticality process versus running many low-criticality
processes is illustrated in Figure 6. Figure 6(b)�s
bottom panel shows an increase in the number of
processes, on average, as a result of the increase in
r(k) at k� � 23:28; no similar increase can be found
in Figure 6(a)�s bottom panel.

6 DISCUSSION AND OUTLOOK

Deploying BN algorithms and other resource-intensive
AI algorithms can be a challenge when there are non-
trivial constraints on computational resources in ap-
plications. In this paper, we have focused on support-
ing requirements for reactive response without requir-
ing dedicated hard real-time computational resources
according to worst-case computational requirements.
We have focused on reactive diagnosis using BNs,
motivated by domains with some but uncertain do-
main knowledge (hence probabilistic graphical models,
speci�cally BNs) as well as uncertainty with respect to
the computational platform and environment (hence
feedback control).

An alternative approach to achieving reactive response
is the use of anytime algorithms. The motivation be-
hind anytime inference� namely the goal of intelligent
and reactive systems� and our work is quite similar.
However, the approaches are very di¤erent. Anytime
algorithms are inherently inexact and produce solu-
tions whose quality gradually improve with computa-
tion time [37]. We focus on what can done, on the
computing system level, for a broad range of existing

Bayesian network inference algorithms including both
exact and inexact algorithms. As a consequence, our
approach enables the use of exact but non-anytime al-
gorithms (like variable elimination [20, 9], junction tree
propagation [18, 35], and arithmetic circuit evaluation
[7, 4]) in reactive settings. The bene�t of this is that
such exact algorithms often perform very well, how-
ever they do have limitations and consequently there
are situations where they are unsuitable. With our ap-
proach, one can use these exact algorithms and then
switch to an inexact (often anytime) algorithm only if
needed, rather than having to always use an anytime
algorithm.

We are in this paper using rather basic control theory
ideas. This enables new results and many opportuni-
ties for future work, both theoretical and experimen-
tal, and we invite other researchers to participate in
the exploration of this exciting area of reseach. We
are, for example, developing adaptive control meth-
ods that leverage online system identi�cation of the
process. There are also many interesting research op-
portunities related to the use of BN posteriors as well
as their accuracy, and perhaps multiple BNs at dif-
ferent levels of detail, in the outer control loop. In
this area, there is a strong connection to anytime al-
gorithms and metareasoning that can be further in-
vestigated, enabling more reactive and more capable
intelligent systems.
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