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ABSTRACT

Time series of graphs arise in a variety of applications,
from the analysis of network traffic to time-dependent
data sets to social networks. We introduce novel tech-
niques for measuring distances between graphs in a
multiscale fashion, in such a way that such distances re-
flect changes at different levels of granularity, are eas-
ily localized to regions of the graph, and, when consid-
ered at a fixed scale, are robust with respect to changes
and finer scales. These distances, or similarity mea-
sures, are based on random walks on graphs at multiple
time scales. We then employ these notions to analyze
time series of graphs, and show that on simple models
of graphs that possess a natural multiscale structure,
our algorithms have desirable properties of sensitivity
and robustness.

Keywords— Multiscale analysis, spectral graph
theory, dynamic graphs, random walks.

1. INTRODUCTION

We are interested in developing methods for analyz-
ing a time series of graphs G(t), where t is a time pa-
rameter, and G(t) is a weighted graph, which in this
paper will also be undirected. Graphs that evolve in
time arise in a wide variety of applications: friendship
graphs in social networks, citation networks, but also
graphs that arise for time-varying data, for example ge-
ographic graphs associated to mobile wireless phones,
nearest neighbor graphs constructed on point clouds
that vary in time, and so on. Such graphs are often
very large, and coping with their size means, among
other things, that different levels of detail may be in-
teresting, depending on the application or task at hand.
For this reason, we are interested in methods that are
able to “look at” the graph and its dynamics at different
“scales”, and detect and quantify changes at different
scales. Secondly, these graphs are often “noisy”, for
example because measurements from which the graphs
are constructed are often inexact or noisy.
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We shall assume in this paper that G(t) and G(t+1)

have vertices with IDs that are known, and that a suit-
ably large fraction of vertices ofG(t) are inG(t+1), and
G(t+1) is not much larger than G(t). In other words
only a relatively small number of vertices is added or
subtracted from the vertex set ofG(t) in order to obtain
the vertex set of G(t+1).

The first task is to define a notion of similarity, or
distance, between a pair of graphs, that can quantify
differences between the two graphs at different scales.
Such similarity will have some “averaging property”,
in the sense that if “small”, “noisy” perturbations occur
at fine scale, they should only induce a small change in
the similarity at a coarser scale. These considerations
suggest a multiscale approach, where in fact a multi-
scale family of similarities, at different scales and loca-
tions, is to be considered. A global similarity may then
be defined, if needed, by an appropriately weighted av-
erage of the multiscale similairities. This should be
compared to the notion of graph isomorphism, com-
mon in Computer Science: this combinatorial notion is
not flexible enough for our purposes. For example, if
two graphs have different number of vertices, or differ
by ε on any edge weight, then they are not isomorphic.
Moreover, graph Isomorphism also has no known poly-
nomial time algorithm and is not practical to compute
for even moderately sized graphs (1000+ nodes). In
the Social Network Analysis community an opposite
viewpoint has emerged, when large scale statistics of
the network, such as degree-distribution, clustering co-
efficient, radius and diameter, have been used to com-
pare networks. These quantities are typically easy to
compute and do allow comparison between two graphs
of different sizes; however, they are global in nature
and not discriminative.

The second task is to apply such similarity mea-
sure(s) between G(t) and G(t+1) and track them
through time. At this point such similarities become
statistics of the network through time and may be ana-
lyzed by real-valued time series techniques.

2. MULTISCALE RANDOM WALKS

We construct compressed representations of graphs,
in order to be able to detect and quantify changes in



graphs at multiple resolutions. We do this by using
random walks at different time scales. Let G be a con-
nected weighted graph with n vertices. The n× n ma-
trix of weights is denoted byW , and it will be assumed
symmetric and nonnegative. We let the degree matrix
D be the diagonal matrix defined by Dii =

∑
jWij ;

we assume without loss of generality that Dii > 0.
Then the random walk on G [1, 2] is the Markov chain
with transition matrix P = D−1W : Pij represents the
probability of jumping from j when in vertex i, and
because of the Markov property, P tij is the probability
of being at j at time t starting from i. We think of P
as a large sparse matrix, since most vertices typically
have a small number of edges. Typically P has a de-
caying spectrum, and when powers of P are taken, the
numerical rank of P , i.e. the number of singular values
above a fixed threshold, decreases. We may think of
the row P tx,: as a probability distribution “centered” at
x and with a certain “variance” increasing with t. The
rate of increase of the variance highly depends on the
geometry of the graph.

For a set of increasing scales tj , for example tj =
2j , we may choose a subset of rows of P t that spans,
up to a certain precision, the whole row space of P t. In
this way we would obtain a compressed representation
of the random walk at the scale. This, and numerically
stable and efficient algorithms that pursue this multi-
scale anaysis of graphs are described in [3].

Here we choose a simpler route, in order to focus
on the main ideas. We construct a hierarchical par-
tition of the graph, i.e. a family of connected sub-
sets {{Cj,k}k∈Kj}j≥0 of the graph with the following
properties:

(i) for each j ≥ 0, G is the disjoint union of
{Cj,k}k∈Kj ;

(ii) the cardinality of Cj,k is roughly 2−j |G|.

(iii) each Cj,k is the disjoint union of Cj+1,k′ , for k′

in a subset ofKj+1 which we denote child(j, k).
Moreover, every k′ ∈ Kj+1 is in one and only
one set of children.

There is a natural tree structure associated with the
Cj,k’s, which we denote by T , where each node of the
tree is associated with aCj,k. If we let χj,k be the char-
acteristic function of Cj,k, defined by χj,k(x) = 1 for
x ∈ Cj,k and 0 otherwise, we may immediately con-
struct a multiresolution analysis for functions on G by
defining Vj := 〈{χj,k}k∈Kj 〉, so that Vj ⊆ Vj+1, and
thus we have a set of nested closed subspaces of func-
tions on G. We may normalize χj,k in various ways
which we have no space to discuss here [4]. More-
over, we may let Wj+1 be the orthogonal complement
of Vj into Vj+1, and construct an orthonormal basis
forWj+1, for example by running the Gramm-Schmidt
procedure to orthogonalize {χj+1,k′}k′∈child(j,k) to
χj,k, for any k ∈ Γj , to obtain an orthonormal set

{ψj+1,k′} (of cardinality |child(j, k)| − 1), and tak-
ing the union of the orthogonal bases thereby obtained.
Notice that in this way we obtained an orthonormal ba-
sis forWj+1, whose elements are localized in the sense
that they come in groups of basis functions whose sup-
port is contained in Cj,k.

For every scale j, and any random walk time scale
τ , we may compress P τ at scale j by restricting P τ

on Vj : this is the operator [P τ ]j defined by π∗j (P τ )πj .
This may be represented by a matrix of size |Kj |×|Kj |
whose k1, k2 entry is

([P τ ]j)k1,k2 := 〈P τχj,k1 , χj,k2〉 (1)

We think of [P τ ]j as representing a summary at scale
j of the random walk dynamics at time scale τ . Ob-
serve that since Vj ⊆ Vj+1, we may write χj,k =∑
k′∈child(j,k) χj+1,k′ , and therefore

([P τ ]j)k1,k2 = 〈P τ (
∑

k′∈child(j,k1)

χj+1,k′),
∑

k′′∈child(j,k2)

χj+1,k′′〉

=
∑

k′∈child(j,k1)

∑
k′′∈child(j,k2)

([P τ ]j+1)k′,′k′′ ,

showing that [P τ ]j is indeed a coarsening of [P τ ]j+1.
The geometric multiscale structure of theCj,k gives the
multiresolution analysis Vj as well as a multiresolution
representation for the compressed operators [P τ ]j .

In summary, to a weighted graph G we have asso-
ciated a multiresolution analysis {Vj} and a multiscale
family of operators [P τ ]j parametrized by two scales:
a random walk scale τ and a spatial scale j.

3. COMPARISON BETWEEN GRAPHS

Given two graphs G(1), G(2), with corresponding mul-
tiscale decompoistions (C

(1)
j,k ) andC(2)

j,k ) and trees T (1)

and T (2). For the moment being we shall assume that
there are injections ϕi : G(i) → G, for i = 1, 2, such
thatϕ(1)(G(1))∩ϕ(2)(G(2)) is large compared to |G(1)|
and |G(2)|, and such that there exists a multiscale par-
tition on such intersection that is isomorphic to both
T (1) and T (2). Without loss of generality, we may as-
sume that under these isomorphisms, C(1)

j,k corresponds

to C
(2)
j,k . We shall assume that this isomorphism is

given, or easy to estimate, for example because for each
C

(1)
j,k there exists a unique C(2)

j,k with large vertex over-

lap with C(1)
j,k .

Now, at every scale we have [(P (i))τ ]j , for i = 1, 2,
whose respective (k1, k2) elements correspond to the
“same” portion of the graphs C(i)

j,k1
and C(i)

j,k2
. We may

then define a family of distances between the graphs
G(1) and G(2) at scale j by

βj,τ := ||[(P (1))τ ]j − [(P (2))τ ]j ||F ,

were τ is an “internal mixing time” parameter. A
distance between G(1) and G(2) by averaging across



scales: dα,τ (G(1), G(2)) =
∑
j 2−jα

βj,τ
|Kj | , for a

“smothness” parameter α ≥ 0. For small values of
α, changes at all scales are weighted similarly, while
for large values of α changes at finer scales are down-
weighted compared to changes at the coarsest scales.

Observe that these measures of distances may
be localized, for example | [(P (1))τ ]j(k1, k2) −
[(P (2))τ ]j(k1, k2)| measures the change at scale j in
the transport of the random walk at time τ fromCj,k1 to
Cj,k2 . This also suggests that there is a natural choice
of τ for every j, since τ should not be too small so
that no mass is transported between two different clus-
ters, nor too large so that the random walk is close to
its stationary distribution and the matrices above have
approximate rank 1. An acceptable value of τ will be
selected according to such a criteria, unless otherwise
mentioned; for example we choose τ so that the sum
of the diagonal entries of [(P (1))τ ]j is not too large,
and the numerical rank is larger than 1. Addition-
ally, one may consider the wavelet representation of
(P (1))τ at scale j: instead of compressing it by pro-
jecting onto χj,k it could be compressed by projecting
onto the ψj+1,k′ , but we have no space to discuss this.

4. EXPERIMENTS

We test the multiscale analysis algorithm on a simu-
lated graph time series. The purpose of the simulation
is to illustrate that our methodology can adequately de-
tect several types of dynamics, and capture multiscale
changes. The first type of dynamics is vertices leaving
and entering. Next, the edge weights on the graph will
change between each graph.

4.1. Graphs with multiscale structure

We construct families of graphs with a clear multiscale
structure. We believe this construction is interested per
se, since we could not find in the literature construc-
tions of graphs with a natural multiscale decomposi-
tion, except in some very symmetric cases. The con-
struction is as follows: we fix a dictionary of graph
types {Gi}, each class having possibly a certain num-
ber of parameters, for example G1 may be the class of
dyadic trees of a certain depth, G2 could be the class
of complete graphs of a certain order. At the coarsest
scale, we let G1 be an element of the dictionary, and
assign to each edge a weight 1. To add one scale to
G1, we pick a second element of the dictionary, assign
to each edge a weight γ > 1 (in the following experi-
ments, γ = 8), and obtain G2 be replacing each vertex
of G1 by this new graph. We continue in this fashion,
at scale j+1 picking an element from the dictionary of
graphs, weighting its edges by γj , and obtaining Gj+1

by replacing each vertex of Gj by this new weighted
graph. This simple construction may be generalized in
several ways to become quite general, for example by
allowing, at each scale, a different graph type at every

vertex, allowing random weights of order γj , etc...This
is repeated till scale J . See Figure 1a for a realization
of such multiscale graph, with 3 scales.

These graphs have a natural multiscale structure
since a random walk started at a vertex at the finest
scale J will spend, with high probability, a relatively
large in the subgraph corresponding to the J-th scale,
before exiting this subgraph along an edge from scale
J − 1, and entering into another subgraph correspond-
ing to the J-th scale. The spectrum of P for such
graphs is approximately the sum of multiple steps, cap-
turing the different time scales.

4.2. Stochastic Dynamics: Vertices and Edges

At each time step we introduce new vertices in a ran-
dom fashion: the first neighbor of a new vertex is cho-
sen at random over the entire graph. The vertex then
chooses his edge weights according to a fixed distribu-
tion with larger weights assigned a smaller probability.
The remaining neighbors are chosen with the distribu-
tion F (v) = αFdiff(v)+(1−α)Unif(v) where Fdiff is
the probability of the introduced vertex of diffusing to
another vertex after time τ and Unif(v) is the uniform
distribution over the vertices. We also add edge noise
to all the edge weights. The edge noise has distribution
N(0, σij) where σij = W (i,j)

10 .
We use an online method to determine the cluster

assignments of a vertex z that is joining the graph.
Let C represent the partition prior to z joining and
Cz,l represent the partition after vertex z joins Cl. Let
J(C, τ) =

∑k
i=1 P

τ (Ci, Ci). We assign z to the Cl

that maximizes J(Cz,l, τ).

4.3. Description of the Experiment

A time series of 51 graphs was constructed with a sin-
gle vertex and edge noise added after each graph. The
initial graph has 3 layers, and 60 nodes. The edge
weights on the scales from finest to coarsest are 64,
8, and 1. The initial partitions are fed to the algo-
rithm and we update the partitions using the aforemen-
tioned online algorithm. At each step, a new vertex
with 3 edges is introduced. The change in the graph
time series is computed as the Frobenius norm between
P
τj
Cj,t,t

− P τjCj,t−1,t−1 for each scale j and time t. The
partition Cj,t is updated using the online algorithm
above since the number of nodes in each G(t) changes.
The partition is recomputed by spectral clustering [5]
when there is a large change on the coarse scale, since
this indicates these partitions no longer resemble good
clusters.

4.4. Analysis of the Dynamics

In this example, the graph has at least two different
scales, of cardinality 3, 15. We fix the number of clus-
ters at 2 and fix 3 clusters at the coarse scale and 15



(a) Initial Graph (b) Graph after adding
one vertex

(c) Final Graph

Fig. 1: Multiscale Graphs at different times. The distance between
vertices in the layout is inversely related to the weight of the edges,
which is represented also by thickness.

clusters at the finer scale. After several perturbations,
the resulting graph may no longer have 3 coarse scale
clusters or 15 fine scale clusters, but the dynamics can
still be effectively measured by fixing the number of
scales and clusters.

As stated before, the change in the graph is mea-
sured as ||P τ1C1,t,t

− P τ1C1,t−1,t−1||F and ||P τ2C2,t,t
−

P τ2C2,t−1,t−1||F . This is plotted in Figure 3. We up-
date Cj,t using the online updates and recompute Cj,t
when there is a large change on the coarse scale. The
plot corresponding to the change in the fine scale is
more jittery. The minimum value it attains is near .1.
This is because even small changes in the graph are al-
tering the fine scales. However, the plot of change in
the coarse scale takes on much lower values. The large
peaks in the coarse scale plot are also large peaks in the
fine scale plot. On the other hand, many of the peaks
in the fine scale plot are either much smaller or disap-
pear in the coarse scale plot. For example, the 7th time
point causes a large change in the fine scale, but almost
no change on the coarse scale (Figure 3). In fact, we
see that the difference between G(7) and G(6) is a ver-
tex with edges to two fine scale clusters joined and thus
merged two fine scale clusters. This does not affect the
coarse scale since the newly introduced edges are all
within the same coarse scale cluster. See Figure 2 for
details. The largest change is at time point 27. Before
time 27, two of the coarse clusters are tightly intercon-
nected, but one cluster is not connected to the other
two. The vertex entering at time 27 causes the lone
cluster to be connected to the other two. This causes
the large change at time 27 that is seen in Figure 3. See
the bottom graphs in Figure 2 for the change between
G(26) and G(27).

5. CONCLUSTION AND FUTURE WORK

We have constructed a novel notion of similarity be-
tween graphs by mapping each graph to a vector of
operators representing compressed versions of the ran-
dom walk at multiple scales. We have shown than
on toy examples of dynamic graphs that have a clear
multiscale structure and evolve in time with simple
stochastic rules, these multiscale similarity measures
capture and quantify changes at different scales.

The above construction may be extended in many

New vertex

New vertex

Fig. 2: Top: from G(6) to G(7) a vertex joining causes two fine
scale clusters to merge. This is only seen in the fine scale measure-
ments (see Figure 3). Bottom: from G(26) to G(27) a vertex joins
two far-away coarse scale clusters. Notice the vertex in the plot on
the right, but not in the left side plot. This vertex causes a large
change between these two graphs since it joins two coarse scale clus-
ters (see Figure 3).
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Fig. 3: Plot of the change between G(t) and G(t−1). Y-axis is
||P τCj,t,t − P τCj,t−1,t−1||F .

directions, in particular in the way the partitions are
constructed and updated, the way the parameter τ is
selected. Some of these extensions will be discussed in
a forthcoming paper [4].
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