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a b s t r a c t

We present a novel Gaussianized vector representation for scene images by an unsupervised approach.
Each image is first encoded as an ensemble of orderless bag of features. A global Gaussian Mixture Model
(GMM) learned from all images is then used to randomly distribute each feature into one Gaussian com-
ponent by a multinomial trial. The posteriors of the feature on all the Gaussian components serve as the
parameters of the multinomial distribution. Finally, the normalized means of the features distributed in
every Gaussian component are concatenated to form a supervector, which is a compact representation for
each scene image. We prove that these supervectors observe the standard normal distribution. The
Gaussianized vector representation is a more generalized form of the widely used histogram representa-
tion. Our experiments on scene categorization tasks using this vector representation show significantly
improved performance compared with the histogram-of-features representation. This paper is an
extended version of our work that won the IBM Best Student Paper Award at the 2008 International Con-
ference on Pattern Recognition (ICPR 2008) (Zhou et al., 2008).

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Growing research attention has been put on analysis and recog-
nition of natural scenes (forest, street, office, etc.). Most previous
approaches to this problem leveraged on supervised segmentation
as preprocessing or the manual annotation of ‘‘intermediate” prop-
erties (Treisman and Gelade, 1980; Oliva and Torralba, 2001; Vogel
and Schiele, 2004). These properties might be considered as classes
of texture information.

In recent years, bag-of-features methods, which represent an
image as an orderless collection of local features, have demon-
strated good performance (Wallraven et al., 2003; Willamowski
et al., 2004; Grauman and Darrell, 2005; Fei-Fei and Perona,
2005) for the whole-image categorization tasks. Furthermore,
Lazebnik proposed to adopt spatial pyramid matching for scene
categorization in order to utilize the spatial information beyond
the bag-of-features image representation (Lazebnik et al., 2006).
In particular, all these work calculate the histogram-of-features
as representation used for classification. Fei-Fei and Perona
(2005) show that the histogram-of-features representation outper-
forms previous keyword matching approach for bag-of-features.

A common difficult that arises for the task of natural scene cat-
egorization and many other general tasks of computer vision is to
find correspondences among multiple images. That is, how do we
match the corresponding feature points between pairs of images?
Many dimensionality reduction techniques, including the global
ll rights reserved.
linear transformation methods such as Principal Component Anal-
ysis (PCA) and Fisher’s Linear Discriminant Analysis (LDA) as well
as the manifold learning methods such as Locally Linear Embed-
ding (LLE) and Locality Preserving Projections (LPP), require well-
corresponded feature points between the images to seek a mean-
ingful low dimensional subspace. For the various classifiers based
on certain distance metrics in the feature space, such as the Near-
est Neighbor (NN), correspondences are critical, too. For instance, it
is meaningless to compute the distance between the nose tip point
in one face image and the left eye corner point in another face im-
age. The challenges of finding correspondences between images
are at least two folds: First, in many cases the images undergo cer-
tain unknown transformations (e.g., rotation, affine, etc.) and the
features extracted from these images are correspondingly dis-
torted. Although such distortions can be somehow compensated
by adopting features relatively invariant to the transformations,
such as the Scale Invariant Feature Transform (SIFT) descriptor, it
is unlikely to be possible to reverse the effect of the unknown
transformations. Second, the order of the extracted feature vectors
are partially, if not completely, unknown. This makes the task of
finding two corresponding feature vectors in two different images
extremely difficult.

Natural scene categorization turns out to present extra chal-
lenges for correspondences compared to other computer vision
tasks in general. For example, in the tasks of facial information
recognition, such as face recognition as well as age and head pose
estimation, it is possible, although challenging, to obtain corre-
spondences by performing global alignment of the face images
(Wang et al., 2002; Jiao et al., 2003). Therefore, it is natural to
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represent an aligned face image as a vector of features (ordered by
their spatial locations) for the appearance based methods. The fea-
tures for natural scene categorization, however, are more compli-
cated. The scene images, even though they belong to the same
scene category, have various spatial layout. For example, an entire
bed or a partial bed with different styles can be seen from different
directions (viewing angles) in different images all of which belong
to the ‘‘bedroom” category, and different types of furniture like
chairs and desks can be present in the images to add the ambiguity.
Therefore, global alignment provides limited correspondences be-
tween natural scene images, because the inhomogeneous regions
of the scene images are still misaligned. Image segmentation can
help to find the correspondences to a certain degree. However, im-
age segmentation itself is another hard problem, especially when
the spatial structure of the image becomes more and more compli-
cated. This motivates the need of a robust, efficient, and geometri-
cally invariant structural scene image representation.

On the other hand, many dimensionality reduction algorithms,
such as PCA and LDA, are based on the implicit assumption that
the features observe the Gaussian distribution. In other words,
the results of PCA and LDA are optimal only when the features
are Gaussian distributed. Moreover, many classifiers are based on
the Euclidean distance, which is a commonly used distance metric
between two vectors. Therefore, it is desirable to design a vector-
based image representation that observes the standard Normal
distribution.

In the classical histogram-of-features representation Schiele
and Crowley (2000), Swain and Ballard (1991), the histogram bins
are chosen by a k-means algorithm on the whole patch data. Then
each patch is distributed to a particular bin based on its distance to
the cluster centroids. However, histogram representation has some
intrinsic limitations. For example, it is sensitive to several factors
such as outliers, the choice of bins, and the noise level in the data.
Most importantly, encoding high-dimensional feature vectors by a
relatively small codebook inclines to large quantization errors and
lose of discriminability Boiman et al. (2008).

In this paper, we present a novel approach to transform the
scene images into correspondent and normalized feature vectors
in an unsupervised manner. First, each scene image is encoded as
an ensemble of orderless bag of features. The features from all
the images are used to train a global Gaussian Mixture Model
(GMM). For every image, this global GMM with M Gaussian compo-
nents is used to randomly distribute each feature of the image into
one of the M classes (i.e., Gaussian components) by a multinomial
trial. In particular, we calculate the posterior probabilities of the
feature against all the M Gaussian components and use these pos-
terior probabilities as the parameters for the multinomial trial. Fi-
nally, the normalized means of the features which are distributed
into every class are concatenated to form a super-vector, which
is a compact representation for the scene image. We justify that
such feature vectors from our new representation observe the
standard normal distribution. We demonstrate the effectiveness
of this novel Gaussianized vector-based image representation
through the natural scene categorization task on a 15 scene cate-
gory database. Our experiment results show that significantly bet-
ter performance is achieved by our feature representation than is
achieved by the traditional histogram representation for bag-of-
features. In addition, our method outperforms the system with
probabilistic latent semantic analysis (pLSA) (Hofmann, 2001)
and spatial pyramid matching (Lazebnik et al., 2006).

The rest of the paper is organized as follows: Section 2 intro-
duces the Gaussianized vector representation for natural scene
images, and shows that correspondences and Gaussianization are
achieved in the proposed representation. Section 3 connects our
proposed representation to the widely used histogram-of-features
representation and points out that the histogram-of-features
representation can be viewed as a special case of our representa-
tion. Section 4 describes the patch representations that are
adopted in this work. Section 5 presents our experiment results
on both the 13-class and 15-class natural scene categorization
tasks. Section 6 concludes the paper with a brief discussion.
2. Correspondence and Gaussianization

2.1. Gaussian mixture model

In this paper, we break an image down into orderless N sub-im-
age patches denoted by x ¼ ðx1; x2; . . . ; xNÞwhere xk is the kth patch
of the image. Kinds of detectors can be used here to obtain sub-im-
age patches and we adopt evenly sampled grid in our experiments.
The basic idea of corresponding different scene images is to soft
cluster all image patches across different images in an unsuper-
vised manner, which is implemented through the use of a global
Gaussian Mixture Model (GMM). This global GMM is trained on
all patches across different images which provides a succinct
description of the patch descriptor space by means of the M uni-
modal Gaussian components as well as their weights in the GMM.

The GMM is one of the most widely used statistical models for
large-scale probability density estimation as it is capable of
approximating any complex distributions at arbitrary precision
with a sufficient number of Gaussian components.

Suppose the distribution of the image patches is modeled by a
GMM of the form

pXðxÞ ¼
XM

k¼1

wkNðx;lk;RkÞ; ð1Þ

where wk, lk and Rk denote the mixture weight, mean vector and
covariance matrix of the kth Gaussian component, respectively,
and M denotes the total number of Gaussian components.

This mixture density is a weighted linear combination of M uni-
modal Gaussian densities, namely,

Nðx;lk;RkÞ ¼
1

ð2pÞ
d
2jRkj

1
2

e�
1
2ðx�lkÞ

T R�1
k ðx�lkÞ: ð2Þ

The unknown parameters of a GMM are collectively denoted as
fwk;lk;RkgM

k¼1. The maximum likelihood estimation of the GMM
parameters is usually performed by using the Expectation–Maxi-
mization (EM) algorithm. In order to reduce the number of param-
eters to be estimated and to avoid overfitting, and in order to
reduce the computational load for parameter estimation, the
covariance matrices fRkgM

k¼1 are restricted to be strictly diagonal
(Reynolds et al., 2000). The use of diagonal covariance matrices
for GMM learning has proven to be effective and computationally
economical.

The EM algorithm for GMM training is an iterative process
which proceeds as follows. At each iteration, the new parameter
estimates guarantee that the data likelihood increases.

1. Start with an initialized parameter set:

hð0Þ ¼ fwð0Þk ;lð0Þk ;Rð0Þk g
M
k¼1: ð3Þ

2. Given the training data set x ¼ ðx1; x2; . . . ; xNÞ, at the nth itera-
tion, compute the probability that the training vector xt belongs
to the Gaussian component k through Bayes rule:

pðkjxtÞ ¼
wðnÞk Nðxt; lðnÞk ;RðnÞk ÞPM
j¼1wðnÞj Nðxt ;lðnÞj ;RðnÞj Þ

; ð4Þ

where t ¼ 1;2; . . . ;N, and k ¼ 1;2; . . . ;M.
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3. Compute a new set of parameters:

wðnþ1Þ
k ¼ 1

N

XN

t¼1

pðkjxtÞ; ð5Þ

lðnþ1Þ
k ¼ 1

N

XN

t¼1

pðkjxtÞxt ; ð6Þ

Rðnþ1Þ
k ¼ diag

1
N

XN

t¼1

pðkjxtÞxtxT
t

( )
: ð7Þ

4. If the parameter estimates converge, then stop. Otherwise, go to
Step 2.
2.2. Multinomial trial

A GMM trained with the image patches from all the training
images is obtained according to the previous section. Now, we
present the process of extracting the proposed representation for
each natural scene image.

We calculate the posterior probabilities of every patch of an im-
age against all the Gaussian components in the GMM and use these
posterior probabilities as the parameters for a multinomial trial,
which randomly distributes the image patches into one of the
Gaussian components.

The posterior probability that an observed patch x comes from
the kth Gaussian component is given by

ckðxÞ ¼
wkNðx; lk;RkÞPM
j¼1wjNðx; lj;RjÞ

: ð8Þ

Now, we randomly distribute the observed patches into the M
classes according to their posterior probabilities. That is, for a spe-
cific patch x, let c ¼ c1ðxÞ; c2ðxÞ; . . . ; cMðxÞ½ �T be the parameters of a
multinomial distribution MultðcÞ.

We introduce a M-dimensional binary random variable
g � MultðcÞ. g is a 1-of-M vector representation in which a partic-
ular element gk is equal to 1 and all other elements are equal to 0.
gk ¼ 1 indicates that x is assigned to the kth class. Obviously,
pðgk ¼ 1Þ ¼ wk is the prior probability that x comes from the kth
Gaussian component without knowing the actual value of x and
pðgk ¼ 1jxÞ ¼ ckðxÞ is the posterior probability that x comes from
the kth Gaussian component given the value of x.

Let random variable Yk denote the samples in the kth class.
Then Yk has a probability density function given by,

pYk
ðaÞ ¼ pXjgðajgk ¼ 1Þ; ð9Þ

¼ pðgk ¼ 1jaÞpXðaÞ
pðgk ¼ 1Þ ; ð10Þ

¼ ckðaÞpXðaÞ
wk

; ð11Þ

¼Nða;lk;RkÞ: ð12Þ

Now assume that a scene image has N patches. We separate
them into M classes according to the above strategy. Let the number
of samples in each class be denoted by nk, where k ¼ 1;2; . . . ;M. We
formulate a new random variable Zk from Yk as follows:

Zk ¼
1
nk

Xnk

i¼1

ðYki � lkÞ; ð13Þ

where Yki is the ith sample in the kth class. Since Yki’s are i.i.d, it is

obvious that Zk �N 0; Rk
nk

� �
.

2.3. Gaussianized representation

A super-vector is formed according to the result of the multino-
mial trial described above. By normalizing and stacking the ran-
dom variables Zk’s, we have a random vector
bZ ¼
R1
n1

� ��1
2
Z1

R2
n2

� ��1
2
Z2

..

.

RM
nM

� ��1
2
ZM

0BBBBBBBBB@

1CCCCCCCCCA
: ð14Þ

It is straightforward to show that bZ �Nð0; IÞ. bZ is a compact repre-
sentation of a scene image which observes the standard normal
distribution.

2.4. Correspondence

The orderless patch descriptors are not well corresponded
across different images. In particular, natural scene images do
not have rigid spatial correspondence as aligned face images. The
multinomial trial establishes such correspondence by statistically
assign each patch into different classes. The members of corre-
sponding classes across images are corresponded. Therefore, the
Gaussianized representation, which could be viewed as concate-
nated statistics from the classes, serves as a way to achieve corre-
spondence for the orderless patches from different natural scene
images.
3. Connection to histogram representation

Histogram representation, as a description for orderless patch-
based features, has been widely used in visual recognition and im-
age retrieval Schiele and Crowley (2000), Swain and Ballard (1991).
For scene classification, histogram give the roughly alignment on
patches by assigning each patch to one of the histogram bin. More-
over, such a representation can easily generate a similarity mea-
sure between two images based on the difference of the
corresponding histograms.

Several approaches have been proposed in the literature to
overcome the well-known limitations of the histogram representa-
tion, in particular, its sensitivity to outliers, choice of bins, and
noise in the data. Soft assignment, which allows each feature vec-
tor belonging to multiple histogram bins, have been suggested to
capture partial similarity between images Perronnin et al. (2006),
Yang et al. (2008), van Gemert et al. (2008), Agarwal and Triggs
(2006), Tuytelaars and Schmid (2007), Philbin et al. (2008). To en-
hance the discriminating capability of histograms, Farquhar et al.
(2005) and Perronnin et al. (2006) introduced several ways to con-
struct category-specific histograms, Larlus and Jurie (2006) and
Yang et al. (2008) suggested to integrate histogram construction
with classifier training, and Moosmann et al. (2007) proposed to
use randomized forests to build discriminative histograms. Encod-
ing high-dimensional feature vectors by a relatively small code-
book, however, is the fundamental drawback that results in large
quantization errors and lose of discriminability Boiman et al.
(2008).

In the classical histogram-of-features representation, the histo-
gram bins are chosen by a k-means algorithm on the whole patch
data. Then each patch is distributed to a particular bin based on its
distance to the cluster centroids. This process can be connected
with the proposed Gaussianization in the following perspectives.
First, k-means clustering leverages on the Euclidean distance,
while the multinomial trial uses posterior on Gaussian mixtures,
which leverages on the Mahamalobis distance. Second, k-means
clustering provides deterministic bin membership while the Guas-
sianized representation engages randomness via the multinomial
trial parameters. Third, histogram-of-features only uses the num-
ber of patches assigned to histogram bins, while the proposed
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representation also adopts the mean of features in each bin, lead-
ing to a more informative representation of the scene image.

Therefore, the proposed Gaussianized representation can be
viewed as a generalized framework for the histogram-of-features.
In particular, the multinomial trial adopts the Mahamalobis dis-
tance and alleviate the hard assignment issue of feature binning.
Statistics are accumulated from patches randomly assigned to each
bin or class, to take advantage of not only patch membership
among the classes, but also a succinct description of patches within
each class. We believe these characteristics contribute to the im-
proved performance of natural scene categorization using the pro-
posed Gaussianized representation, compared with the widely
used histogram-of-features.
4. Patch-based representation

4.1. Patch extraction

In this section, we briefly describe the feature extraction pro-
cess. According to the study by Fei-Fei and Perona (2005), the
dense regular grid performs better than other sophisticated detec-
tors for scene recognition. In this paper, we therefore choose to use
the dense regular grid as our detector. More precisely, we use an
evenly sampled grid spaced at 4 � 4 pixels, on which patches of
30 � 30 pixels are extracted from the scene images.

4.2. Patch descriptor

Two different representations for describing a patch are
adopted, namely the raw features and the SIFT descriptors, respec-
tively. The raw features and the SIFT descriptors are further trans-
formed into Gaussianized super-vector representations by a global
GMM trained from the raw features or the SIFT descriptors, respec-
tively, as described Section 2. The following paragraphs give the
details of the raw features and the SIFT descriptors.

The raw features consist of pixel intensities. We first resize a
30-by-30 patch to 6-by-6 and remove from the 6-by-6 patch the
mean of the pixel intensity values, then normalize the intensity
values to have a unit variance, and finally use the 2D discrete co-
sine transform (DCT) to generate the feature vector.

The SIFT descriptor is a 128-dimensional vector extracted from
a 30-by-30 patch, whose dimensionality is reduced to 64 dimen-
sions by PCA. SIFT stands for Scale-Invariant Feature Transform
(SIFT) Lowe (1999) and is a widely used algorithm to detect and
describe salient local features of an image. The SIFT features are lo-
cal and based on the appearance at particular interest points, and
are invariant to certain image transformations such as scaling
and rotation. They are also robust to changes in illumination, noise,
minor changes in viewpoint, as well as occlusion. The extraction of
SIFT features consists of four major steps: (1) scale-space extrema
detection, (2) keypoint localization, (3) orientation assignment,
and (4) keypoint descriptor. In this paper, we compute the SIFT
descriptor directly from the image patches. In particular, only the
fourth step in the SIFT feature extraction process is necessary. That
is, we compute a SIFT descriptor for each patch, based upon the
histogram of gradients.
5. Experiments

5.1. Experiment setting

In this section, we investigate the effectiveness of our represen-
tation and further compare our results with existing works. We re-
port our scene categorization experiment results on the scene
category database which is composed of 15 scene categories, 13
provided by Fei-Fei and Perona (2005) and the other two collected
by Lazebnik et al. (2006). Each scene category contains 200–400
images. The average size of the images is around 300 � 250 pixels.
The major sources of the images include the COREL collection, per-
sonal photographs, and Google image search, etc. This database is
one of the most comprehensive scene category databases used in
the literature. Example images of different scene categories of this
database are illustrated in Fig. 1.

Here, the experiment setting is made the same as that in (Fei-
Fei and Perona, 2005 and Lazebnik et al., 2006) to guarantee the
fairness of performance comparison. Specifically, all experiments
are repeated ten times with 100 randomly selected images per
class for training and the rest for testing and the average of per-
class recognition rate is recorded for each run. The final result is re-
ported as the mean and standard deviation of the results from the
individual runs. We perform all processing in grayscale, even when
color information is available.

We adopt two kinds of patch descriptors as described in Section
4. First, the DCT-based feature or the 128-dimensional SIFT vector
is extracted within a 20 � 20 patch over a grid with spacing of five
pixels. Then the dimension of the descriptor is reduced to 64 by
Principal Component Analysis (PCA). The GMM used here contain-
ing 512 Gaussian components. When doing the calculation, instead
of explicitly carrying out the multinomial trial, we can approxi-
mate according to Eq. (14) as Zk ¼

PN
i¼1cikðxi � lkÞ=

P
i¼1Nncik.

To demonstrate the effectiveness of the proposed representa-
tion, we employ three different classifiers for multi-class classifica-
tion, namely, nearest neighbor (NN), nearest centroid (NC) and
support vector machine (SVM). For the nearest neighbor classifier,
we calculate the Euclidean distances of each image in the test set to
all the images in the training set and assign to the test image the
label of the nearest training image. For the nearest centroid classi-
fier, we estimate the centroid of each class on the training set, and
calculate the Euclidean distances of each test image to all the cen-
troids and assign to the test image the label of the nearest centroid.
For SVM, we use the LIBSVM software Chang and Lin, 2001 to per-
form training and testing. The kernel used is

KðbZa; bZbÞ ¼
bZT

a
bZbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kbZakkbZbk
q : ð15Þ

Note that in Eq. (15), we can first normalize each super-vector bZ
as M ¼ bZffiffiffiffiffiffi

kbZkp , then the kernel can be simplified as,

KðMa;MbÞ ¼ MT
a Mb ð16Þ

which is the dot-product of two vectors corresponding to two
images. Here, we use the linear kernel as it is efficient in the evalu-
ation stage and easy to be deploy in large-scale applications.

5.2. Experiment results

5.2.1. Thirteen-category scene classification
Table 1 shows the results of our representation on 13 categories

scene classification experiments, which has the same 13 categories
and experiments setting as used in (Fei-Fei and Perona, 2005) for
fair comparison. Here we present the performance under the dif-
ferent numbers of Gaussian components and different features.
The GMM used for computing the super-vector bZ for each scene
image contains 512 or 1024 Gaussian components. The raw fea-
tures and SIFT features are adopted, respectively. Among the three
classifiers, the SVM classifier achieves better performance than the
other two classifiers. Note that even with the raw features, the
SVM classifier of our representation achieves an average classifica-
tion accuracy of 74.4%, which is much higher than the best



Fig. 1. Example images from the scene category database.

Table 1
Classification results on the 13 scene category database.

Mixture number Raw feature SIFT

KNN NC SVM KNN NC SVM

512 60:3� 0:8 66:5� 1:0 72:6� 0:9 73:6� 0:8 78:3� 0:7 83:6� 0:6
1024 61:5� 0:7 69:0� 0:9 74:4� 1:0 74:0� 0:6 78:7� 0:6 84:1� 0:5
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recognition rate (65.2%) in (Fei-Fei and Perona, 2005), obtained
with SIFT and the histogram representations method. With the SIFT
descriptors and SVM classifier, our system achieves the average
classification accuracy of 84.1%.

5.2.2. Fifteen categories scene classification
We also perform our representation on 15 categories scene clas-

sification experiments. Note that the features used here is slightly
different from that in the previous experiments. Besides the 64
dimension SIFT descriptor obtained by PCA, the coordinate infor-
mation (x, y coordinates) for each patch is used as two additional
dimensions to form 66 dimensional features. The coordinates used
here can help to capture the spatial information of the patches, and
further improve scene categorization performance.

Table 2 compared the average classification accuracy by our
proposed representation with the traditional histogram represen-
tation. It is clear to see that our proposed representation greatly
outperform the histogram representation regardless of the underly
classifiers chosen. In most of the categories, SVM shows better per-
formance than the other two classifiers. On average, both represen-
tations achieved the best performance when adopting SVM as the
classifier, and the Gaussianzation representation is 20% better than
histogram representation in that situation.

We can further compare our results with existing work that
goes beyond orderless bag-or-feature representation. In (Lazebnik
et al. (2006)), Lazebnik et al. introduced spatial pyramid match-
ing (SPM) to incorporate the spatial information with histogram
representation and reported an accuracy of 81.4% on 15 catego-
ries. In the experiment, our new representation achieves a supe-
rior performance of 83.5% in accuracy without using the SPM
strategies.

Fig. 2 shows the confusion patterns between the 15 scene cate-
gories by the histogram representation and the proposed represen-
tation, respectively. By comparing the diagonal elements, we can
find that our new representation outperforms histogram represen-
tation on all 15 categories. The highest recognition rate is obtained
for the reign of ‘‘Calsurburb” and ‘‘PARoffice” for our new represen-
tation. The highest misidentified rate is that 19% of ‘‘livingroom” is



Table 2
Classification results on the 15 scene category database.

Category Histogram Gaussianization

NC NN SVM NC NN SVM

CALsuburb 43:3� 2:4 75:7� 4:2 89:1� 2:0 99:2� 0:9 92:1� 2:0 99:7� 0:4
MITcoast 32:9� 2:6 38:5� 3:3 73:2� 3:1 83:1� 3:1 75:4� 3:0 87:9� 2:2
MITforest 92:1� 0:8 87:9� 2:3 93:9� 0:9 96:5� 1:0 95:5� 1:6 96:1� 1:6
MIThighway 70:4� 2:7 69:6� 2:1 79:6� 1:8 82:0� 2:2 85:8� 2:4 91:1� 1:5
MITinsidecity 47:6� 3:6 31:2� 3:0 62:7� 2:9 79:3� 1:9 67:6� 2:9 85:5� 1:6
MITmountain 29:3� 2:0 47:7� 3:1 79:6� 3:6 84:6� 2:1 72:0� 1:8 91:9� 1:9
MITopencountry 36:0� 2:3 44:8� 3:2 59:1� 2:6 74:3� 2:1 57:7� 3:6 75:6� 1:8
MITstreet 42:1� 1:7 960:6� 2:0 75:1� 2:1 84:9� 2:4 75:2� 1:7 89:4� 1:8
MITtallbuilding 31:6� 3:4 35:9� 2:4 80:4� 2:7 84:2� 1:2 75:0� 2:4 91:4� 1:5
PARoffice 42:1� 2:5 55:1� 4:6 78:4� 2:1 95:8� 1:4 89:0� 2:9 96:3� 1:7
Bedroom 19:0� 3:7 17:4� 3:6 32:8� 3:0 61:1� 5:5 41:4� 4:6 68:5� 5:2
Industrial 10:1� 1:1 22:4� 2:6 24:9� 2:5 46:6� 1:8 45:9� 3:7 65:0� 2:8
Kitchen 50:0� 5:6 34:5� 3:7 50:6� 5:8 68:5� 4:8 49:5� 4:5 76:1� 4:1
Livingroom 27:2� 3:5 30:2� 3:8 30:6� 4:1 54:1� 4:5 28:5� 3:3 58:5� 3:0
Store 77:0� 2:3 41:7� 5:3 63:3� 4:4 70:5� 1:8 51:5� 2:7 78:8� 2:3

Average 43:4� 1:0 46:2� 0:9 64:9� 0:5 77:7� 0:6 66:8� 0:5 83:5� 0:3
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Fig. 2. Comparison confusion matrices on scene category database for histogram
representation and Gaussianization representation. The entry in the ith row and jth
column is the percentage of images from class i that were misidentified as class j.
For better viewing, please see the pdf file.
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misidentified as ‘‘bedroom”, which is reasonable given the highly
similar configuration in the two categories.

6. Conclusion and discussion

In this paper, we propose a Gaussianization vector representa-
tion for natural scene categorization, which represents a scene im-
age as a super-vector observing the standard normal distribution.
We apply various classification techniques on this representation
of feature vectors and achieve significantly improved performance
on scene categorization as compared with previous work using the
popular histogram-of-features representation. In particular, our
experiments show that this representation, without considering
the spacial information, achieves much better performance than
the bag-of-words with pLSA (Fei-Fei and Perona, 2005). Further-
more, it outperforms the bags of features with spatial pyramid
matching approach in (Lazebnik et al., 2006).
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