Learning a Bi-Stochastic Data Similarity Matrix

Fei Wang
Department of Statistical Science
Cornell University
Ithaca, NY 14853, USA
fw83@cornell.edu

Ping Li
Department of Statistical Science
Cornell University
Ithaca, NY 14853, USA
pingli@cornell.edu

Arnd Christian König
Microsoft Research
Microsoft Cooperation
Redmond, WA 98052, USA
chrisko@microsoft.com

Abstract—An idealized clustering algorithm seeks to learn a cluster-adjacency matrix such that, if two data points belong to the same cluster, the corresponding entry would be 1; otherwise the entry would be 0. This integer (0/1) constraint makes it difficult to find the optimal solution. We propose a relaxation on the cluster-adjacency matrix, by deriving a bi-stochastic matrix from a data similarity (e.g., kernel) matrix according to the Bregman divergence. Our general method is named the Bregman Bi-Stochastication (BBS) algorithm.

We focus on two popular choices of the Bregman divergence: the Euclidian distance and the KL divergence. Interestingly, the BBS algorithm using the Euclidian distance is closely related to the relaxed k-means clustering and can often produce noticeably superior clustering results than the SK algorithm (and other algorithms such as Normalized Cut), through extensive experiments on public data sets.

I. INTRODUCTION

Clustering [13], [6], which aims to organize data in an unsupervised fashion, is one of the fundamental problems in data mining and machine learning. The basic goal is to group the data points into clusters such that the data in the same cluster are “similar” to each other while the data in different clusters are “different” from each other.

In this paper, we view clustering from the perspective of matrix approximation. Suppose we are given a data set \(X = \{x_i\}_{i=1}^n \), which comes from \(k \) clusters. We can denote the cluster memberships by an \(n \times k \) matrix \(F \), such that

\[
F_{ij} = \begin{cases} 1, & \text{if } x_i \in \pi_j \\ 0, & \text{otherwise} \end{cases}
\]

where \(\pi_j \) denotes the \(j \)-th cluster. It is often more convenient to proceed with the scaled version \(\tilde{F} \) [17][24], such that

\[
\tilde{F}_{ij} = \begin{cases} 1/\sqrt{n_j}, & \text{if } x_i \in \pi_j \\ 0, & \text{otherwise} \end{cases}
\]

where \(n_j = |\pi_j| \) is the cardinality of cluster \(\pi_j \). Note that \(\tilde{F} \) has (at least) the following properties (constraints):

\[
\tilde{F} \geq 0 \quad \text{(i.e., } \tilde{F}_{ij} \geq 0 \forall i, j) , \quad \tilde{F}^\top \tilde{F} = I, \quad \left(\tilde{F} \tilde{F}^\top \right) 1 = 1,
\]

where \(I \in \mathbb{R}^{n \times 1} \) is an all-one vector, and \(I \in \mathbb{R}^{n \times n} \) is an identity matrix.

If we define \(G = \tilde{F} \tilde{F}^\top \), we can hope to discover the cluster structure of \(X \) from \(G \). The constraints on \(\tilde{F} \) can be transferred to the constraints on \(G \) as

\[
G \geq 0, \quad G = G^\top, \quad G1 = 1
\]

In other words, \(G \) is a symmetric, nonnegative, and bi-stochastic (also called doubly stochastic) matrix [12].

A. Deriving a Bi-Stochastic Matrix from a Similarity Matrix

The bi-stochastic matrix \(G \), constructed from the cluster-membership matrix \(F \) or \(\tilde{F} \) can be viewed as a special type of similarity matrix. Naturally, one might conjecture: If we relax the integer (0/1) constraint on \(F \), can we still derive a (useful) bi-stochastic matrix from a similarity matrix?

For example, a popular family of data similarity matrix is the Gaussian kernel, \(K \in \mathbb{R}^{n \times n} \), where each entry

\[
K_{ij} = \exp \left(-\frac{1}{\gamma} \|x_i - x_j\|^2 \right), \quad \gamma > 0
\]

Here, \(\gamma \) is a tuning parameter. Obviously, an arbitrary similarity matrix can not be guaranteed to be bi-stochastic. For a given similarity matrix, there are multiple ways to derive a bi-stochastic matrix. We first review a straightforward solution known as the Sinkhorn-Knopp (SK) algorithm.

B. The Sinkhorn-Knopp (SK) Algorithm

The following Sinkhorn-Knopp Theorem [18] says that, under mild regularity conditions, one can construct a bi-stochastic matrix from a similarity matrix.

Theorem (Sinkhorn-Knopp) Let \(A \in \mathbb{R}^{n \times n} \) be a nonnegative square matrix. A necessary and sufficient condition that there exists a bi-stochastic matrix \(P \) of the form: \(P = UAV \), where \(U \) and \(V \) are diagonal matrices with positive main diagonals, is that \(A \) has total support. If \(P \) exists, then it is unique. \(U \) and \(V \) are also unique up to a scalar multiple if and only if \(A \) is fully indecomposable.

Based on this theorem, [18] proposed an method called the Sinkhorn-Knopp (SK) algorithm to obtain a bi-stochastic matrix from a nonnegative matrix \(A \), by generating a sequence of matrices whose columns and rows are normalized alternatively. The limiting matrix is bi-stochastic. In particular,
If \(A \) is symmetric, then the resulting matrix \(P = UAV \) is also symmetric with \(U \) and \(V \) being equal (up to a constant multiplier). The following example illustrates the procedure:

\[
A = \begin{bmatrix}
1 & 0.8 & 0.6 \\
0.8 & 1 & 0.4 \\
0.6 & 0.4 & 1
\end{bmatrix}
\]

\[
\rightarrow \begin{bmatrix}
0.4167 & 0.3636 & 0.3000 \\
0.3333 & 0.4545 & 0.2000 \\
0.2500 & 0.1818 & 0.5000
\end{bmatrix} \rightarrow \begin{bmatrix}
0.3857 & 0.3366 & 0.2777 \\
0.3174 & 0.4601 & 0.2025 \\
0.2683 & 0.1951 & 0.5366
\end{bmatrix}
\]

\[
\rightarrow \begin{bmatrix}
0.3886 & 0.3392 & 0.2722 \\
0.3392 & 0.4627 & 0.1980 \\
0.2722 & 0.1980 & 0.5297
\end{bmatrix} = P
\]

The SK algorithm is not the unique construction. In statistics, this procedure is also known as the *iterative proportional scaling* algorithm [5], [20].

C. Connection to the Normalized Cut (Ncut) Algorithm

Interestingly, the well-known *Normalized Cut (Ncut)* algorithm [17] can be viewed as a one-step construction towards producing bi-stochastic matrices. The Ncut algorithm normalizes a similarity matrix \(K \in \mathbb{R}^{n \times n} \) with \(D = \text{diag}(K1) \), where \(1 \in \mathbb{R}^{n \times 1} \) is an all-one vector, to be

\[
\tilde{K} = D^{-1/2}KD^{-1/2}
\]

[23] showed that if one keeps normalizing \(K \) with

\[
K^{(t+1)} = (D^{(t)})^{-1/2}K^{(t)}(D^{(t)})^{-1/2}
\]

then \(K^{(\infty)} \) will be bi-stochastic.

D. Our Proposed General Framework: BBS

In this paper, we propose to obtain a bi-stochastic matrix \(G \in \mathbb{R}^{n \times n} \) from some initial similarity matrix \(K \in \mathbb{R}^{n \times n} \), by solving the following optimization problem

\[
\min_G D_\phi(G, K) = \sum_{ij} D_\phi(G_{ij}, K_{ij})
\]

\[\text{s.t. } G \succeq 0, \ G = G^\top, \ G1 = 1\]

(7)

where

\[
D_\phi(x, y) \doteq \phi(x) - \phi(y) - \nabla \phi(y)(x - y)
\]

is the *Bregman divergence* between \(x \) and \(y \) with \(\phi \) being a strictly convex function. The problem (7) is a standard convex optimization problem. We name the solution \(G \) the *Bregmanian Bi-Stochastic (BBS) of \(K \).*

Two choices of the Bregman divergence \(D_\phi \) are popular:

1. \(\phi(x) = x^2/2 \): (squared) Euclidian distance,

2. \(\phi(x) = x \log x - x \): Kullback-Leibler (KL) divergence.

It can be shown that the SK algorithm is equivalent to BBS using KL divergence. We will demonstrate that BBS with \(\phi(x) = x^2/2 \) often produces superior clustering results over the SK algorithm (and other algorithms such as Ncut).

II. BREGMANIAN BI-STOCHASTICITY (BBS)

The BBS algorithm seeks a bi-stochastic matrix \(G \) which optimally approximates \(K \) in the Bregman divergence sense, by solving the optimization problem (7). For the two popular choices of the Bregman divergence \(D_\phi \) in Eq. (8), we study specially designed optimization strategies, for better insights.

A. \(\phi(x) = x^2/2 \)

For this choice of \(\phi(x) \), we have

\[
D_\phi(G, K) = \sum_{ij} D_\phi(G_{ij}, K_{ij})
\]

\[
= \sum_{ij} \frac{1}{2} G_{ij}^2 - \frac{1}{2} K_{ij}^2 - K_{ij} (G_{ij} - K_{ij})
\]

\[
= \frac{1}{2} \| G - K \|_F^2 = \frac{1}{2} \text{tr} \left((G - K)^\top (G - K) \right)
\]

\[
= \frac{1}{2} \text{tr} \left(K^\top K + G^\top G - 2K^\top G \right)
\]

Thus, the BBS problem with \(\phi(x) = x^2/2 \) is equivalent to

\[
\min_G \quad \text{tr} \left(G^\top G - 2K^\top G \right)
\]

\[\text{s.t. } \ G \succeq 0, \ G = G^\top, \ G1 = 1\]

(10)

Problem (10) is a *Quadratic Programming* program [2], [16] and can be solved by standard methods such as the *interior point* algorithm. Here, we adopt a simple cyclic constraint projection approach, known as the *Dykstra algorithm* [10]. First we split the constraints into two sets \(C_1 \) and \(C_2 \):

\[
C_1 : \ {G|G = G^\top, \ G1 = 1}\]

\[
C_2 : \ {G|G \succeq 0}\]

(11)

(12)

where \(C_1 \) defines an affine set and \(C_2 \) defines a convex set. For the constraint set \(C_1 \), we need to solve:

\[
\min_G \quad \text{tr} \left(G^\top G - 2K^\top G \right)
\]

\[\text{s.t. } \ G = G^\top, \ G1 = 1,\]

(13)

for which we first introduce a Lagrangian function

\[
L(G) = \text{tr} \left(G^\top G - 2K^\top G \right) - \mu_1 (G1 - 1)
\]

\[
- \mu_2 (G^\top 1 - 1)
\]

where \(\mu_1, \mu_2 \in \mathbb{R}^{n \times 1} \) are Lagrangian multipliers. By the constraint \(G = G^\top \), we know \(\mu_1 = \mu_2 = \mu \). Thus

\[
\nabla_G L(G) = 2(G - K) - \mu 1^\top - 1\mu^\top
\]

(14)

Setting \(\nabla_G L(G) = 0 \) yields

\[
G = K + \frac{1}{2} \mu 1^\top + \frac{1}{2} \mu 1^\top \]

\[
= K1 + \frac{n}{2} \mu + \frac{1}{2} 11^\top \mu
\]

(15)

Since \(G \) must satisfy the constraint \(G1 = 1 \), we can right-multiply \(1 \) on the both sides of Eq. (16) as

\[
1 = G1 = K1 + \frac{n}{2} \mu + \frac{1}{2} 11^\top \mu
\]

(16)

It may be also formulated as an instance of the *Least Norm* problem [2].
Then we obtain
\[
\mu = 2 (nI + 11^\top)^{-1} (I - K) 1 \tag{18}
\]
By making use of the Woodbury formula [11], we obtain
\[
(nI + 11^\top)^{-1} = \frac{1}{n} \left(I - \frac{1}{2n} 11^\top \right) \tag{19}
\]
We can then write the solution in a closed form:
\[
G = K + \left(\frac{1}{n} I - \frac{1}{n} K + \frac{11^\top K}{n^2} \right) 11^\top - \frac{1}{n} 11^\top K \tag{20}
\]
For the constraint set \(C_2 \), we need to solve another optimization problem:
\[
\min_G \frac{1}{2} \| G - K \|_F^2 \quad \text{s.t.} \quad G \succeq 0 \tag{21}
\]
whose solution is simply
\[
G = K^+ \tag{22}
\]
where \(K^+ \) denotes the positive part of \(K \).

The overall algorithm of BBS with \(\phi(x) = x^2/2 \) is summarized in Alg. 1. The total computational complexity of Alg. 1 is \(O(Tn^2) \) with \(T \) being the number of iterations needed for the algorithm to converge.

Algorithm 1 BBS with \(\phi(x) = x^2/2 \)

Require: An initial similarity matrix \(K \)

1. \(t = 0 \), \(G^{(t)} = K \).
2. **repeat**
 3. \(t \leftarrow t + 1 \)
 4. \(G^{(t)} \leftarrow \left[G^{(t-1)} + \frac{1}{n} \left(I - G^{(t-1)} + \frac{11^\top G^{(t-1)}}{n^2} \right) \right] \ 11^\top - \frac{1}{n} 11^\top G^{(t-1)} \)
5. **until** Some convergence condition is satisfied
6. Output \(G^{(t)} \)

B. \(\phi(x) = x \log x - x \)

\[
D_\phi(G, K) = \sum_{ij} D_\phi(G_{ij}, K_{ij}) \tag{23}
\]
\[
= \sum_{ij} G_{ij} \log \frac{G_{ij}}{K_{ij}} + K_{ij} - G_{ij} = KL(G \| K) \tag{24}
\]
The BBS problem becomes
\[
\min_G KL(G \| K) \quad \text{s.t.} \quad G \succeq 0, \ G = G^\top, \ G1 = 1 \tag{25}
\]
We construct the following Lagrangian
\[
L(G) = KL(G \| K) - \mu_1 (G^\top 1 - 1) - \mu_2 (G1 - 1) \tag{26}
\]
where we drop the constraint \(G \succeq 0 \) for the time being, and we will later show it is automatically satisfied. Therefore
\[
\nabla_G L(G) = \log G - \log K - \mu_1 1^\top - 1 \mu_2^\top \tag{27}
\]
where \(\log \) represents the elementwise logarithm. Setting \(\nabla_G L(G) = 0 \) yields
\[
\log G_{ij} - \log K_{ij} - \mu_1 i - \mu_2 j = 0 \tag{28}
\]
Thus the solution satisfies
\[
G_{ij} = e^{\mu_{ij} K_{ij}} \tag{29}
\]
Next, we define the following two vectors
\[
\pi_1 = [e^{\mu_{11}}, e^{\mu_{12}}, \ldots, e^{\mu_{1n}}]^T \in \mathbb{R}^{n \times 1} \tag{30}
\]
\[
\pi_2 = [e^{\mu_{21}}, e^{\mu_{22}}, \ldots, e^{\mu_{nn}}]^T \in \mathbb{R}^{n \times 1} \tag{31}
\]
and two diagonal matrices \(\text{diag}(\pi_1) \in \mathbb{R}^{n \times n}, \text{diag}(\pi_2) \in \mathbb{R}^{n \times n} \). This way, we can express the solution to be
\[
G = \text{diag}(\pi_1) \times K \times \text{diag}(\pi_2) \tag{32}
\]
As \(G \) is symmetric, we know \(\mu_1 = \mu_2 = \mu \) and \(\pi_1 = \pi_2 = \pi \). By comparing with the Sinkhorn-Knopp Theorem, we can immediately see that the BBS algorithm with \(\phi(x) = x \log x - x \) actually recovers the symmetric SK algorithm, and \(\nabla \pi(\pi) \) is used for scaling \(K \) to be bi-stochastic.

We should mention that, it appears that the fact that the symmetric SK algorithm minimizes the KL divergence was essentially discovered in statistics [4, 19].

III. Experiments

A. Data Sets

Table I summarizes the data sets used in our experiments:

- **MNIST**\(^3\): We randomly sampled 6000 data points from the original training set. We also created a smaller data set, **MNIST (0-4)**, using digits 0, 1, 2, 3, 4.
- **ISOLET**\(^4\): We took the original UCI training set and divided it into three smaller data sets so that the number of classes (clusters) for each set is not too large.
- **LETTER**\(^5\): We divided the original data into five sets.
- **NEWS20**\(^6\): The test set from the LibSVM site.
- **OPTDIGIT**\(^7\): We combined the original (UCI) training and test sets, as this data set is not too large.
- **PENDIGIT**\(^8\): The original (UCI) training set.
- **SATIMAGE**\(^9\): The original (UCI) training set.
- **SHUTTLE**\(^10\): The test set from the LibSVM site.
- **VEHICLE**\(^11\): The version from the LibSVM site.
- **ZIPCODE**\(^12\): We used the training set and also constructed a smaller data set using digits 0, 1, 2, 3, 4.

\(^3\)http://yann.lecun.com/exdb/mnist/
\(^6\)http://www.stat.stanford.edu/~tibs/ElemStatLearn/datasets/zip.train.gz
\(^7\)http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/vehicle.scale.t
\(^8\)http://archive.ics.uci.edu/ml/machine-learning-databases/pendigits/pendigits.t
\(^9\)http://archive.ics.uci.edu/ml/machine-learning-databases/statlog/satimage/sat.trn
\(^10\)http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/shuttle.scale.t
\(^11\)http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass/vehicle.scale
\(^12\)http://www.stat.stanford.edu/~tibs/ElemStatLearn/datasets/zip.train.gz
Table I
DATA SETS

<table>
<thead>
<tr>
<th>Data Set</th>
<th># Samples (n)</th>
<th># Dimensions (d)</th>
<th># Classes (k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>6000</td>
<td>784</td>
<td>10</td>
</tr>
<tr>
<td>MNIST (0-4)</td>
<td>3031</td>
<td>784</td>
<td>5</td>
</tr>
<tr>
<td>ISOLET (A-I)</td>
<td>2158</td>
<td>617</td>
<td>9</td>
</tr>
<tr>
<td>ISOLET (J-R)</td>
<td>2160</td>
<td>617</td>
<td>9</td>
</tr>
<tr>
<td>ISOLET (S-Z)</td>
<td>1920</td>
<td>617</td>
<td>8</td>
</tr>
<tr>
<td>LETTER (A-E)</td>
<td>3864</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>LETTER (F-J)</td>
<td>3868</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>LETTER (U-Z)</td>
<td>4636</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>NEWS20</td>
<td>3993</td>
<td>62060</td>
<td>20</td>
</tr>
<tr>
<td>OPTDIGIT</td>
<td>5620</td>
<td>64</td>
<td>10</td>
</tr>
<tr>
<td>PEN DIGIT</td>
<td>7494</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>SAT IMAGE</td>
<td>4465</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>SHUTTLE</td>
<td>14500</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>VEHICLE</td>
<td>846</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td>ZIP CODE</td>
<td>7291</td>
<td>256</td>
<td>10</td>
</tr>
<tr>
<td>ZIP CODE (0-4)</td>
<td>4240</td>
<td>256</td>
<td>5</td>
</tr>
</tbody>
</table>

B. Experiment Procedure

For all data sets, we always normalized each data point (vector) to have a unit l_2 norm, and we always used the Gaussian kernel Eq. (4) to form the initial similarity matrix K. For the tuning parameter γ in Eq. (4), we experimented with $\gamma \in \{1024, 256, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.25\}$.

We ran the BBS algorithm with $\phi(x) = x^2/2$ for 1000 iterations at each γ. We also ran the SK algorithm (i.e., BBS with $\phi(x) = x \log x - x$) for 1000 iterations at each γ.

We eventually used spectral clustering [17], [3], [8], [15] to evaluate the quality of the produced bi-stochastic matrices. In particular, we used the procedure described in [15]. That is, we computed the top-k eigenvectors of the bi-stochastic matrix to form a new $n \times k$ matrix and normalized each row to have a unit l_2 norm. Denote the resulting new “data matrix” by Z. We then used Matlab kmeans function:

kmeans(Z, k, ’MaxIter’, 1000, ’EmptyAction’, ’singleton’)

We ran kmeans 100 times and reported both the average and maximum clustering results.

However, we would like to first introduce two measures that may allow us to directly assess the quality of the bi-stochastic matrices independent of the clustering algorithms.

C. Quality Measurements of the Bi-Stochastic Matrices

After we have generated a (hopefully) bi-stochastic matrix $P \in \mathbb{R}^{n \times n}$ from a similarity matrix K, we can compute:

$$M_B = \frac{1}{n} \sum_{i=1}^{n} \left| \sum_{j=1}^{n} P_{ij} - 1 \right|,$$

$$M_C = \frac{k}{n} \sum_{i=1}^{k} \left| \sum_{j=1, x_j \in \pi_i}^{n} P_{ij} - 1 \right|.$$ \hspace{1cm} (33)

Basically, M_B measures how far P is from being a bi-stochastic matrix, and M_C roughly measures the potential of producing good clustering results. Lower values of M_B and M_C are more desirable. We use the M_C measure because it is independent of the specific clustering algorithms.

![Figure 1](image-url)

Fig. 1 presents the quality measurements on the MNIST data set, for a wide range of γ values. Fig. 2 presents the measurements on a variety of data sets for $\gamma = 1$:

- In terms of M_B, the SK algorithm performs well in producing good bi-stochastic matrices.
- In terms of M_C, the BBS algorithm using the Euclidian distance (Alg. 1) has noticeably better potential of producing good clustering results than the SK algorithm.
e.g., [15], to assess clustering quality. Tables II to V provide results for BBS the results for

K-means Normalized Mutual Information Clustering Accuracy

For each case, we always ran Matlab kmeans 100 times.

We report the clustering results on two metrics:

1) Clustering Accuracy:

\[\text{Accuracy} = \frac{1}{n} \max \left(\sum_{i=1}^{k} \frac{1}{n} \sum_{j=1}^{k} |\pi_i \cap \hat{\pi}_j| \right) \quad (34) \]

where \(\hat{\pi}_j \) denotes the \(j \)-th cluster in the output, \(\pi_i \) is the true \(i \)-th class, and \(|\pi_i \cap \hat{\pi}_j| \) is the number of data points from the \(i \)-th class that are assigned to \(j \)-th cluster.

2) Normalized Mutual Information (NMI) [21]:

\[\text{NMI} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{k} |\pi_i \cap \hat{\pi}_j| \log \left(\frac{n |\pi_i \cap \hat{\pi}_j|}{|\pi_i| |\hat{\pi}_j|} \right)}{\sqrt{\left(\sum_{i=1}^{k} |\pi_i| \log \frac{|\pi_i|}{n} \right) \left(\sum_{j=1}^{k} |\hat{\pi}_j| \log \frac{|\hat{\pi}_j|}{n} \right)}} \quad (35) \]

We still need to address two more issues:

- For each case, we always ran kmeans 100 times. We report both the average and maximum measures of clustering quality (Accuracy and NMI). In practice, the maximum clustering performance may be quite attainable by tuning and running kmeans many times with different (random) initial starts.

- For RA, Ncut, SK and BBS, we experimented with the similarity matrices \(K \) generated from a series of \(\gamma \) values (from 0.25 to 1024). Tables II to V report the best results among all \(\gamma \)'s. Again, the rationale is that, in practice, the best performance may be attainable by careful tuning. In addition, we believe it is also informative to present the results for all \(\gamma \) values, as in the Appendix; although due to the space limit, we could not present the results for all data sets.

Tables II to V demonstrate that, for many data sets, BBS (Alg. 1) can achieve considerably better clustering results than other methods, especially when evaluated using maximum accuracy and maximum NMI.

Table II

<table>
<thead>
<tr>
<th>Data</th>
<th>K-means</th>
<th>RA</th>
<th>Ncut</th>
<th>SK</th>
<th>BBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>0.536</td>
<td>0.552</td>
<td>0.545</td>
<td>0.542</td>
<td>0.633</td>
</tr>
<tr>
<td>MNIST (0-4)</td>
<td>0.744</td>
<td>0.722</td>
<td>0.722</td>
<td>0.721</td>
<td>0.805</td>
</tr>
<tr>
<td>ISOLET (A-I)</td>
<td>0.621</td>
<td>0.737</td>
<td>0.735</td>
<td>0.709</td>
<td>0.713</td>
</tr>
<tr>
<td>ISOLET (J-R)</td>
<td>0.662</td>
<td>0.706</td>
<td>0.705</td>
<td>0.702</td>
<td>0.708</td>
</tr>
<tr>
<td>ISOLET (S-Z)</td>
<td>0.703</td>
<td>0.787</td>
<td>0.739</td>
<td>0.742</td>
<td>0.773</td>
</tr>
<tr>
<td>LETTER (A-E)</td>
<td>0.462</td>
<td>0.516</td>
<td>0.516</td>
<td>0.513</td>
<td>0.539</td>
</tr>
<tr>
<td>LETTER (F-J)</td>
<td>0.514</td>
<td>0.490</td>
<td>0.492</td>
<td>0.495</td>
<td>0.619</td>
</tr>
<tr>
<td>LETTER (K-O)</td>
<td>0.390</td>
<td>0.474</td>
<td>0.473</td>
<td>0.470</td>
<td>0.502</td>
</tr>
<tr>
<td>LETTER (P-T)</td>
<td>0.426</td>
<td>0.554</td>
<td>0.554</td>
<td>0.555</td>
<td>0.554</td>
</tr>
<tr>
<td>LETTER (U-Z)</td>
<td>0.467</td>
<td>0.511</td>
<td>0.517</td>
<td>0.512</td>
<td>0.505</td>
</tr>
<tr>
<td>NEWS20</td>
<td>0.273</td>
<td>0.244</td>
<td>0.245</td>
<td>0.244</td>
<td>0.378</td>
</tr>
<tr>
<td>OPTDIGIT</td>
<td>0.750</td>
<td>0.791</td>
<td>0.767</td>
<td>0.762</td>
<td>0.848</td>
</tr>
<tr>
<td>PENDIGIT</td>
<td>0.703</td>
<td>0.730</td>
<td>0.732</td>
<td>0.733</td>
<td>0.756</td>
</tr>
<tr>
<td>SATIMAGE</td>
<td>0.607</td>
<td>0.565</td>
<td>0.569</td>
<td>0.573</td>
<td>0.617</td>
</tr>
<tr>
<td>SHUTTLE</td>
<td>0.464</td>
<td>0.384</td>
<td>0.448</td>
<td>0.453</td>
<td>0.647</td>
</tr>
<tr>
<td>VEHICLE</td>
<td>0.366</td>
<td>0.389</td>
<td>0.371</td>
<td>0.374</td>
<td>0.409</td>
</tr>
<tr>
<td>ZIPCODE</td>
<td>0.650</td>
<td>0.678</td>
<td>0.678</td>
<td>0.674</td>
<td>0.747</td>
</tr>
<tr>
<td>ZIPCODE (0-4)</td>
<td>0.760</td>
<td>0.686</td>
<td>0.680</td>
<td>0.684</td>
<td>0.908</td>
</tr>
</tbody>
</table>

Figure 2. Quality measurements, \(M_B, M_C \), on a variety of data sets.

D. Comparing Clustering Results

We ultimately rely on the standard clustering procedure, e.g., [15], to assess clustering quality. Tables II to V provide the results for BBS (Alg. 1), SK, and three other methods:

- **K-means**: We directly used the original data sets (after normalizing each data point to have a unit \(l_2 \) norm) and ran Matlab kmeans 100 times.
- **RA**: We ran spectral clustering directly on the similarity matrix \(K \) (4). It is called *Ratio Association* [6].
- **Ncut**: We ran spectral clustering on the normalized similarity matrix \(\hat{K} = D^{-1/2}KD^{-1/2} \), as in Eq. (5).
perform well in clustering. We show that it is closely related to various relaxed

\[J_1 = \sum_{c=1}^{k} \sum_{x_i \in c} \| x_i - \mu_c \|^2 \]

(36)

where \(\mu_c \) is the mean of cluster \(c \). Some algebra can show that the minimizing \(J_1 \) is equivalent to minimizing \(J_2 \):

\[J_2 = -\text{tr} \left(\bar{F}^T XX^T \bar{F} \right) \]

(37)

where \(\bar{F} \) is the scaled partition matrix introduced at the beginning of the paper and \(X = [x_1, x_2, \ldots, x_n]^T \in \mathbb{R}^{n \times d} \) is the data matrix. Let \(G = \bar{F} \bar{F}^T \) and \(K = XX^T \). Then \(J_2 = -\text{tr}(KG) \), which in fact can be viewed as a special case of the objective of BBS defined in Eq. (10):

\[\text{tr} \left(G^T G - 2K^T G \right), \text{because the term } \text{tr} \left(G^T G \right) \text{ can be treated as a constant in this case:} \]

\[\text{tr} \left(G^T G \right) = \text{tr} \left(\bar{F} \bar{F}^T \bar{F} \bar{F}^T \right) = \text{tr} \left(\bar{F} \bar{F}^T \right) = \text{tr}(G) = k \]

In addition, \(K = XX^T \) is the linear kernel, which may be replaced by more flexible kernels, e.g., Eq. (4) as we use.

There are more than one way to formulate the relaxed \(k \)-means algorithm. For example,

\[\min_{G \in \mathcal{K}} D_\phi(G, K), \quad (\text{where } \phi(x) = x^2) \]

(38)

\[s.t. \quad G \geq 0, \quad G = G^T, \quad G1 = 1, \]

\[G^2 = G, \quad \text{tr}(G) = k, \]

(39)

which is quite similar to our formulation of the BBS problem with the Euclidian distance. Our formulation discards the constraints (39) and hence its optimization task is easier.

V. EXTENSION: MULTIPLE BBS (MBBS)

Our detailed experiments reported in the Appendix illustrate that the clustering performance of the BBS algorithm (as well as other algorithms), to an extent, depends on the initial similarity matrix \(K \). This section extends BBS to combine the power of multiple input similarity matrices, e.g., a series of kernel matrices (4) using different \(\gamma \) values, to boost the performance. We name this scheme Multiple BBS or MBBS. This is in spirit related to cluster ensemble [21] and Generalized Cluster Aggregation [22].

Suppose we have \(m \) similarity matrices \(\{K_{(i)}\}_{i=1}^m \). We would like to obtain a bi-stochastic similarity matrix \(G \) by solving the following optimization problem:

\[\min_{\alpha} \sum_{i=1}^{m} \alpha_i D_\phi \left(G, K_{(i)} \right) + \lambda \Omega(\alpha) \]

\[s.t. \quad G \geq 0, \quad G = G^T, \quad G1 = 1, \]

\[\forall i, \quad \alpha_i \geq 0, \quad \sum_{i=1}^{m} \alpha_i = 1 \]

We constrain the weight coefficients \(\alpha = \{\alpha_i\}_{i=1}^m \) to be in a simplex. \(\Omega(\alpha) \) is some regularizer to avoid trivial solutions.

There are two groups of variables \(\alpha \) and \(G \). Although the problem (40) is not jointly convex, it is convex with respect to one group of variables with the other group being fixed. Thus, it is reasonable to apply block coordinate descent [1].
A. Fix α, Solve G

At the t-th iteration, if α is fixed to be $\alpha = \alpha^{(t-1)}$, the problem (40) becomes

$$\min_G \sum_{i=1}^{m} \alpha_i^{(t-1)} D_\phi (G, K_{(i)})$$

$$s.t. \quad G \succeq 0, \quad G = G^T, \quad G1 = 1.$$ (41)

Note that $\Omega(\alpha)$ is irrelevant at this point. This is similar to problem (7) except for the summation form in the objective. The solution procedures are consequently also similar.

Here we assume $\phi(x) = x^2/2$ for the illustration purpose.

$$\sum_{i=1}^{m} \alpha_i^{(t-1)} D_\phi (G, K_{(i)})$$

$$= \frac{1}{2} \text{tr} \left(\sum_{i=1}^{m} \alpha_i^{(t-1)} K^T_{(i)} K_{(i)} + G^T G - 2 \sum_{i=1}^{m} \alpha_i^{(t-1)} K^T_{(i)} G \right)$$

where we use the fact $\sum_{i=1}^{m} \alpha_i^{(t-1)} = 1$. As the term $\sum_{i=1}^{m} \alpha_i^{(t-1)} K^T_{(i)} K_{(i)}$ is irrelevant, the problem becomes

$$\min_G \quad \text{tr} \left(G^T G - 2 \left(\sum_{i=1}^{m} \alpha_i K_{(i)} \right)^T G \right)$$

$$s.t. \quad G \succeq 0, \quad G = G^T, \quad G1 = 1$$ (42)

which is the same as Problem (10) if we make

$$K = \sum_{i=1}^{m} \alpha_i^{(t-1)} K_{(i)}.$$ (43)

B. Fix G, Solve α

When G is fixed with $G = G^{(t)}$ and for simplicity we only consider $\Omega(\alpha) = \|\alpha\|^2 = \alpha^T \alpha$, the problem becomes

$$\min_G, \alpha \quad \sum_{i=1}^{m} \alpha_i D_\phi \left(G^{(t)}, K_{(i)} \right) + \lambda \|\alpha\|^2$$

$$s.t. \quad \forall i, \alpha_i \geq 0, \quad \sum_{i=1}^{m} \alpha_i = 1.$$ (44)

which is a standard Quadratic Programming (QP) problem.

Here we will reformulate this problem to facilitate more efficient solutions. For the notational convenience, we denote $g^{(t)} = (g_1^{(t)}, g_2^{(t)}, \cdots, g_m^{(t)})^T$ with

$$g_i^{(t)} = D_\phi \left(G^{(t)}, K_{(i)} \right)$$ (45)

We first rewrite the objective of Problem (44) as

$$\alpha^T g^{(t)} + \lambda \|\alpha\|^2 = \left\| \sqrt{\lambda} \alpha - \frac{1}{\sqrt{2\lambda}} g^{(t)} \right\|^2 + \frac{1}{2\lambda} \left(g^{(t)} \right)^T g^{(t)}$$

As $\frac{1}{\sqrt{2\lambda}} \left(g^{(t)} \right)^T g^{(t)}$ is irrelevant, (44) can be rewritten to be

$$\min_{\alpha} \left\| \alpha - \frac{1}{\sqrt{2\lambda}} g^{(t)} \right\|^2, \quad s.t. \quad \alpha \geq 0, \quad \alpha^T 1 = 1,$$ (46)

which is an Euclidian projection problem under the simplex constraint and can be solved efficiently, e.g., [9],[14].

We will report extensive experiment results of Multiple BBS in a more comprehensive technical report.

VI. Conclusions

We present BBS (Bregmanian Bi-Stochasticity), a general framework for learning a bi-stochastic data similarity matrix from an initial similarity matrix, by minimizing the Bregmanian divergences such as the Euclidian distance or the KL divergence. The resultant bi-stochastic matrix can be used as input to clustering algorithms. The BBS framework is closely related to the relaxed k-means algorithms. Our extensive experiments on a wide range of public data sets demonstrate that the BBS algorithm using the Euclidian distance can often produce noticeably superior clustering results than other well-known algorithms including the SK and the Neut algorithm.

ACKNOWLEDGEMENT

This work is partially supported by NSF (DMS-0808864), ONR (YIP-N000140910911), and a grant from Microsoft.

REFERENCES

The clustering performance can be, to an extent, sensitive to Gaussian kernel (4) which has a tuning parameter $\gamma > 0$. Due to the space limit, we could not present the experiments for all the data sets. In the tables, each entry contains the average accuracy and NMI, as defined in Eq. (34) and Eq. (35), respectively.

In the tables, each entry contains the average accuracy and NMI. The values in the tables are rounded to three decimal places. The best performance is indicated in bold. The values in the tables are rounded to three decimal places. The best performance is indicated in bold.

APPENDIX

We generated the base similarity matrix K using the Gaussian kernel (4) which has a tuning parameter $\gamma > 0$. The clustering performance can be, to an extent, sensitive to γ; and hence we would like to present the clustering results for γ values ranging from $2^{-2} = 0.25$ to $2^{10} = 1024$, for four algorithms: RA, Neut, SK, and BBS (using Euclidian distance), and two performance measures: Accuracy and NMI, as defined in Eq. (34) and Eq. (35), respectively.

In the tables, each entry contains the average accuracy and NMI. The best performance is indicated in bold. The values in the tables are rounded to three decimal places. The best performance is indicated in bold.

We generated the base similarity matrix K using the Gaussian kernel (4) which has a tuning parameter $\gamma > 0$. The clustering performance can be, to an extent, sensitive to γ; and hence we would like to present the clustering results for γ values ranging from $2^{-2} = 0.25$ to $2^{10} = 1024$, for four algorithms: RA, Neut, SK, and BBS (using Euclidian distance), and two performance measures: Accuracy and NMI, as defined in Eq. (34) and Eq. (35), respectively.

In the tables, each entry contains the average accuracy and NMI. The best performance is indicated in bold. The values in the tables are rounded to three decimal places. The best performance is indicated in bold.

We generated the base similarity matrix K using the Gaussian kernel (4) which has a tuning parameter $\gamma > 0$. The clustering performance can be, to an extent, sensitive to γ; and hence we would like to present the clustering results for γ values ranging from $2^{-2} = 0.25$ to $2^{10} = 1024$, for four algorithms: RA, Neut, SK, and BBS (using Euclidian distance), and two performance measures: Accuracy and NMI, as defined in Eq. (34) and Eq. (35), respectively.

In the tables, each entry contains the average accuracy and NMI. The best performance is indicated in bold. The values in the tables are rounded to three decimal places. The best performance is indicated in bold.
ISOLET J-R

<table>
<thead>
<tr>
<th>γ</th>
<th>RA</th>
<th>Ncut</th>
<th>SK</th>
<th>BBS</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>256</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>64</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>4</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>0.25</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
</tbody>
</table>

ISOLET J-R

<table>
<thead>
<tr>
<th>γ</th>
<th>RA</th>
<th>Ncut</th>
<th>SK</th>
<th>BBS</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>256</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>64</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>4</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>0.25</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
</tbody>
</table>

ISOLET S-Z

<table>
<thead>
<tr>
<th>γ</th>
<th>RA</th>
<th>Ncut</th>
<th>SK</th>
<th>BBS</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>256</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>64</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>4</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>0.25</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
</tbody>
</table>

LETTER A-K

<table>
<thead>
<tr>
<th>γ</th>
<th>RA</th>
<th>Ncut</th>
<th>SK</th>
<th>BBS</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>256</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>64</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>4</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>0.25</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
</tbody>
</table>

LETTER L-M

<table>
<thead>
<tr>
<th>γ</th>
<th>RA</th>
<th>Ncut</th>
<th>SK</th>
<th>BBS</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>256</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>64</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>4</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>0.25</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
</tbody>
</table>

LETTER P-T

<table>
<thead>
<tr>
<th>γ</th>
<th>RA</th>
<th>Ncut</th>
<th>SK</th>
<th>BBS</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1024</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>256</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>64</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>4</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>0.25</td>
<td>0.725 (0.761)</td>
<td>0.725 (0.758)</td>
<td>0.729 (0.761)</td>
<td>0.724 (0.747)</td>
<td>0.370 (0.372)</td>
</tr>
<tr>
<td>Letter U-Z</td>
<td>Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>RA</td>
<td>Neut</td>
<td>SK</td>
<td>BBS</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.511 (0.558)</td>
<td>0.517 (0.558)</td>
<td>0.505 (0.558)</td>
<td>0.505 (0.558)</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.705 (0.792)</td>
<td>0.703 (0.795)</td>
<td>0.698 (0.793)</td>
<td>0.694 (0.790)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.691 (0.791)</td>
<td>0.702 (0.794)</td>
<td>0.707 (0.787)</td>
<td>0.731 (0.830)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.706 (0.790)</td>
<td>0.702 (0.772)</td>
<td>0.707 (0.790)</td>
<td>0.736 (0.833)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.701 (0.789)</td>
<td>0.695 (0.791)</td>
<td>0.701 (0.796)</td>
<td>0.738 (0.837)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.707 (0.771)</td>
<td>0.702 (0.785)</td>
<td>0.708 (0.784)</td>
<td>0.738 (0.841)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.704 (0.783)</td>
<td>0.697 (0.784)</td>
<td>0.710 (0.785)</td>
<td>0.756 (0.847)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.716 (0.786)</td>
<td>0.721 (0.785)</td>
<td>0.712 (0.790)</td>
<td>0.737 (0.857)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.725 (0.768)</td>
<td>0.729 (0.774)</td>
<td>0.730 (0.783)</td>
<td>0.690 (0.793)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.730 (0.781)</td>
<td>0.732 (0.787)</td>
<td>0.722 (0.786)</td>
<td>0.566 (0.703)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.724 (0.764)</td>
<td>0.726 (0.793)</td>
<td>0.733 (0.820)</td>
<td>0.469 (0.523)</td>
<td></td>
</tr>
<tr>
<td>News20</td>
<td>Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>RA</td>
<td>Neut</td>
<td>SK</td>
<td>BBS</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.393 (0.437)</td>
<td>0.403 (0.437)</td>
<td>0.394 (0.437)</td>
<td>0.390 (0.437)</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.679 (0.716)</td>
<td>0.678 (0.716)</td>
<td>0.677 (0.704)</td>
<td>0.670 (0.704)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.671 (0.701)</td>
<td>0.678 (0.717)</td>
<td>0.680 (0.710)</td>
<td>0.744 (0.772)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.674 (0.698)</td>
<td>0.679 (0.699)</td>
<td>0.676 (0.697)</td>
<td>0.774 (0.826)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.693 (0.710)</td>
<td>0.693 (0.707)</td>
<td>0.698 (0.709)</td>
<td>0.666 (0.730)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.679 (0.706)</td>
<td>0.688 (0.709)</td>
<td>0.705 (0.734)</td>
<td>0.491 (0.548)</td>
<td></td>
</tr>
<tr>
<td>Satimage</td>
<td>Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>RA</td>
<td>Neut</td>
<td>SK</td>
<td>BBS</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.232 (0.238)</td>
<td>0.223 (0.244)</td>
<td>0.224 (0.237)</td>
<td>0.223 (0.238)</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.406 (0.425)</td>
<td>0.405 (0.425)</td>
<td>0.406 (0.425)</td>
<td>0.405 (0.425)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.384 (0.463)</td>
<td>0.376 (0.463)</td>
<td>0.376 (0.462)</td>
<td>0.398 (0.521)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.331 (0.397)</td>
<td>0.333 (0.423)</td>
<td>0.338 (0.422)</td>
<td>0.396 (0.483)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.406 (0.429)</td>
<td>0.408 (0.428)</td>
<td>0.400 (0.433)</td>
<td>0.598 (0.623)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.473 (0.483)</td>
<td>0.491 (0.511)</td>
<td>0.439 (0.501)</td>
<td>0.603 (0.622)</td>
<td></td>
</tr>
<tr>
<td>Shuttle</td>
<td>Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>RA</td>
<td>Neut</td>
<td>SK</td>
<td>BBS</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.699 (0.713)</td>
<td>0.694 (0.713)</td>
<td>0.693 (0.713)</td>
<td>0.707 (0.729)</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>0.679 (0.713)</td>
<td>0.697 (0.713)</td>
<td>0.687 (0.713)</td>
<td>0.719 (0.759)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.698 (0.713)</td>
<td>0.697 (0.713)</td>
<td>0.695 (0.711)</td>
<td>0.678 (0.768)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.697 (0.713)</td>
<td>0.698 (0.728)</td>
<td>0.701 (0.726)</td>
<td>0.469 (0.563)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.700 (0.713)</td>
<td>0.698 (0.730)</td>
<td>0.702 (0.729)</td>
<td>0.847 (0.916)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.706 (0.713)</td>
<td>0.699 (0.717)</td>
<td>0.705 (0.717)</td>
<td>0.847 (0.916)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.704 (0.723)</td>
<td>0.697 (0.715)</td>
<td>0.702 (0.722)</td>
<td>0.847 (0.917)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.707 (0.733)</td>
<td>0.705 (0.744)</td>
<td>0.705 (0.741)</td>
<td>0.847 (0.917)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.728 (0.759)</td>
<td>0.718 (0.748)</td>
<td>0.720 (0.747)</td>
<td>0.847 (0.917)</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.742 (0.759)</td>
<td>0.739 (0.759)</td>
<td>0.738 (0.759)</td>
<td>0.747 (0.804)</td>
<td></td>
</tr>
</tbody>
</table>