
Zigzag Persistent Homology and Real-valued Functions∗

Gunnar Carlsson
Department of Mathematics,
Stanford University, California
gunnar@math.stanford.edu

Vin de Silva
Department of Mathematics,

Pomona College,
Claremont, California

vin.desilva@pomona.edu

Dmitriy Morozov
Departments of Computer
Science and Mathematics,

Stanford University, California
dmitriy@mrzv.org

ABSTRACT
We study the problem of computing zigzag persistence of
a sequence of homology groups and study a particular se-
quence derived from the levelsets of a real-valued function
on a topological space. The result is a local, symmetric
interval descriptor of the function. Our structural results
establish a connection between the zigzag pairs in this se-
quence and extended persistence, and in the process resolve
an open question associated with the latter. Our algorithmic
results not only provide a way to compute zigzag persistence
for any sequence of homology groups, but combined with our
structural results give a novel algorithm for computing ex-
tended persistence. This algorithm is easily parallelizable
and uses (asymptotically) less memory.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; G.2.1 [Dis-
crete Mathematics]: Combinatorics—Counting problems

General Terms
algorithms, theory

Keywords
Zigzag persistent homology, Mayer–Vietoris pyramid, lev-
elset zigzag, extended persistence, algorithms.

1. INTRODUCTION
In this paper we develop the theory of zigzag persistent

homology and present an effective algorithm for calculating
it. We build on technical foundations presented in [3]; the
original inspiration is the theory of persistence [11], which is
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the simplest special case. In this paper we focus on two ma-
jor developments: an application of zigzag persistence the-
ory to real-valued functions on a topological space; and an
incremental, parallelizable, space-efficient algorithm analo-
gous to the well-known algorithm for computing persistent
homology [11, 16].

The idea that geometric techniques should be useful in un-
derstanding high dimensional data is by now well accepted.
Multidimensional scaling [1, 15] can be used to obtain low
dimensional embeddings of data sets which do not distort
the metric excessively. Clustering methods are the statisti-
cal version of the topological concept of extracting the con-
nected components of a topological space.

The translation of topological constructs into the context
of point clouds typically requires a choice of scale. For ex-
ample, single linkage clustering [13] requires the choice of a
threshold parameter to give well defined clusters. In certain
situations there exist various clever methods for selecting an
‘optimal’ scale parameter. On the other hand, it is some-
times possible to avoid such a choice by working at all scales
simultaneously. The dendrograms which are produced for
hierarchical clustering are a clear example of this idea.

Persistent homology [11, 16] is, among other things, a
scale-invariant methodology for studying the higher dimen-
sional topological invariants of a point cloud. As presented
in [16], the key theoretical ingredient is the algebraic classi-
fication of persistence vector spaces. These are diagrams of
the form

V0 → V1 → V2 → V3 → · · ·
where each Vi is a vector space over a field k, and where
each arrow represents a linear transformation between the
corresponding vector spaces. Each space Vi can be thought
of, for instance, as the topology of a point cloud measured at
scale i. The algebraic classification describes the overall dia-
gram of spaces in terms of an interval barcode, or persistence
diagram; this captures information at all scales simultane-
ously.

We claim that diagrams of other shapes should also be
useful in understanding point cloud data [2, 3]. We will deal
with a specific class of diagrams — zigzags — whose shape
is still linear, but in which the arrows can point in differ-
ent directions. It is known that the classification of zigzag
diagrams of vector spaces is essentially identical to the clas-
sification of persistence spaces; each diagram decomposes as
a direct sum of irreducible terms labelled by intervals. Thus,
many of the conceptual and practical advantages of persis-
tent homology (over ordinary homology) become available
to us in much greater generality.



Our chief contributions are:

• levelset zigzag persistent homology, which solves the
problem of finding a local, symmetric interval descrip-
tion for a real-valued function,

• a Pyramid Theorem, which is a powerful extension of
the Mayer–Vietoris theorem to levelset zigzag persis-
tent homology,

• an efficient concrete algorithm to compute zigzag per-
sistent homology.

Together with a connection between a certain kind of (lev-
elset) zigzag and extended persistence [7], these results allow
us to:

• derive an alternative intuition and interpretation of ex-
tended persistence,

• resolve the open question about symmetry of extended
persistence on non-manifold domains,

• use the algorithm for zigzag persistent homology to
compute extended persistence; such computation uses
less space and can be distributed across multiple pro-
cessors.

2. ZIGZAG PERSISTENCE
A zigzag diagram of topological spaces is a sequence

X : X1 ↔ X2 ↔ · · · ↔ Xn−1 ↔ Xn

where each Xi is a topological space and each ↔ represents
a continuous function oriented forwards Xi → Xi+1 or back-
wards Xi ← Xi+1. If we apply a homology functor Hp with
coefficients in a field k to such a diagram, we get a zigzag
diagram of vector spaces, also called a zigzag module:

Hp(X ) : Hp(X1)↔ Hp(X2)↔ · · · ↔ Hp(Xn−1)↔ Hp(Xn)

The structure of a zigzag module can be analyzed using lin-
ear algebra, in particular the theory of quiver representa-
tions. The resulting linear algebra description of Hp(X ) can
then be regarded as a homological invariant of the original
diagram X . We call this zigzag persistence [3].

We now describe the structure theorem. There are 2n−1

choices of orientation for the maps in a zigzag module with
n terms. The modules of each type form an abelian category:
morphisms, kernels, images, cokernels, and direct sums are
defined in a natural way. A theorem of Gabriel [12] implies
that every finite-dimensional zigzag module can be decom-
posed as a direct sum of interval modules. These are modules
of the following form:

I[b,d] : I1 ↔ I2 ↔ · · · ↔ In

where Ii = k for b ≤ i ≤ d, and Ii = 0 otherwise; and
every k → k or k ← k is the identity map. Moreover, the
list of summands is unique up to reordering. We refer to [3]
for a thorough account of this theorem from our present
perspective, including general techniques for computing the
summands of a zigzag module and some guidance towards
the appropriate intuitions for this theory.

The zigzag persistent homology of X in dimension p is
defined to be the (multi-)set of intervals [b, d] corresponding
to the list of interval summands I[b,d] of Hp(X ). In other
words

Persp(X ) = {[bj , dj ] | j ∈ J} ⇔ Hp(X ) ∼=
M
j∈J

I[bj ,dj ]

The total persistence Pers(X ) of the zigzag diagram X is
the collection of multisets Persp(X ), taken over all p.

Each interval [b, d] is thought of as a persistent feature
of X which is manifested from Xb to Xd inclusive. It is
convenient notation to write [Xb,Xd] instead of [b, d] when
describing the intervals in Persp(X ). This is particularly
helpful when we work with diagrams of spaces which are
not naturally indexed by {1, 2, . . . , n}. We will occasionally
introduce other shorthand when studying zigzag diagrams
which encode changes occuring at critical transition values
ai ∈ R.

The standard theory of persistence [11, 16] is the spe-
cial case where all the maps point forwards. In this case
the linear algebra is particularly transparent, because per-
sistence modules can be thought of as graded modules over
the polynomial ring k[t]. An important warning: it is usual
in standard persistence to denote the decomposition sum-
mands by open intervals [Xb,Xd+1) rather than closed inter-
vals [Xb,Xd]. This may cause some confusion to the unwary
reader.

Mayer–Vietoris diamonds. Our most important math-
ematical tool is the Diamond Principle, which relates the
persistence intervals of two zigzag diagrams which differ by
a single local change.

Consider the diagram in Figure 1. This contains two ob-
vious zigzag diagrams of length n: the union diagram X∪
which passes through U ∪ V, and the intersection diagram
X∩ which passes through U ∩ V.

Mayer–Vietoris Diamond Principle. There exists a
bijection Pers(X∩) ↔ Pers(X∪) which transforms intervals
according to the following rules:

For B ∈ {X1, . . . ,Xk−2,U}:

[B,U] ↔ [B,U ∪ V]

[B,U ∩ V] ↔ [B,U]

For D ∈ {V,Xk+2, . . . ,Xn}:

[V,D] ↔ [U ∪ V,D]

[U ∩ V,D] ↔ [V,D]

Exceptional case:

[U ∩ V,U ∩ V] ↔ [U ∪ V,U ∪ V]+

Otherwise:

[B,D] ↔ [B,D]

The superscript + in the exceptional case indicates a di-
mension shift: [U ∩ V,U ∩ V] in Persp(X∩) is paired with
[U ∪ V,U ∪ V] in Persp+1(X∪). Otherwise, the bijection re-
spects homological dimension.

A proof of the Diamond Principle can be found in [3].
For intuition the reader may wish to consider the simplest
situation, where the configuration consists of the diamond
alone. For instance, the exceptional bijection corresponds to
the fact that the cokernel of Hp+1(U)⊕Hp+1(V)→ Hp+1(U∪



U ∪ V

X1
. . . Xk−2 U V Xk+2 . . . Xn

U ∩ V

oo // oo // oo //

::ttttt
oo //

ddJJJJJ
oo // oo //

::ttttt
ddJJJJJ

Figure 1: Diagram for the Mayer–Vietoris Diamond Principle.

V) is isomorphic to the kernel of Hp(U ∩ V) → Hp(U) ⊕
Hp(V). Indeed, an isomorphism is given by the connecting
homomorphism ∂ of the Mayer–Vietoris theorem.

Levelset zigzag. For our principal application, consider a
topological space X and a continuous function f : X → R.
The function f defines levelsets Xt = f−1(t) for t ∈ R, and
slices XI = f−1(I) for intervals I ⊂ R. We suppose that
(X, f) is of Morse type. By this, we mean that there is a
finite set of real-valued indices a1 < a2 < · · · < an called
critical values, such that over each open interval

I = (−∞, a1), (a1, a2), . . . , (an−1, an), (an,∞)

the slice XI is homeomorphic to a product of the form Y×I,
with f being the projection onto the factor I. Moreover,
each homeomorphism Y × I → XI should extend to a con-
tinuous function Y×Ī → XĪ , where Ī is the closure of I ⊂ R.
Finally, we assume that each slice Xt has finitely-generated
homology.

Example 1. X is a compact manifold and f is a Morse
function.

Example 2. X is an open manifold which is compact-
cylindrical at infinity, and f is a proper Morse function with
finitely many critical points.

Example 3. Given an arbitrary zigzag diagram of spaces
of the form

Y0
f0→ Z1

g1← Y1
f1→ Z2

g2← · · ·
fn−1→ Zn−1

gn← Yn

let X be the telescope

Y0× (−∞, a1] ∪f0 Z1 ∪g1 . . . ∪fn−1 Zn ∪gn Yn× [an,∞)

constructed by gluing cylinders on the Yi to the spaces Zi,
with f defined as the projection onto the interval factor of
each cylinder.

Given (X, f) of Morse type, select a set of indices si which
satisfy

−∞ < s0 < a1 < s1 < a2 < · · · < sn−1 < an < sn <∞

and construct the diagram

X : X0
0 → X1

0 ← X1
1 → X2

1 ← · · · → Xnn−1 ← Xnn,

where Xji = X[si,sj ] The levelset zigzag persistence of (X, f)
is defined to be the zigzag persistence of the above sequence.

This is independent of the choice of intermediate values si,
thanks to the product structure between critical values. To
emphasize the dependence on critical values, we adopt the
following labelling convention. Each Xii−1 is labelled by the

f

a1 a2 a3 a4 a5

α

β

γ

δ

ε

ζ

H1:

[X1
0,X2

1]

[X1
0,X4

4]

[X3
2,X4

3]

H0: [X1
0,X5

4]

[X3
3,X3

3][X1
0,X1

1]

s1 s2 s3 s4

Figure 2: Morse function on a 2-manifold with
boundary, with levelset zigzag persistence intervals
in H0 and H1.

critical value ai. Each Xii is labelled by the regular interval
that contains it:

X0
0 X1

1 · · · Xn−1
n−1 Xnn

(−∞, a1) (a1, a2) · · · (an−1, an) (an,∞)

Zigzag persistence intervals of X are then labelled by tak-
ing the union of the labels of the terms Xii and Xii−1 over
which they are supported. Thus each persistence interval
is labelled by an open, closed or half-open interval of the
real line. Practically, we translate between X notation and
critical value notation as follows:ˆ

Xii−1,Xjj−1

˜
↔ [ai, aj ] for 1 ≤ i ≤ j ≤ n,ˆ

Xii−1,Xj−1
j−1

˜
↔ [ai, aj) for 1 ≤ i < j ≤ n+ 1,ˆ

Xii,Xjj−1

˜
↔ (ai, aj ] for 0 ≤ i < j ≤ n,ˆ

Xii,Xj−1
j−1

˜
↔ (ai, aj) for 0 ≤ i < j ≤ n+ 1.

We interpret a0 = −∞ and an+1 = +∞ in this scheme. In
this way we get infinite and semi-infinite intervals. These
do not occur if X0

0 = Xnn = ∅, which is the case if X is
constructed from a function on a compact space X.

Each interval, of any of the four types, may be labelled by
the corresponding point (ai, aj) ∈ R2. The aggregation of
these points — taken with multiplicity and labelled by type
and homological dimension — together with all points on the
diagonal in every dimension taken with infinite multiplicity
is called the levelset zigzag persistence diagram DgmZZ(f).



Example 4. The surface in Figure 2 has Morse func-
tion f defined by projection onto the horizontal axis. In-
stances of open, closed and half-open intervals all occur in
DgmZZ(f). The short closed interval on the left can be iden-
tified by considering part of the levelset zigzag sequence

X0
0 → X1

0 ← X1
1 → X2

1 ← X2
2 → . . .

and applying H1 to get the following diagram of vector spaces,
spanned by the indicated basis vectors:

0→ 〈α, β〉 ← 〈α, β〉 → 〈α, β〉 g← 〈γ〉 → . . .

The map g is defined by g(γ) = α + β. This part of the
diagram may be decomposed as a direct sum of

0→ 〈α〉 ← 〈α〉 → 〈α〉 ← 0→ . . .

with

0→ 〈α+ β〉 ← 〈α+ β〉 → 〈α+ β〉 ← 〈γ〉 → . . .

from which we infer the interval [X1
0,X2

1] or [a1, a2].

Levelset zigzag persistence has two useful properties that
follow almost tautologically from the definitions. The first
property is locality. The zigzag diagram associated to a slice
XI and the restricted function fI is always a subdiagram of
the zigzag diagram associated to the original (X, f). Thus,
there is an immediate bijection between levelset zigzag in-
tervals of (X, f) which meet I, and levelset zigzag intervals
of (XI , fI). The second property is symmetry : (X, f) and
(X,−f) have the same levelset zigzag intervals after reflec-
tion. Indeed, the associated zigzag diagrams are isomorphic
by reflection.

Pyramid. Given (X, f) of Morse type, we construct a gigan-
tic commutative diagram which resembles a pyramid viewed
from above. At the nodes of the diagram are spaces or rel-
ative pairs derived from the slices of X. The south face
contains the slices, Xji with i ≤ j, themselves. The west

face contains the pairs (Xj0,X
i
0) with i ≤ j. The east face

contains the pairs (Xni ,Xnj ) with i ≤ j. Finally, the north

face contains the pairs (Xn0 ,Xi0 ∪ Xnj ) with i < j. These
spaces and pairs are assembled in the manner suggested by
Figure 3, which depicts the case n = 3. Degenerate pairs
of the form (Xi0,Xi0) or (Xnj ,Xnj ) are shown compactly as ∅.
The arrows represent inclusion maps.

The remarkable property of this pyramid is that the di-
amonds are Mayer–Vietoris. Indeed, each diamond is an
instance of

(A1 ∪ A2,B1 ∪ B2)

(A1,B1) (A2,B2)

(A1 ∩ A2,B1 ∩ B2)

44jjjjj
jjTTTTT

jjTTTTT 44jjjjj

which is the prescribed configuration for the relative Mayer–
Vietoris theorem [14].

From the pyramid we can extract a profusion of zigzag dia-
grams. Most relevant to us are the monotone zigzags, which
stretch from the western edge to the eastern edge without
backtracking. These have 2n+1 nodes, excluding the initial
and terminal ∅. The four most important monotone zigzags
are those constructed out of the highlighted (solid) arrows
in Figure 3. The levelset zigzag tracks the southern edge of
the pyramid.

Pyramid Theorem. Let (X, f) be of Morse type. Any
two monotone zigzags X1,X2 in the pyramid diagram carry
the same information in their persistent homology. More-
over, there exists an explicit bijection between Pers(H∗(X1))
and Pers(H∗(X2)), which respects homological dimension ex-
cept for possible shifts of degree ±1.

Proof. We include both the initial and final ∅ in our de-
scription of each Xi. Then X1 can be transformed to X2 by a
sequence of diamond moves (which transform the persistence
intervals bijectively, by the Diamond Lemma) and shifts of
either terminal ∅ (which have no effect on the intervals).
Thus X1,X2 carry the same zigzag persistence information.

To construct the bijection explicitly, it is enough to track
the birth and death of each interval type through the trans-
formation process. Diamond moves transform births in the
following way:

↔ ↔ ↔

In other words, if the arrow immediately to the left of the
birth points northwest ↖ then the birth travels along the
southwest–northeast axis ↗↙. Whereas, if the arrow im-
mediately to the left of the birth points northeast ↗ then
the birth travels along the southeast–northwest axis ↖↘.

Similarly, diamond moves transform deaths in the follow-
ing way:

↔ ↔ ↔

In other words, if the arrow immediately to the right of
the death points northwest ↖ then the death travels along
the southwest–northeast axis ↗↙. Whereas, if the arrow
immediately to the right of the death points northeast ↗
then the death travels along the southeast–northwest axis
↖↘.

The simplifying observation is that the axis of travel, once
determined, remains fixed for each birth or death. There are
two exceptions to this. If a birth or death reaches the east or
west extreme, then it ‘bounces’ and changes travel direction
thereafter. If a birth collides with its associated death (so
the persistence interval is supported on one node only) in the
north or south node of a diamond, then that diamond move
causes the following transformation with a dimension shift
of +1 from the left configuration to the right configuration:

↔

Note that if all the diamond moves are taken in the same
direction (downwards, say), then any given interval type is
afflicted by at most one dimension-shifting incident. Indeed,
after such an incident the birth and death are travelling away
from each other and do not have time to bounce off the walls
and meet again. By comparing X1 and X2 to the levelset
zigzag in such a way, it can be verified that the compos-
ite transformation between Pers(H∗(X1)) and Pers(H∗(X2))
does not shift any intervals in dimension by more than 1. �

In principle, the rules outlined in the proof of the Pyra-
mid Theorem can be used to determine the interval trans-
formation law between any pair of monotone zigzags. As
an example, Figure 4 illustrates the transformation between
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Figure 3: Mayer–Vietoris pyramid for the levelset zigzag (n = 3). The two diagonals carry the extended
persistence of f (↗) and −f (↖). Every diamond has the Mayer–Vietoris property. The boundary map from
the top row to the bottom row extends the Mayer–Vietoris structure and turns the entire diagram into a
Möbius strip. We use the shorthand j

iX = Xi0 ∪ Xnj to keep the diagram small.

B
irth

B
ir
th

D
eath

D
ea

th

+1

Figure 4: Transformation between intervals in the levelset zigzag and up–down sequence within the Mayer–
Vietoris pyramid.

levelset zigzag persistence with the zigzag persistence of the
‘up–down’ sequence

Hp(X0
0)→ · · · → Hp(Xn0 )← · · · ← Hp(Xnn) (1)

which tracks the long diagonal edges of the south face of the
pyramid. Up–Down Zigzag Persistence has three different
classes of intervals, which can be notated in terms of the
critical values as follows:

[Xi0,Xj−1
0 ] ↔ [ai, aj) for 0 ≤ i < j ≤ n,

[Xi0,Xnj−1] ↔ [ai, āj ] for 0 ≤ i ≤ n, 1 ≤ j ≤ n+ 1,
[Xni ,Xnj−1] ↔ (āi, āj ] for 1 ≤ i < j ≤ n+ 1,

These are intervals in a double copy R ∪ R̄ of the real line.
We interpret a0 = −∞ and ān+1 = +∞̄, whenever they
occur. With respect to this notational convention, the full
transformation law from levelset zigzag persistence to up–
down zigzag persistence is shown in Table 1.

The pyramid has one further secret. At the homology
level, the north edge can be connected to the south edge
by means of the boundary map ∂ : Hp(Xn0 ,Xi0 ∪ Xnj ) →
Hp−1(Xi0) ⊕ Hp−1(Xnj ) of the long exact sequence for the

pair (Xn0 ,Xi0 ∪ Xnj ). The resulting diamonds are themselves
Mayer–Vietoris, and the diagram turns into a vast Möbius
strip. The Möbius strip supports a total of (n+1)22n essen-
tially distinct monotone zigzags, all of which carry exactly
the same persistent homological information.

3. CONNECTION TO EXTENDED PERSIS-
TENCE

Given a real-valued function f : X → R, Cohen-Steiner,
Edelsbrunner, and Harer [7] define extended persistence to
be the collection of pairs arising from the following sequence
of absolute and relative homology groups:

Hp(X0
0) → . . . → Hp(Xn0 )

↓
Hp(Xn0 ,Xn0 ) ← . . . ← Hp(Xn0 ,Xnn)

(2)

The resulting pairs are recorded in the (extended) persis-
tence diagram Dgmp(f). One can distinguish between three
types of pairs: ordinary pairs arise between the elements
in the top row of the sequence, relative pairs between the



Type I Type II Type III Type IV

i < j i < j i ≤ j i < j

LZZ
ˆ

Xii−1, Xj−1
j−1

˜ ˆ
Xii, Xjj−1

˜ ˆ
Xii−1, Xjj−1

˜ ˆ
Xii, Xj−1

j−1

˜ˆ
ai, aj

´ `
ai, aj

˜ ˆ
ai, aj

˜ `
ai, aj

´
UD

ˆ
Xi0, Xj−1

0

˜ ˆ
Xni , Xnj−1

˜ ˆ
Xi0, Xnj−1

˜ ˆ
Xj0, Xni−1

˜+ˆ
ai, aj

´ `
āi, āj

˜ ˆ
ai, āj

˜ ˆ
aj , āi

˜+
EP(f)

ˆ
Xi0, Xj−1

0

˜ ˆ
(Xn0 , Xnj−1), (Xn0 , Xni )

˜+ ˆ
Xi0, (Xn0 , Xnj )

˜ ˆ
Xj0, (Xn0 , Xni )

˜+ˆ
ai, aj

´ ˆ
āj , āi

´+ ˆ
ai, āj

´ ˆ
aj , āi

´+
EP(−f)

ˆ
(Xn0 , Xj−1

0 ), (Xn0 , Xi0)
˜+ ˆ

Xni , Xnj−1

˜ ˆ
(Xn0 , Xi−1

0 ), Xnj−1

˜ ˆ
(Xn0 , Xj−1

0 ), Xni−1

˜+`
āj , āi

˜+ `
ai, aj

˜ `
āi, aj

˜ `
āj , ai

˜+
Table 1: Transformation between the pairs for the four different sequences in the Mayer–Vietoris pyramid.
The pairing is shown between both spaces and critical values. The first, second, and third rows show pairs
for the levelset zigzag, the up–down sequence, and the extended persistence of function f , respectively. The
fourth row shows the pairs for the extended persistence of function −f as it appears in the pyramid, i.e. with
arrows going from right to left. To convert the values to the pairs for function −f as they appear in sequence
(3), we need to switch the left and right endpoints negating both. The first two types correspond to ordinary
and relative persistence of function f , and vice versa for function −f . The last two types correspond to
extended persistence.

elements in the bottom row, and extended pairs span both
rows.

Similarly, for the function −f , we have

Hp(Xnn) → . . . → Hp(Xn0 )
↓

Hp(Xn0 ,Xn0 ) ← . . . ← Hp(Xn0 ,X0
0).

(3)

The following two theorems relate the diagrams of f and
−f if the domain X is a manifold [7]. Denoting with super-
script T the reflection across the principal diagonal, (x, y) 7→
(y, x), we get the following duality.

EP Duality Theorem [7]. The persistence diagrams of
a real-valued function f on a d-manifold are reflections of
each other, Dgmr(f) = DgmT

d−r(f).

Denoting with the superscript R the reflection across the mi-
nor diagonal, (x, y) 7→ (−y,−x), with the superscript 0 the
composition of reflections T and R, i.e. the central reflection
through the origin, (x, y) 7→ (−x,−y), and by Ord,Ext, and
Rel, the ordinary, extended, and relative subdiagrams, the
authors state the following symmetry.

EP Symmetry Theorem [7]. Given a real-valued func-
tion f on a d-manifold, its persistence subdiagrams are re-
lated by

Ordr(f) = OrdRd−r−1(−f),

Extr(f) = Ext0
d−r(−f),

Relr(f) = RelRd−r+1(−f).

Cohen-Steiner et al. [7] leave the description of the situation
in the non-manifold case as an open question. In particu-
lar, they wonder whether a weaker version of the Symmetry
Theorem holds. Next we show that a strong version of the
Symmetry Theorem is valid for a Morse type function (note
that our definition does not require its domain to be a man-
ifold). The Symmetry Theorem as stated above is really a

consequence of the Duality Theorem and our general Sym-
metry Theorem in the case when the domain is a manifold.

Equivalence. We observe that the sequences of homology
groups giving rise to extended persistence (2) and (3) appear
in the Mayer–Vietoris pyramid in Figure 3 as minor and
principal diagonals. It follows from the Pyramid Theorem
that they contain the same information.

EP Equivalence Theorem. The up–down sequence of
the pyramid as well as the levelset zigzag contain the same
pairs as extended persistence of function f and −f . The
mapping between the four is given in Table 1.

Translating the above result into a statement about the ex-
tended persistence subdiagrams, we resolve the open ques-
tion of Cohen-Steiner et al. [7].

EP Symmetry Corollary. Extended persistence sub-
diagrams of a real-valued function f are related by

Ordr(f) = Rel0r+1(−f),

Extr(f) = ExtRr (−f),

Relr(f) = Ord0
r−1(−f).

Stability. An important result in the study of persistent
homology has been the understanding of stability of persis-
tence diagrams [6]. We take advantage of the above connec-
tion between the levelset zigzag and extended persistence to
acknowledge the stability of the former.

Let dB denote the bottleneck distance between two point
sets. The Stability Theorem of [6] applies in the extended
persistence setting [7].

EP Stability Theorem [6, 7]. Given two (Morse type)
functions f : X→ R and g : X→ R, let δ = ‖f − g‖∞. The
bottleneck distance between their extended persistence dia-
grams is upper bounded by the L∞ distance between them,

dB(Dgmp(f),Dgmp(g)) ≤ δ.



It is not difficult to notice that the transformation in terms
of critical values between extended and levelset zigzag per-
sistence as stated in Table 1 preserves stability, and we get
the following result.

LZZ Stability Theorem. Given two (Morse type) func-
tions f : X → R and g : X → R with δ = ‖f − g‖∞, let
DgmZZp(f) and DgmZZp(g) be the p-dimensional persis-
tence diagrams of the levelset zigzags of f and g. Then

dB(DgmZZp(f),DgmZZp(g)) ≤ δ.

Proof. As [7] points out, the Stability Theorem for ex-
tended persistence can be strengthened to apply to each
subdiagram individually,

dB(Ordp(f),Ordp(g)) ≤ δ,

dB(Relp(f),Relp(g)) ≤ δ,

dB(Extp(f),Extp(g)) ≤ δ.

This observation together with the transformation in Table
1 immediately tell us that the pairs in the levelset zigzag cor-
responding to ordinary and relative subdiagrams are stable.
A point in the extended subdiagram could create a problem
if it were to switch from Type III to Type IV in Table 1
(i.e. if it were to cross the diagonal) since it would map to
a point of different dimension in the level zigzag. However,
in this case it would mean that the point was close to the
diagonal, and all the involved points (both in the extended
persistence and levelset zigzag diagrams) can be paired with
the points on the diagonal. Therefore, the transformation
from extended to levelset zigzag persistence preserves sta-
bility. �

4. ALGORITHM
In practice, real-valued functions are represented by func-

tions on simplicial complexes. Therefore, we are interested
in finding an algorithm for the following setting. We are
given a sequence of simplicial complexes

∅ = K0 ↔ K1 ↔ . . .↔ Kn,

where arrows↔ represent inclusions of either the form Ki ⊂
Ki+1 or Ki ⊃ Ki+1. Furthermore, we assume that every two
consecutive complexes differ by a single simplex, i.e. either
Ki+1 = Ki ∪ σi+1 or Ki = Ki+1 ∪ σi+1. Thus the sequence
of complexes represents a sequence of simplex additions and
removals. Our goal is to compute zigzag persistence for the
sequence of homology groups over a field k

H(K0)↔ H(K1)↔ . . .↔ H(Kn),

where the connecting homomorphisms are induced by inclu-
sion.

We adapt the interval decomposition algorithm of [3] to
our setting. We proceed by maintaining the right filtra-
tion R and the birth vector b as defined in [3]. We briefly
review the two concepts, both of which are defined induc-
tively. For n = 1, Rn = (0,H(K1)),bn = (1). Given the
right filtration Ri = (R0

i ,R
1
i , . . . ,R

i
i) and the birth vector

bi = (b1i , b
2
i , . . . , b

i
i), we extend them to the right filtration

Ri+1 and vector bi+1.

If H(Ki)
fi→ H(Ki+1),

then
Ri+1 =

`
fi(R

0
i ), fi(R

1
i ), . . . , fi(R

i
i),H(Ki+1)

´
bi+1 = (b1i , . . . , b

i
i, i+ 1).

If H(Ki)
gi← H(Ki+1),

then
Ri+1 =

`
0, g−1

i (R0
i ), g

−1
i (R1

i ), . . . , g
−1
i (Rii)

´
bi+1 = (i+ 1, b1i , . . . , b

i
i).

We observe that fi(R
0
i ) = 0, g−1

i (R0
i ) = Ker gi, g

−1
i (Rii) =

H(Ki+1).
Denoting by dim the sequence of dimensions of the quo-

tients Rj+1
i /Rji of a filtered vector space Ri, dim(Ri) =

(dim(R0
i ), dim(R1

i /R
0
i ), dim(R2

i /R
1
i ), . . .), we write

(c0i , . . . , c
i
i) = dim(Ri ∩ Ker fi),

in case of map fi; and

(c0i , . . . , c
i
i) = dim(Cok gi) = dim(Ri)− dim(Ri ∩ Im gi),

in case of map gi. The persistence intervals of the zigzag
module are intervals (bi(k), i) counted with multiplicity cki
[3].

To construct an algorithm for a sequence of homology
groups, we maintain a representation of the right filtration
Ri and the birth vector bi. At stage i of the algorithm, we
want to update our representation of the two objects, and
output intervals that terminate at i.

Henceforth we work with matrices with entries in a fixed
field k. We represent the right filtration Ri using three ma-
trices Zi, Bi, and Ci. We denote the boundary matrix of
complex Ki by Di. Matrix Zi forms a basis for the cycles of
Ki; matrix Bi stores a basis for the linear combinations of
the cycles that are boundaries; matrix Ci stores the chains
whose boundaries are given by the product ZiBi. The ma-
trices are related by the equality ZiBi = DiCi.

We associate with each column of Zi an index idxi. The
space spanned by the columns with idxi not exceeding k
represents a basis for the subgroups Rki of the homology
group Rii = H(Ki). Denoting this space with Zji where j =
max idx−1

i ([1, k]), we have

Rki = span
“
{z + B | z ∈ Zji and B = span(ZiBi)}

”
.

This index is a purely analytical tool; it is not necessary to
maintain it explicitly during the actual computation.

The rows and columns of the boundary matrix Di as well
as the rows of matrices Zi and Ci correspond to the individ-
ual simplices of the complex Ki, and are ordered by their
most recent appearance in the zigzag module. For conve-
nience, we make no distinction between a column of matrix
Zi or Ci and the chain it represents. We say that a simplex
σ belongs to the cycle Zi[j] if the row of σ in column j of Zi
contains a non-zero element. Similar to [9], we denote by low
the map from a column of a matrix to the index of the row
of the lowest non-zero element in that column, and say that
a matrix is reduced if the map is injective. The matrices Zi
and Bi remain reduced throughout the algorithm.

In notation of [9] matrices Zi and Ci correspond to matrix
V . The principal difference from the ordinary persistence
computation is that these matrices are no longer guaranteed
to be upper triangular.

We describe what happens in case we add a simplex (func-
tion fi), and remove a simplex (function gi).



Case fi: We compute the representation of the boundary
of simplex σ in terms of the cycles Zi, and then reduce
the result among the boundaries, obtaining: ∂σ = Ziv =
Zi(Biu+ v′). There are two possibilities:

Birth: If v′ = 0, then ∂σ is already a boundary, and
addition of σ creates a new cycle, for example, Ciu−σ.
We append this cycle to the matrix Zi, and we append
i + 1 to both the birth vector bi and the index vector
idxi to get bi+1 and idxi+1, respectively.

Death: If v′ 6= 0, then let j be the row of the lowest non-
zero element in vector v′. We output a pair (bi[j], i).
We append vector v′ to the matrix Bi, and the corre-
sponding chain (Ciu − σ) to the matrix Ci to obtain
matrices Bi+1 and Ci+1, respectively.

Case gi: There are once again two possibilities:

Birth: There is no cycle in matrix Zi that contains sim-
plex σ. Let j be the index of the first column in Ci that
contains σ, let l be the index of the row of the lowest
non-zero element in Bi[j].

1. Prepend DiCi[j] to Zi to get Z′i. Prepend i+ 1 to
the birth vector bi to get bi+1.

2. Let c = Ci[j][σ] be the coefficient of σ in the chain
Ci[j]. Let rσ be the row of σ in matrix Ci. We
prepend the row −rσ/c to the matrix Bi to get B′i.

3. Subtract (rσ[k]/c) · Ci[j] from every column Ci[k]
to get C′i.

4. Subtract (B′i[k][l]/B′i[j][l]) · B′i[j] from every other
column B′i[k].

5. Drop row l and column j from B′i to get Bi+1, drop
column l from Z′i, and drop column j from Ci to
get Ci+1.

6. Reduce Zi+1 initially set to Z′i:

1: while ∃ k < j s.t. lowZi+1[j] = lowZi+1[k] do
2: s = lowZi+1[j], sjk = Zi+1[j][s]/Zi+1[k][s]

3: Zi+1[j] = Zi+1[j]− sjk · Zi+1[k]

4: In Bi+1, add row j multiplied by sjk to row k

We set the index idxi+1 of the prepended cycle to be
1, and increase the index of every other column by 1.
Figure 5 illustrates the changes made in this case.

Death: Let Zi[j] be the first cycle that contains simplex
σ. Output (bi[j], i).

1. Change basis to remove σ from matrix Zi:

1: for increasing k > j s.t. σ ∈ Zi[k] do
2: Let σkj = Zi[k][σ]/Zi[j][σ]

3: Zi+1[k] = Zi[k]− σkj · Zi[j]
4: In Bi, add row k multiplied by σkj to row j
5: if lowZi+1[k] > lowZi[k] then
6: j = k

2. Subtract cycle (Ci[k][σ]/Zi[j][σ]) · Zi[j] from every
chain Ci[k].

3. Drop Zi+1[j], the corresponding entry in vectors bi
and idxi, row j from Bi, row σ from Ci and Zi (as
well as row and column of σ from Di).

We increase the index of every column by 1,
idxi+1(l) = idxi(l) + 1.

We note that the sum of the columns in matrices Z and B
is equal to the number of simplices in the complex. Therefore
each step requires quadratic time in the worst case. As with
ordinary persistence, we expect the performance on the real-
world examples to be much better (closer to linear time).

Correctness. To show correctness of the above algorithm
we need to show that the interval output at stage i is correct,
and that the following invariant is maintained as we move
from stage i to i + 1. We define Zji = span(Zi[1..j]), the
subgroup of cycles spanned by the first j columns of matrix
Zi; and B = span(ZiBi).

Invariant. B is the group of boundaries of the complex
Ki, and the k-th subgroup Rki of the right filtration Ri is
the quotient Zji/(Z

j
i ∩ B), where j is the largest index such

that idxi(j) does not exceed k.

Since we add or remove a single simplex at each stage of
the algorithm, the rank of the homology group of the space
changes by at most one. The same is true of the cycle group
and the boundary group.

Map f . As with ordinary persistence, the correctness of
our algorithm in the case of addition of a simplex rests on
the following auxiliary lemma.

Reduction Lemma. If z is a cycle such that z = Ziv and
v = Biu + v′ is a reduction of v among the columns of B,
where v′ is a remainder of the reduction, then there exists a
(non-trivial) cycle in Zli with l = low(v′) homologous to z,
and there does not exist a cycle in Zji with j < l homologous
to z.

Proof. Existence of a cycle in Zli homologous to v is trivial;
indeed Zli 3 Ziv′ = z −ZiBiu. Suppose that there is such a
cycle in Zji with j < l. Let it be Zji 3 Ziv

′′ = z + ZiBiu
′′,

low(v′′) ≤ j < l. Then Zi(v
′′ − v′) = (z + ZiBiu

′′) − (z −
ZiBiu) = ZiBi(u

′′ + u). Therefore, (v′′ − v′) = Bi(u
′′ + u),

which means that v′ can be reduced further, a contradiction.
�

In the case where we add a simplex, the remainder vector
v′ is 0 if and only if cycle ∂σ is a boundary in Ki since the
matrices Zi and Bi are reduced. If it is 0, then (Ciu−σ) is a
cycle in Ki+1 (it does not exist in Ki), since Di+1(Ciu−σ) =
DiCiu− ∂σ = ZiBiu− ∂σ = 0. Since the map f is induced
by inclusion, cycles Zi+1[1..j] = Zi[1..j] remain bases for
all fi(R

k
i ) with idxi(j) ≤ k < idxi(j + 1), and the last

cycle (Ciu− σ) adds the missing basis element to represent
Ri+1
i+1 = H(Ki+1). The kernel of map f is zero, and therefore

nothing dies at this stage of the algorithm.
If vector v′ is not zero, then let j = low(v′), and l =

idxi(j). We know from the Reduction Lemma that there is
a class (Ziv

′ + B) in Rli that is homologous to the boundary
of simplex σ, and there is no class homologous to ∂σ in Rki
with k < l. This implies that

cli = dim((Rli ∩ Ker f)/(Rl−1
i ∩ Ker f)) = 1,

and the interval (bi[j], i) we output is correct. Appending
vector v′ to matrix Bi results in matrix Bi+1 whose product
with Zi+1 = Zi provides a basis for the boundaries of Ki+1

by construction. No changes occur to the group of cycles of
Ki.
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Figure 5: Adjustments made to matrices Zi, Bi, Di, and Ci in case of birth after the removal of simplex σ.

Map g. The subtleties of our construction arise when we
consider what happens when we remove a simplex σ from
complex Ki. If there is no cycle in matrix Zi that contains
simplex σ, then there is a chain Ci[j] that contains it. Oth-
erwise, since ZiBi = DiCi is a basis for the boundaries of
Ki, and ∂σ is a boundary, there would exist a chain Ciu
such that DiCiu = ∂σ. This would imply that (Ciu− σ) is
a cycle not in the span of Zi, a contradiction.

In the birth case, after the first two steps Z′iB
′
i[j] =

ZiBi[j] − DiCi[j] = 0, and after the third step Z′iB
′
i =

Di+1C
′
i. Before we drop column j from B′i and C′i we need to

ensure that row l of B′i is empty (since we drop column l from
Zi, which is linearly dependent on the columns that precede
it). This is achieved in Step 4. Step 6 is straightforward:
by adding columns to the right we only change the basis to
ensure matrix Zi+1 is reduced.

Cycle Zi+1[1] is in the kernel of map gi by construction:
indeed we set it to be the boundary of a chain in Ki. The
rest of the columns of Zi+1 are affected only by a change
of basis except for the column Zi[l]; this becomes linearly
dependent on the preceding columns, and we remove it from
the matrix. Therefore Rji = g(Rj+1

i+1 ), and the invariant is
preserved. The cokernel of the map g is zero, therefore no
interval terminates at this stage.

In the case where there is a cycle z that contains simplex
σ, we know that z is not in the image of the map g, so the
cokernel of map g is non-trivial and an interval terminates
at this stage. If z = Zi[j] is the first such cycle in matrix Zi,
then we can perform a change of basis (accomplished in Step
1) so that it is the only such cycle. As a result the rank of
each group Rl+1

i+1 with l > idxi(j) is one lower than Rli while
the ranks of the preceding groups in the right filtration do
not change, and the interval we output is correct. Once
Zi[j] is the only basis cycle containing simplex σ, the row
j of matrix Bi is zero. Indeed, if there were a column of
Bi with a non-zero element in row j, it would imply the
existence of a boundary that contains σ. However, σ has no
cofaces in Ki since Ki+1 = Ki − σ is a simplicial complex.
Step 2 of the death case makes sure that the row of σ in
Ci is 0. This step does not affect the boundaries since the
boundary of every cycle is zero. Finally, Step 3 constructs
the matrices Zi+1, Bi+1, and Ci+1.

The kernel of map g is zero, which is consistent with in-
creasing each index idxi+1 by 1 and not prepending any
cycles to Zi+1. The group of boundaries does not change,
and neither do the subgroups Rk+1

i+1 = Rki with k < idxi(j).

The preimages of subgroups Rli with l ≥ idxi(j) lose the
subgroup spanned by z + B, which is consistent with the
removal of column Zi[j], and the invariant is preserved.

5. DISCUSSION
One can compute levelset zigzag persistence of a real-

valued function using the algorithm of Section 4. Apply-
ing the transformation given in Table 1 to the resulting
pairs, one can obtain extended persistence diagrams of the
function. As with ordinary persistence one uses a function
f : K → R on a simplicial complex to represent the func-
tion of interest. Letting n = |K| be the number of simplices
in the complex, and m = max |f−1(a)| be the size of the
largest simplicial complex required to represent a levelset
of the function, we observe that such computation requires
O(m2) space to store matrices Z,B, and C, as opposed to
O(n2) space required by the original algorithm described in
[7]. Given that space is usually the main bottleneck in per-
sistence computation, we find this result very encouraging.
Similarly, the required time O(nm2) depends on the size of
the levelsets rather than the entire space O(n3).

An inconvenience associated with our algorithm is that
matrix B representing boundaries requires both row and col-
umn representation. It is an interesting question whether it
is possible to restructure the algorithm to get rid of this
overhead.

Distributed computation. Given a zigzag

H(K1)↔ . . .↔ H(Ki)↔ . . .↔ H(Kn),

we can compute the right filtration Ri = (R0
i , . . . ,R

i
i) at the

vector space H(Ki), and the symmetric notion of the left
filtration Li = (L0

i , . . . , L
n−i+1
i ) at the same vector space by

applying the algorithm of Section 4 to the right half of the
zigzag processed from right to left. Denote by Zr, Br,br the
matrices and birth vector representing the right filtration,
and by Zl, Bl,bl those representing the left filtration. The
full zigzag contains an interval (br[j],bl[k]) if and only if the
space

(Rji ∩ Lki )/((Rj−1
i ∩ Lki ) ∪ (Rji ∩ Lk−1

i ))

is non-trivial [3].
To find the pairs in the full zigzag, we can reduce the

matrix [Zr | Zl] to get Zr · [I | P ], where submatrix P gives
representation of cycles Zl in terms of cycles Zr. We continue
by reducing [Br | P ] to get Br · [I | T ]. Naturally, all those
cycles in Zl that are boundaries turn into zero columns in
T (so in practice there is no need to include them at all).
However, those columns in T that remain non-zero give us
the answer we seek. Namely, we have a pair (br[j],bl[k])
in the full zigzag if and only if low(T [k]) = j. To see this,



observe that

cjki = dim((Rji ∩ Lki )/((Rj−1
i ∩ Lki ) ∪ (Rji ∩ Lk−1

i )))

= (dim(Rji ∩ Lki )− dim(Rj−1
i ∩ Lki ))

−(dim(Rji ∩ Lk−1
i )− dim(Rj−1

i ∩ Lk−1
i )),

and from the Reduction Lemma it follows that

dim(Rji ∩ Lki )− dim(Rj−1
i ∩ Lki ) = 1

if and only if there is a k′ ≤ k such that low(T [k′]) = j.
It is therefore possible to find a levelset that splits the do-

main into two roughly equal halves (the sublevel set and the
superlevel set), and delegate the computation of the levelset
zigzag on each half to a separate processor. The idea gen-
eralizes naturally to multiple processors, although one has
to take greater care of the intervals spanning more than two
processors.

Interval persistence. It is not difficult to see that the
pairs given by the interval persistence of Dey and Wenger
[10] appear naturally in the pyramid of Section 2. As a
consequence pairs defined by the interval persistence are a
subset of the pairs given by the levelset zigzag. In partic-
ular, the pairs of Type III in Table 1 are not captured by
the interval persistence of function f or −f . It also follows
that Section 4 resolves the open question of finding an ef-
ficient algorithm to compute interval persistence. We omit
the details for lack of space.

Stability. We show stability of the levelset zigzag pairs
because the notion of a perturbation of the defining function
with respect to which the pairs are stable is straightforward.
Recently the utility of stability in contexts more general than
a single function has become apparent [4, 5, 8]. However, the
notions of perturbation in these papers mirror the situation
with a function and take advantage of the same direction
of maps between vector spaces in the ordinary persistence.
What are meaningful generalizations of perturbation and
subsequently stability for zigzags?

One idea is suggested by the combinatorial proof of stabil-
ity of ordinary persistence [9] that considers changes to pair-
ing after transpositions of contiguous simplices. Such trans-
positions make sense in a zigzag sequence built by adding
or removing simplices one at a time as in Section 4. For-
tunately, even if the arrows describing the transposing sim-
plices point in the opposite directions (i.e. the transposition
is not covered by the analysis of the ordinary persistence)
such transpositions have the structure of Mayer–Vietoris di-
amonds:

K+
i

K1
. . . Ki−1 Ki+1 . . . Kn

K−i

oo // oo //

::tttt
+σ

oo //

ddJJJJ−τ

oo //
::tttt +σ

ddJJJJ
−τ

and therefore a proof of stability similar to the one in [9]
follows.
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