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Abstract. The theory of multidimensional persistence captures the topol-
ogy of a multifiltration – a multiparameter family of increasing spaces.
Multifiltrations arise naturally in the topological analysis of scientific
data. In this paper, we give a polynomial time algorithm for computing
multidimensional persistence.

1 Introduction

In this paper, we give a polynomial time algorithm for computing the persistent
homology of a multifiltration. The computed solution is compact and complete,
but not an invariant. Theoretically, this is the best one may hope for since
complete compact invariants do not exist for multidimensional persistence [1].

1.1 Motivation

Intuitively, a multifiltration models a growing space that is parameterized along
multiple dimensions. For example, the complex with coordinate (3, 2) in Figure 1
is filtered along the horizontal and vertical dimensions, giving rise to a bifiltra-
tion. Multifiltrations arise naturally in topological analysis of scientific data.
Often, scientific data is in the form of a finite set of noisy samples from some
underlying topological space. Our goal is to robustly recover the lost connectiv-
ity of the underlying space. If the sampling is dense enough, we approximate the
space as a union of balls by placing ǫ-balls around each point. As we increase ǫ,
we obtain a growing family of spaces, a one-parameter multifiltration also called
a filtration. This approximation is the central idea behind many methods for
computing the topology of a point set, such as Čech, Rips-Vietoris [2], or wit-
ness [3] complexes. Often, the input point set is also filtered through multiple
functions. We now have multiple dimensions along which our space is filtered.
That is, we have a multifiltration.
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Fig. 1. A bifiltration. The complex with labeled vertices is at coordinate (3, 2). Sim-
plices are highlighted and named at the critical coordinates that they appear.

1.2 Prior Work

For one-dimensional filtrations, the theory of persistent homology provides a
complete invariant called a barcode, a multiset of intervals [4]. Each interval in
the barcode corresponds to the lifetime of a single topological attribute within
the filtration. Since features have long lives, while noise is short-lived, a quick
examination of the intervals gives a robust estimation of the topology. The ex-
istence of a complete compact invariant, as well as efficient algorithms and fast
implementations have led to successful application of persistence to a variety of
problems, such as shape description [5], denoising volumetric density data [6],
detecting holes in sensor networks [7], analyzing neural activity in the visual
cortex [8], and analyzing the structure of natural images [9], to name a few.

For multifiltrations of dimension higher than one, the situation is much more
complicated. The theory of multidimensional persistence shows that no complete
discrete invariant exists, where discrete means that the structure of the target for
the invariant does not depend on the structure of the underlying field [1]. Instead,
the authors propose an incomplete invariant, the rank invariant, which captures
important persistent information. Unfortunately, this invariant is not compact,
requiring large storage, so its direct computation using the one-dimensional al-
gorithm is not feasible. A variant of the problem of multidimensional persistence
has appeared in computer vision [10]. A partial solution, called vineyards, has
been offered [11]. A full solution, however, has not been attempted by any prior
work.

1.3 Contributions

In this paper, we provide a complete solution to the problem of computing
multidimensional persistence. We recast persistence as a problem within com-
putational algebraic geometry, allowing us to utilize powerful algorithms from
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this area. We then exploit the structure provided by a multifiltration to greatly
simplify the algorithms. Finally, we show that the resulting algorithms are poly-
nomial time, unlike their original counterparts, which are Expspace-complete,
requiring exponential space and time. We begin with a brief review of necessary
concepts in Section 2, and recast the problem into an algebraic geometric frame-
work. Section 3 contains the main contribution of this paper, where we use the
structure of multifiltrations to simplify the traditional algorithms.

2 Background & Approach

In this section, we review concepts from algebraic topology and computational
algebraic geometry. We then present our approach of computing multidimen-
sional persistence using algorithms from the latter area. Due to lack of space,
we omit significant portions of our work, referring the interested reader to our
manuscript for a complete description [12]. Our treatment of algebraic geometry
and its algorithms follow Chapter 5 of Cox, Little, and O’Shea [13].

Our goal is the computation of the persistent homology of a multifiltration.
Let N ⊆ Z be the set of non-negative integers. A topological space X is multi-
filtered if we are given a family of subspaces {Xu}u, where u ∈ N

n and Xu ⊆ X
such that for u,w1, w2, v ∈ N

n, the diagrams

Xu
Xw1

Xw2 Xv

��

//

��

//

(1)

commute whenever u ≤ w1, w2 ≤ v. We call the family of subspaces {Xu}u a
multifiltration, such as the example in Figure 1. In this paper, we assume our
input is a multifiltered simplicial complex that has the following property:

Definition 1 (one-critical). A multifiltered complex where each cell has a
unique minimal critical grade at which it enters the complex is one-critical.

The bifiltration in Figure 1 is one-critical, as are most multifiltrations that arise
in practice [12].

Given a simplicial complex K, we may define chain groups Ci as the free
Abelian groups on oriented i-simplices. The boundary operator ∂i : Ci → Ci−1

connects the chain groups into a chain complex C∗:

· · · → Ci+1
∂i+1

−−−→ Ci
∂i−→ Ci−1 → · · · . (2)

Given any chain complex, the ith homology group is

Hi = ker ∂i/ im ∂i+1. (3)

Given a multifiltration {Xu}u, for each pair u ≤ v ∈ N
n, Xu ⊆ Xv by definition,

so Xu →֒ Xv, inducing a map ιi(u, v) at the homology level Hi(Xu) → Hi(Xv)
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that maps a homology class in Xu to the one that contains it in Xv. The ith
persistent homology is the image of ιi for all pairs u ≤ v.

Our work rests on the theory of persistence [4, 1]. The key insight is this:
Persistent homology of a multifiltration is standard homology of a single multi-
graded module that encodes the multifiltration using polynomial coefficients. Let
An = k[x1, . . . , xn] be the n-graded polynomial ring, graded by An

v = kxv, v ∈
N

n. We define an n-graded module over this ring as follows.

Definition 2 (chain module). Given a multifiltered simplicial complex {Ku}u,
the ith chain module is the n-graded module over the graded polynomial ring An

Ci =
⊕

u

Ci(Ku), (4)

where the k-module structure is the direct sum structure and xv−u : Ci(Ku) →
Ci(Kv) is the inclusion Ku →֒ Kv.

These graded chain modules Ci are finitely generated, and for one-critical filtra-
tions, they are also free, so we may choose bases for them.

Definition 3 (standard basis). The standard basis for the ith chain module
Ci is the set of i-simplices in critical grades.

Given standard bases, we may write the boundary operator ∂i : Ci → Ci−1

explicitly as a matrix with polynomial entries. We now have a new n-graded
chain complex (2) that encodes the multifiltration. The homology of this chain
complex is the persistent homology of the multifiltration [1]. By definition (3),
we may compute homology in three steps:

1. Compute im ∂i+1: This is a submodule of the polynomial module, and its
computation is the submodule membership problem in computational al-
gebraic geometry. We may solve this problem by computing the reduced
Gröbner basis using the Buchberger and reduction algorithms, and then
dividing using the Divide algorithm.

2. Compute ker ∂i: The is the (first) syzygy module, which we may compute
using Schreyer’s algorithm.

3. Compute Hi: This task is simple, once the above two tasks are complete.
We need to test whether the generators of the syzygy submodule are in the
boundary submodule, a task which may be completed using the tools above.

While the above algorithms solve the membership problem, they have not been
used in practice due to their complexity. The submodule membership problem
is a generalization of the Polynomial Ideal Membership Problem (PIMP) which
is Expspace-complete, requiring exponential space and time [14, 15]. Indeed,
the Buchberger algorithm, in its original form is doubly-exponential. Therefore,
while our reformulation of multidimensional persistence gives us algorithms, we
need to make them faster to make this approach feasible.
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3 Multigraded Algorithms

In this section, we show that multifiltrations provide additional structure that
may be exploited to simplify the algorithms for our three tasks. These simplifi-
cations convert these intractable algorithms into polynomial time algorithms.

3.1 Exploiting Homogeneity

The key property that we exploit for simplification is homogeneity.

Definition 4 (homogeneous). Let M be an m × n matrix with monomial
entries. The matrix M is homogeneous iff

1. every column f of M is associated with a coordinate in the multifiltration
(uf ) and thus a corresponding monomial xuf ,

2. every non-zero element Mjk may be expressed as the quotient of the mono-
mials associated with column k and row j, respectively.

Any vector f endowed with a coordinate uf that may be written as above is
homogeneous, e.g. the columns of M .

We will show that (1) all boundary matrices ∂i may be written as homogeneous
matrices initially, and (2) the algorithms for computing persistence only produce
homogeneous matrices and vectors. That is, we maintain homogeneity as an
invariant throughout the computation. We begin with our first task.

Lemma 1. For a one-critical multifiltration, the matrix of ∂i : Ci → Ci−1 writ-
ten in terms of the standard bases is homogeneous.

Proof. Recall that we may write the boundary operator ∂i : Ci → Ci−1 explicitly
as a mi−1×mi matrix M in terms of the standard bases for Ci and Ci−1, as shown
in matrix (Equation 5) for ∂1. From Definition 3, the standard basis for Ci is the
set of i-simplices in critical grades. In a one-critical multifiltration, each simplex
σ has a unique critical coordinate uσ (Definition (1)). In turn, we may represent
this coordinate by the monomial xuσ . For instance, simplex a in Figure 1 has
critical grade (1, 1) and monomial x(1,1) = x1x2. We order these monomials using
>lex and use this ordering to rewrite the matrix for ∂i. The matrix entry Mjk

relates σk, the kth basis element for Ci to σ̂j , the jth basis element for Ci−1. If
σ̂j is not a face of σk, then Mjk = 0. Otherwise, σ̂j is a face of σk. Since a face
must precede a co-face in a multifiltration, uσk

>lex uσ̂j
=⇒ xuσk >lex xuσ̂j ,

and Mjk = xuσk /xuσ̂j = xuσk
−uσ̂j . That is, the matrix is homogeneous.

For example, σ̂1 = a is a face of σ1 = ab, so M11 = x1x
2
2/x1x2 = x2 in the

matrix for ∂1 for the bifiltration in Figure 1.

Corollary 1. For a one-critical multifiltration, the boundary matrix ∂i in terms
of the standard bases has monomial entries.
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Proof. The result is immediate from the proof of the previous lemma. The matrix
entry is either 0, a monomial, or xu(σk)−u(σ̂j), a monomial.

Below, we show the homogeneous matrix for ∂1 for the bifiltration in Figure 1,
where we augment the matrix with the associated monomials. We assume we
are computing over Z2.
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We next focus on our second task, showing that given a homogeneous matrix
as input, the algorithms produce homogeneous vectors and matrices. Let F be an
m× n homogeneous matrix. Let {e1, . . . , em} and {ê1, . . . , ên} be the standard
bases for the graded polynomial rings Rm and Rn, respectively. A homogeneous
matrix associates a coordinate and monomial to the row and column basis ele-
ments. For example, since x1 is the monomial for row 2 of matrix (5), we have
ue2

= (1, 0) and xue2 = x1. Each column f in F is homogeneous and may be
written in terms of rows:

f =

m
∑

i=1

ci

xuf

xuei

ei, (6)

where ci ∈ k and we allow ci = 0 when a row is not used. For example, column
g for edge ab in our bifiltration may be written as:

g = x2e1 + x2x
2
2e3 =

x2x
2
2

x1x2
e1 +

x2x
2
2

1
e3 =

xug

xue1

e1 +
xug

xue3

e3 =
∑

i∈{1,3}

xug

xuei

ei.

Consider the Buchberger algorithm [13]. The algorithm repeatedly computes
S-polynomials of homogeneous vectors.

Lemma 2. The S-polynomial S(f ,g) of homogeneous vectors f and g is homo-
geneous.

Proof. A zero S-polynomial is trivially homogeneous. A non-zero S-polynomial
S(f ,g) implies that h = lcm(lm(f), lm(g)) is non-zero. By the definition of
lcm, the leading monomials of f and g contain the same basis element ej. We
have, lm(f) = xuf

x
uej

ej, lm(g) = xug

x
uej

ej, and:

h = lcm(lm(f), lm(g)) = lcm

(

xuf

xuej
,

xug

xuej

)

ej =
lcm (xuf , xug)

xuej
ej.
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Let xℓ = lcm(xuf , xug) = xlcm(uf ,ug), giving us h = xℓ

x
uej

ej. We now have

h

lt(f)
=

xℓ

x
uej

ej

cf
xuf

x
uej

ej

=
xℓ

cfxuf
,

where cf 6= 0 is the field constant in the leading term of f . Similarly, we get

h

lt(g)
=

xℓ

cgxug
, cg 6= 0.

Putting it together, we have

S(f ,g) =
h

lt(f)
f −

h

lt(g)
g

=

(

xℓ

cfxuf

m
∑

i=1

ci

xuf

xuei

ei

)

−

(

xℓ

cgxug

m
∑

i=1

c′i
xug

xuei

ei

)

=

m
∑

i=1

di

xℓ

xuei

ei,

where di = ci/cf − c′i/cg. Comparing with Equation (6), we see that S(f ,g) is
homogeneous with uS(f ,g) = ℓ.

Having computed the S-polynomial, Buchberger next divides it by the
current homogeneous basis G using a call to the Divide algorithm [13].

Lemma 3. Divide(f , (f1, . . . , ft)) returns a homogeneous remainder vector r
for homogeneous vectors f , fi ∈ Rm.

Proof. Initially, we set r and p to be 0 and f , respectively, so they are both
trivially homogeneous. Since both fi and p are homogeneous, we have fi =
∑m

j=1 cij
x

ufi

x
uej

ej, p =
∑m

j=1 dj
xup

x
uej

ej. Since lt(fi) divides lt(p), the terms must

share basis element ek and we have lt(fi) = cik
x

ufi

x
uek

ek, lt(p) = dk
xup

x
uek

ek,

lt(p)/ lt(fi) = dk

cik
· xup

x
ufi

, where xup >lex xufi so that the division makes sense.
Then, p is assigned to

p − (lt(p)/ lt(fi))fi =

m
∑

j=1

dj

xup

xuej
ej −

(

dk

cik

·
xup

xufi

) m
∑

j=1

cij

xufi

xuej
ej

=
m
∑

j=1

(

dj −
dk · cij

cik

)

xup

xuej
ej =

m
∑

j=1

d′j
xup

xuej
ej,

where d′j = dj − dk · cij/cik and d′k = 0, so the subtraction eliminates the kth
term. The final sum means that p is now a new homogeneous polynomial with
the same coordinate up as before. Similarly, lt(p) is added to r and subtracted
from p, and neither action changes the homogeneity of either vector. Both remain
homogeneous with coordinate up.
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Theorem 1 (homogeneous Gröbner). The Buchberger algorithm com-
putes a homogeneous Gröbner basis for a homogeneous matrix.

Proof. Initially, the algorithm sets G to be the set of columns of the input ma-
trix F , so the vectors in G are homogeneous by Lemma 1. The algorithm then
computes the S-polynomial of homogeneous vectors f ,g ∈ G. By Lemma 2,
the S-polynomial is homogeneous. It then divides the S-polynomial by G. Since
the input is homogeneous, Divide produces a homogeneous remainder r by
Lemma 3. Since only homogeneous vectors are added to G, it remains homoge-
neous. We may extend this result easily to the reduced Gröbner basis.

Using similar arguments, we may show the following result.

Theorem 2 (homogenous syzygy). For a homogeneous matrix, all matrices
encountered in the computation of the syzygy module are homogeneous.

3.2 Optimizations

We have shown that the structure inherent in a multifiltration allows us to
compute using homogeneous vectors and matrices whose entries are monomials
only. We next explore the consequences of this restriction on both the data
structures and complexity of the algorithms.

By Definition (4), an m×n homogeneous matrix naturally associates mono-
mials to the standard bases for Rm and Rn. Moreover, every non-zero entry
of the matrix is a quotient of these monomials as the matrix is homogeneous.
Therefore, we do not need to store the matrix entries, but simply the field el-
ements of the matrix along with the monomials for the bases. We may modify
two standard data structures to represent the matrix.

– linked list: Each column stores its monomial as well as a linked-list of its
non-zero entries in sorted order. The non-zero entries are represented by the
row index and the field element. The matrix is simply a list of these columns
in sorted order.

– matrix: Each column stores its monomial as well as the column of field
coefficients. If we are computing over a finite field, we may pack bits for
space efficiency.

The linked-list representation is appropriate for sparse matrices as it is space-
efficient at the price of linear access time. This is essentially the representation
used for computing in the one-dimensional setting [4]. In contrast, the matrix
representation is appropriate for dense matrices as it provides constant access
time at the cost of storing all zero entries. The multidimensional setting provides
us with denser matrices, as we shall see, so the matrix representation becomes
a viable structure.

In addition, the matrix representation is optimally suited to computing over
the field Z2, the field often commonly employed in topological data analysis.
The matrix entries each take one bit and the column entries may be packed
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into machine words. Moreover, the only operation required by the algorithms
is symmetric difference which may be implemented as a binary XOR operation
provided by the chip. This approach gives us bit-level parallelism for free: On
a 64-bit machine, we perform symmetric difference 64 times faster than on the
list. The combination of these techniques allow the matrix structure to perform
better than the linked-list representation in practice.

We may also exploit homogeneity to speed up the computation of new vec-
tors and their insertion into the basis. We demonstrate this briefly using the
Buchberger algorithm. We order the columns of input matrix G using the
POT rule for vectors [13]. Suppose we have f ,g ∈ G with f > g. If S(f ,g) 6= 0,
lt(f) and lt(g) contain the same basis, which the S-polynomial eliminates. So,
we have S(f ,g) < g < f . This implies that when dividing S(f ,g) by the vectors
in G, we need only consider vectors that are smaller than g. Since the vectors are
in sorted order, we consider each in turn until we can no longer divide. By the
POT rule, we may now insert the new remainder column here into the basis G.
This gives us a constant time insertion operation for maintaining the ordering,
as well as faster computation of the Gröbner basis.

3.3 Complexity

Our optimizations from the last section allow us to give simple polynomial
bounds on our multigraded algorithms. These bounds, in turn, imply that we
may compute multidimensional persistence in polynomial time.

Lemma 4. Let F be an m×n homogeneous matrix of monomials. The Gröbner
basis G contains O(n2m) vectors in the worst case. We may compute G using
Buchberger in O(n4m3) worst-case time.

Proof. In the worst case, F contains nm unique monomials. Each column f ∈
F may have any of the nm monomials as its monomial when included in the
Gröbner basis G Therefore, the total number of columns in the G is O(n2m).
In computing the Gröbner Basis, we compare all columns pairwise, so the total
number of comparisons is O(n4m2). Dividing the S-polynomial takes O(m) time.
Therefore, the worst-case running time is O(n4m3).

We omit the proof of the following due to lack of space and refer the reader to
the full manuscript [12].

Lemma 5. Let F be an m × n homogeneous matrix of monomials and G be
the Gröbner Basis of F . The Syzygy module S for G may be computed using
Schreyer’s algorithm in O(n4m2) worst-case time.

Theorem 3. Multidimensional persistence may be computed in polynomial time.

4 Conclusion

In this paper, we develop polynomial time algorithms for multidimensional per-
sistence by recasting the problem into computational algebraic geometry. Al-
though the recast problem is Expspace-complete, we exploit the multigraded
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setting to develop practical algorithms. We have implemented all our algorithms
and provide statistical experiments to demonstrate their feasibility in the full
manuscript [12]. For additional speedup, we plan to parallelize the computa-
tion by batching and threading the XOR operations. We also plan to apply our
algorithms toward studying scientific data. For instance, for zero-dimensional
homology, multidimensional persistence corresponds to clustering multiparam-
eterized data, This gives us a fresh perspective, as well as a new arsenal of
computational tools, to attack an old and significant problem in data analysis.
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