Latest News and Events

The SAMSI-FODAVA Workshop on Interactive Visualization and Analysis of Massive Data will be held on December 10-12, 2012.
Posted: October 02, 2012
The FODAVA Annual Meeting will immediately follow (Dec 12-13) the SAMSI/FODAVA joint workshop at the same location.
Posted: September 05, 2012
Many of the modern data sets such as text and image data can be represented in high-dimensional vector spaces and have benefited from computational methods that utilize advanced techniques from num
Posted: June 30, 2012

Learning with Teacher: Learning Using Hidden Information

Vladimir Vapnik

The existing machine learning paradigm considers a simple scheme: given a set of training examples find in a given collection of functions the one that in the best possible way approximates the unknown decision rule. In such a paradigm a teacher does not play an important role. In human learning, however, the role of a teacher is very important: along with examples a teacher provides students with explanations, comments, comparisons, and so on. In this talk I will introduce elements of human teaching in machine learning. I will consider an advanced learning paradigm called learning using hidden information (LUHI), where at the training stage a teacher gives some additional information x* about training example x. This information will not be available at the test stage. I will consider the LUHI paradigm for support vector machine type of algorithms, demonstrate its superiority over the classical one and discuss general questions related to this paradigm.

Vladimir Naumovich Vapnik is one of the main developers of Vapnik-Chervonenkis theory. He was born in the Soviet Union. He received his master's degree in mathematics at the Uzbek State University, Samarkand, Uzbek SSR in 1958 and Ph.D in statistics at the Institute of Control Sciences, Moscow in 1964. He worked at this institute from 1961 to 1990 and became Head of the Computer Science Research Department. At the end of 1990, he moved to the USA and joined the Adaptive Systems Research Department at AT&T Bell Labs in Holmdel, New Jersey. The group later became the Image Processing Research Department of AT&T Laboratories when AT&T spun off Lucent Technologies in 1996. Vapnik Left AT&T in 2002 and joined NEC Laboratories in Princeton, New Jersey, where he currently works in the Machine Learning group. He also holds a Professor of Computer Science and Statistics position at Royal Holloway, University of London since 1995, as well as an Adjunct Professor position at Columbia University, New York City since 2003. He was inducted into the U.S. National Academy of Engineering in 2006. While at AT&T, Vapnik and his colleagues developed the theory of the support vector machine. They demonstrated its performance on a number of problems of interest to the machine learning community, including handwriting recognition. This event is sponsored by NSF/DHS FODAVA program, School of Mathematics, Division of Computational Science and Engineering, Algorithms and Randomness Center, and Machine Learning and Data Mining Seminar Series grant by Yahoo.