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P.1.’s RESEARCH OUTLINE AND (GOALS

P.1.’s research lies in the area of continuous

optimization:

e cone programming including linear, second-

order and semidefinite programming

e numerical algorithms including interior-
point and first-order methods for large

scale optimization problems
e applications to statistics and graph theory
Research Goals:

e develop efficient algorithms for solving
optimization problems that arise in the

context of data analytics and visualization

e work on the mathematical foundation of
sparse data representation and recovery
(e.g., compressed sensing, dimension reduc-

tion)



CONE PROGRAMMING

Given n-dimensional vector space R" and a closed
convex cone KL C R"™, the CP problem is:

min{(c,z) : A(x) =b, z € K}
where c € R", b € R™ and A : R — R™ is a linear
map. Its dual is

max{(b,y) : c — A" (y) € K7}
where K™ := {s € R" : (s,2) > 0, Vx € K}.
Algorithms:

e interior-point (IP) methods (for most important

CP’s)
e first-order methods for large instances

IP methods: advantage: few iterations; highly accu-
rate solutions; good codes available — disadvantage:
high iteration cost and memory requirement

first-order methods: disadvantage: many iterations;
low to medium accurate solutions; no general purpose
code available — advantage: low iteration cost and

memory requirement



MIN-MAX OR SADDLE POINT PROBLEMS

Their general form is

min <<I>(a:) = max ¢(z, y))

reX yey

where X,Y are simple closed convex sets, ¢

is convex in r and concave in y.

Under the assumption that V¢ is Lipschitz
continuous, first-order methods with known
iteration-complexity bounds have been
developed to solve these problems:

® Nesterov’s smooth or nonsmooth meth-
ods and their variants;

e Nemirovski’s prox-mirror method



DIMENSION REDUCTION IN STATISTICS

Assume that B € R"*? collects n observations
on g responses b = (by,...,b,)’, and A € R"*P
consists of n observations on p explanatory

/

variables a = (a1,...,a,)’. Assume also that

qg < p. Consider the multivariate linear model
B =AU + F,

where U € RP*? is a coefficient matrix, F =
(e',...,e") is the regression noise, and all e's

are indep sampled from N (0, X).

To estimate U and accomplish dimension

reduction, Yuan et al. proposed to solve

o1 X d
min 5||AU—BIIF+AZ@(U) (1)

1=1

for different \ > 0 values. Here, ||V||7 := D i Vi
and o;(U) := i-th largest singular value of U.

Optimal solutions U of (1) tend to have low
rank (<< min(p,q)) and hence sparse SVD.



A paper by Lu, M. and Yuan presents a
couple of reformulations of (1) as either a
CP or min-max problem.

It also discusses the performance of a
proper (either IP or first-order) algorithm

for solving each reformulation.



CONE PROGRAMMING REFORMULATION

Problem (1) can be formulated as a cone program-

ming.

Write V' > 0 if V is symmetric and positive
semidefinite. Also, let S' denote the space of [ x [

symm. matrices.

Proposition: Let U € ®P*9, k < min{p, q} be
given and set [ := p+ q. For t € R, we have

.

" t — ks — Trace(V) > 0,
Y oiU)<t & { V—GU)+sI - 0,
= |V - 0,

for some V € S' and s € R, where G : RP*X9 —
REXL is defined as

0o UT

Gg\U) := -



MIN-MAX REFORMULATIONS

Problem (1) can also be reformulated as

max min {%HAU—B”??%—)\qQ(U)oW}, (2)

WweQ |[U|lp<r

where r is an appropriate scalar and

Q = {(WeSP:0=<W <1/q, Trace(W) =1}

Proposition: Assume A has full column rank.
Given ¢ > 0, Nesterov’s smooth method finds
an c-optimal solution of (2) in a number of

iterations which does not exceed
T A\—1/2
AADY, Jorog (242),
Ve q

Note: The complexity of solving the min-max
version of (2) is O(1/¢) instead of O(1/+/€) as

above.




COMPUTATIONAL RESULTS

The entries of A € R"*? and B € R™*?, with p = 2¢
and n = 10q, were uniformly generated in [0,1]. The

accuracy in the table below is e = 1071,

Problem Iter Time

(p, Q) MIN-MAX MAX-MIN MIN-MAX MAX-MIN
(200, 100) 610 1 29.60 0.91
(400, 200) 1310 1 432.92 8.36
(600, 300) 2061 1 2155.76 31.23
(800, 400) 2848 1 7831.09 76.75
(1000, 500) 3628 1 21128.70 156.68
(1200, 600) 4436 1 47356.32 276.64
(1400, 700) 5280 1 98573.73 456.61
(1600, 800) 6108 1 176557.49 699.47

The table below compares the max-min formulation

(M-MIN) with the cone programming reformulation.

The accuracy is e = 1075,

Problem Iter Time Memory
(p, 9) M-MIN CONE M-MIN CONE M-MIN CONE

(20,10) 3455 17 3.61 5.86 2.67 279
(40,20) 1696 15 6.90 77.25 2.93 483
(60,30) 1279 15 13.33 506.14 3.23 1338
(80,40) 1183 15 25.34 2205.13 3.63 4456
(100,50) 1073 19 40.66 8907.12 4.23 10445
(120,60) 1017 N/A 62.90 N/A 4.98 > 16109




Summary:

I plan to bring to the attention of the data and
visual analytics community existing optimization
tools that can speed up the solution of the

optimization models used in their work.

I also plan to develop new optimization tools to
better exploit special structures of some classes of
optimization models arising in the course of our

research in the area of data and visual analytics.

It is also my intent to contribute to other topics
of data and visual analytics as I learn more about
them.



