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Objectives 
§ Develop mathematical models for capturing 

uncertainty in graphs: 
-  node merging uncertainty (entity resolution) 
-  edge existence uncertainty (link prediction) 
-  node label uncertainty (collective classification) 

§ Develop visual analytic tools for comparative 
analysis of uncertainty such models 



Proposed Approaches 
§ Uncertainty in Graphs: Foundations 

-  Probabilistic Soft Logic (PSL) 
-  http://psl.umiacs.umd.edu/ 

§ Uncertainty in Graphs: Comparative Analytics  
-  G-Pare (Graph Compare) 
-  http://www.cs.umd.edu/projects/linqs/gpare 



PSL Foundations 

•  Declarative language based on logic to express 
collective probabilistic inference problems 

•  Probabilistic Model 
§  Undirected graphical model 
§  Constrained Continuous Markov Random Field (CCMRF) 

•  Key distinctions 
§  Continuous-valued random variables 
§  Efficiently compute similarity & propagate similarity 
§  Ability to efficiently reason about sets and aggregates 
§  Scalable inference using consensus optimization 



What is PSL Good for? 
§  Specifying probabilistic models for: 

-  Information Alignment 
-  Information Fusion 
-  Information Diffusion 

§ Each of these requires: 
-  Entity resolution 
-  Link prediction 
-  Node Labeling 

Recent applications: 
• Sentiment Analysis 
• Models of Group Affiliation 
• Graph Summarization 
• Role Identification in Online 
Discussions   



Entity Resolution 
§ Entities 

-  People References 

§ Attributes 
-  Name 

§ Relationships 
-  Friendship 

§ Goal: Identify 
references that denote 
the same person 
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Entity Resolution 
§ References, names, 

friendships 
§ Use rules to express 

evidence 
-  ‘’If two people have similar names, 

they are probably the same’’ 
-  ‘’If two people have similar friends, 

they are probably the same’’ 
-  ‘’If A=B and B=C, then A and C must 

also denote the same person’’ 
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Entity Resolution 
§ References, names, 

friendships 
§ Use rules to express 

evidence 
-  ‘’If two people have similar names, 

they are probably the same’’ 
-  ‘’If two people have similar friends, 

they are probably the same’’ 
-  ‘’If A=B and B=C, then A and C must 

also denote the same person’’ 
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A.name ≈{str_sim} B.name => A≈B : 0.8 



Entity Resolution 
§ References, names, 

friendships 
§ Use rules to express 

evidence 
-  ‘’If two people have similar names, 

they are probably the same’’ 
-  ‘’If two people have similar friends, 

they are probably the same’’ 
-  ‘’If A=B and B=C, then A and C must 

also denote the same person’’ 
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{A.friends} ≈{} {B.friends} => A≈B : 0.6 



Entity Resolution 
§ References, names, 

friendships 
§ Use rules to express 

evidence 
-  ‘’If two people have similar names, 

they are probably the same’’ 
-  ‘’If two people have similar friends, 

they are probably the same’’ 
-  ‘’If A=B and B=C, then A and C must 

also denote the same person’’ 

A B 

John Smith J. Smith 

name name 
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D F G 
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friend friend 

= 

= 
A≈B ^ B≈C => A≈C : ∞ 



Link Prediction 
§ Entities 

-  People, Emails 

§ Attributes 
-  Words in emails 

§ Relationships 
-  communication, work 

relationship 

§ Goal: Identify work 
relationships 

-  Supervisor, subordinate, 
colleague 
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Link Prediction 
§ People, emails, words, 

communication, relations 
§ Use rules to express 

evidence 
-  “If email content suggests role X, 

person is of type X” 
-  “If A sends deadline emails to B, 

then A is the supervisor of B” 
-  “If A is the supervisor of B, and A is 

the supervisor of C, then B and C are 
colleagues” 
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Link Prediction 
§ People, emails, words, 

communication, relations 
§ Use rules to express 

evidence 
-  “If email content suggests type X, it 

is of type X” 
-  “If A sends deadline emails to B, 

then A is the supervisor of B” 
-  “If A is the supervisor of B, and A is 

the supervisor of C, then B and C are 
colleagues” 
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Link Prediction 
§ People, emails, words, 

communication, relations 
§ Use rules to express 

evidence 
-  “If email content suggests type X, it 

is of type X” 
-  “If A sends deadline emails to B, 

then A is the supervisor of B” 
-  “If A is the supervisor of B, and A is 

the supervisor of C, then B and C are 
colleagues” 
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Link Prediction 
§ People, emails, words, 

communication, relations 
§ Use rules to express 

evidence 
-  “If email content suggests type X, it 

is of type X” 
-  “If A sends deadline emails to B, 

then A is the supervisor of B” 
-  “If A is the supervisor of B, and A is 

the supervisor of C, then B and C are 
colleagues” 
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   

Node Labeling 

? 
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Voter Opinion Modeling 
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Voter Opinion Modeling 
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Voter Opinion Modeling 
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Mathematical Foundation 



Rules 

§ Atoms are real valued, [0,1] 
§ Combination functions, Lukasiewicz T-norm 

§ a1 ∨ a2 = min(1, a1+a2 )  
§ a1 ∧	
 a2 = max(0, a1 + a2 - 1) 

§ Distance to Satisfaction 
§  h1 ← b1 ∧	
 b2 

 

H1 ∨... Hm ← B1 ∧ B2 ∧	
 ... Bn  

R≈T ← A≈B:0.7 ∧ D≈E:0.8  



Rules 

§ Atoms are real valued, [0,1] 
§ Combination functions, Lukasiewicz T-norm 
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Rules 

§ Atoms are real valued, [0,1] 
§ Combination functions, Lukasiewicz T-norm 

§ a1 ∨ a2 = min(1, a1+a2 )  
§ a1 ∧	
 a2 = max(0, a1 + a2 - 1) 

§ Distance to Satisfaction 
§  h1 ← b1 ∧	
 b2 

 

H1 ∨... Hm ← B1 ∧ B2 ∧	
 ... Bn  

R≈T:0.7 ← A≈B:0.7 ∧ D≈E:0.8  

R≈T:0.2 ← A≈B:0.7 ∧ D≈E:0.8  
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Probabilistic Model 

Probability 
density over 

interpretation I 

Normalization 
constant 

Set of ground 
rules 

Distance 
exponent 
in {1, 2} 

Rule’s weight Rule’s distance to satisfaction 
 
 

Constrained Continuous Markov Random Field (CCMRF) 



PSL Inference 
§  CCMRF translates to a conic program in which: 

§  MAP inference is tractable (O(n3.5)) using off-the-shelf 
interior point methods (IPM) optimization packages 
[Broecheler et al. UAI 2010] 

§  Margin inference is based on sampling algorithms 
adapted from computational geometry methods for 
volume computation in high dimensional polytopes 
[Broecheler & Getoor, NIPS 2010] 

§  While a naïve approach is tractable, it still suffers from 
problems of scalability 
§  IPMs operate on matrices. These matrices become large 

and dense when many variables are all interdependent, 
such as is common in alignment problems.  

§  Scaling to large data requires an alternative to forming 
and operating on such matrices 



Consensus Optimization 

optimize truth 
values & agreement 
with original 
variables per rule 

update 
variables to 
average of 
copies 

rules with local copies of 
random variables original random variables 

[Bach et al, NIPS 12] 

key: fast solutions 



Linear Constraints 
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Quadratic Constraints 
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Comparative Visual Analytics 



G-Pare 

§ A visual analytic tool that: 

-  Supports the comparison of uncertain graphs 

-  Integrates three coordinated views that enable 
users to visualize the output at different 
abstraction levels 

-  Incorporates an adaptive exploration framework 
for identifying the models’ commonalities and 
differences 



G-Pare 

Tabular View 

Matrix View 

Network View 



Color Coding Predicted Label 

Fill Area Prediction Confidence 

Eccentricity KL-Divergence 

Border Highlighting Ground Truth 
(Prediction Accuracy) 

High  
Confidence 

Moderate  
Confidence 

Low  
Confidence 

Theory 
Neural Networks Agree Disagree 

Model2 Model1 

•  Model 1 prediction: “Neural Networks”  
Model 2 prediction: “Theory” 

•  Model 1 is more confident in its prediction than 
Model 2 

•  Distributions of the two models vary significantly 

•  Model 1’s prediction matches the ground truth 

Node Visualization 

Theory 
Neural Networks 



Summary 
§ Uncertain Graphs: Foundations 

-  Probabilistic Soft Logic (PSL) 
-  http://psl.umiacs.umd.edu/ 

§ Visual Analytics for Model Comparison 
-  G-Pare 
-  http://www.cs.umd.edu/projects/linqs/gpare 

§ Key supporting publications: VAST 2009, UAI 2010, 
NIPS 2010, NIPS WS 2010, VAST 2011, VDA 2011, 
NIPS 2012, PAKDD 2012, ISWC WS 2012, UAI WS 
2012, 3 NIPS WS 2012   



Impact: Graph Identification 
§ Analytic Goal: 

-  Given a partially observed input graph infer a 
distribution over output graphs 

§ Major components: 
-  Entity Resolution (ER): Infer the set of nodes 
-  Link Prediction (LP): Infer the set of edges 
-  Collective Classification (CC): Infer the node 

labels 



e.g., Communication -> Social Network 

Communication Network 
Nodes: Email Address 
Edges: Communication 
Node Attributes:  Words 
 

nsmith@msn.com 

neil@email.com 
mtaylor@email.com 

acole@email.com mary@email.com 
robert@email.com 

mjones@email.com 

Organizational Network 
Nodes: Person 
Edges: Manages 
Node Labels: Title 
 

Mary Taylor 

Neil Smith 

Robert Lee 

Anne Cole Mary Jones 
   Label:       CEO      Manager        Assistant       Programmer 



Extensions and Outreach 
§  Funding 

-  Maryland Industrial Partners w/ Optimal Solutions ($130K), 
OSI IARPA sub to Vtech ($2M), NSF III Small ($500K) 

§  20+ Invited Talks 
-  CMU, NYU, Notre Dame, Minnesota, Rutgers, UCI, CRA-W, 

Microsoft Research, Google, Sante Fe Institute, IMA, 
DIMACS/CCICADA, NEH/IPAM, etc. 

-  Invited Talk NIPS WS on Challenges in Data Visualization 

§  9 Tutorials & 2 Workshops 
-  NIPS 2012, VLDB 2012, AAAI 2012, ASONAM 2012, VizWeek 

2012, WSDM 2011, SDM 2011, SIGMOD 2011, IEEE 
Visualization 2011 and SRL/ISSDM Research Symposium 2011, 
AAAI 2010 

§  Incorporated Visual Analytics into 3 courses  
§  Grant has supported 5 PhD students, 2 Master’s students, 4 

undergraduates 



? Thanks! 
Questions?  
Comments? 
Come to posters! 



References 



References 
[1] Computing marginal distributions over continuous Markov networks for 

statistical relational learning, Matthias Broecheler, and Lise Getoor, Advances 
in Neural Information Processing Systems (NIPS) 2010 

[2] A Scalable Framework for Modeling Competitive Diffusion in Social Networks, 
Matthias Broecheler, Paulo Shakarian, and V.S. Subrahmanian, International 
Conference on Social Computing (SocialCom) 2010, Symposium Section 

[3] Probabilistic Similarity Logic, Matthias Broecheler, Lilyana Mihalkova and Lise 
Getoor, Conference on Uncertainty in Artificial Intelligence 2010 

[4] Decision-Driven Models with Probabilistic Soft Logic, Stephen H. Bach, 
Matthias Broecheler, Stanley Kok, Lise Getoor, NIPS Workshop on Predictive 
Models in Personalized Medicine 2010 

[5] Probabilistic Similarity Logic, Matthias Broecheler, and Lise Getoor, 
International Workshop on Statistical Relational Learning 2009 

[6] G-PARE: A Visual Analytic Tool for Comparative Analysis of Uncertain Graphs  
Hossam Sharara, Awalin Sopan, Galileo Namata, Lise Getoor, Lisa Singh  
IEEE Conference on Visual Analytics Science and Technology, 2011 (VAST '11). 

47 



psl.umiacs.umd.edu 


