Global Structure Discovery in Sampled Spaces

Leonidas Guibas
Gunnar Carlsson
Stanford University

NSF/DHS
FODAVA 2008
Project Goals

- Bring tools from Computational Geometry and Topology to the analysis and visualization of massive, distributed data sets
- Perform **global structure discovery** on such data
 - Produce meaningful topological maps over the data
 - Extract internal self-similarities of the data (symmetries, repeated patterns)
- Exploit this discovered structure in enabling visual exploration and human interaction with the data
A Few Quick Vignettes from Current Work

- Morse theory for combinatorial views of data
- Mining in transform spaces:
 - Partial and approximate symmetry extraction
 - Repeated pattern detection
- Scalar field analysis over metric spaces
- Fingerprints for lightweight distributed data fusion

Mostly for 3D point clouds – but with a view towards high-d extensions
1. Mapper: Morse Theory for Combinatorial Views of Data

[G. Carlsson, F. Memoli, G. Singh]
Simplicial Complexes

- We cover a space X with a system U of open sets
- We form a simplicial complex from the intersection patterns of these sets
- This is the nerve N of U, or the Čech complex of the set system
- Under some mild conditions, the topology of N captures that of X
Open Covers from Filter Functions

- Consider a filter function $f : X \rightarrow R$
- Cover R with intervals
- Use connected components of their inverse images for the X cover
Overlap Structure of the Components

\[G \]

\[
\begin{array}{ccccc}
X_1 & X_2 & X_3 & X_4 & X_5 \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\end{array}
\]
The Mapper Recipe

- **Mapper**
 - Combinatorial
 - Visual
 - Scalable

Clustering replaces connected components in sampled spaces
Miller-Reaven Diabetes Study

Mapper on the same data, using L^2 distance and a Gaussian density estimator as the filter function
Eccentricity Filter Function
II. Mining in Transform Space
 A. Partial and Approximate Symmetry Extraction

 [N, Mitra, L. G., M. Pauly]
Symmetries and Regular Patterns In Natural and Man-Made Objects

“Symmetry is a complexity-reducing concept [...] seek it everywhere.
Alan J. Perlis
Partial/Approximate Symmetry Detection

Given:
Object/shape (represented as point cloud, mesh, ...)

Goal:
Identify and extract similar (symmetric) patches of possibly different sizes, across different resolutions
Transform Voting Example: Reflective Symmetry
Reflective Symmetry: Voting Continues
Reflective Symmetry : Voting Continues
Reflective Symmetry: Largest Cluster

- Height of cluster \rightarrow size of patch
- Spread of cluster \rightarrow approximation level
Pipeline
Pruning: Local Signatures

- Local signature → invariant under transforms
- Signatures disagree → points don’t correspond

Example: use \((\kappa_1, \kappa_2)\) for curvature based pruning
Reflection: Normal-Based Pruning
Point Pair Pruning

- All pairs
- Curvature based
- Curvature + normal based
Mean-Shift Clustering

Kernel:
- Type → radially symmetric hat function
- Radius
Verification

- Clustering gives a good guess of the dominant symmetries
- Suggested symmetries need to be verified against the data
- Locally refine transforms using ICP algorithm [Besl and McKay `92]
Compression: Chambord
Compression: Chambord
Opera
Approximate Symmetry: Dragon

detected symmetries

correction field
Extrinsic vs. Intrinsic Symmetries

- Invariance under translation, rotation, reflection and scaling (Isometries of the ambient space)
- Break under isometric deformations of the shape

Intrinsic Symmetry

- Invariance of geodesic distances under self-mappings. For a homeomorphism $T: O \rightarrow O$
 $$g(p, q) = g(T(p), T(q)) \quad \forall p, q \in O$$
- Persist under isometric deformations
- Introduced by Raviv et al. in NRTL 2007

[M. Ovsjanikov, J. Sun, L. G.]
Global Intrinsic Symmetries

- Signature space
 - For each point \(p \) define its signature \(s(p) \) [Rustamov, SGP 2007]
 \[
s(p) = \left(\frac{\phi_1(p)}{\sqrt{\lambda_1}}, \frac{\phi_2(p)}{\sqrt{\lambda_2}}, \ldots, \frac{\phi_i(p)}{\sqrt{\lambda_i}}, \ldots \right)
 \]
 - \(\phi_i(p) \) is the value of the \(i \)-th eigenfunction of the Laplace-Beltrami operator at \(p \)
 - Invariant under isometric deformations
 - Main Observation: Intrinsic symmetries of the object become extrinsic symmetries of the signature space.

1. \(\phi = \phi \circ T \): positive eigenfunction
2. \(\phi = -\phi \circ T \): negative eigenfunction
3. \(\lambda \) is a repeated eigenvalue
Global Intrinsic Symmetries
II. Mining in Transform Space
A. Repeated Pattern Detection

Structure Discovery

- Discover regular structures in 3D data, without prior knowledge of either the pattern involved, or the repeating element

- Algorithm has three stages:
 - Transformation analysis
 - Model estimation
 - Aggregation

Challenges: joint discrete and continuous optimization, presence of clutter and outliers
Algorithm Overview

A. Transform Analysis
B. Model Estimation
C. Aggregation

Input Model → Structure Discovery → Regular Structures
Transform Clusters → Transform Generators
Algorithm Overview
Repetitive Structures

Regular structures: rotation + translation + scaling → any commutative combinations in the form of 1D, 2D grid structures
Similarity Sets

Compare all pairs of small patches, using local shape descriptors

Based on shape descriptors alone

Pruned, after validation w. geometric alignment
Transform Analysis

- Regularity in the spatial domain is enhanced in the transform domain
Density Plots in Transform Space
Model Estimation: Where is the Grid?
Grid Fitting with Clutter and Outliers

\[\vec{g}_1, \vec{g}_2, \{\alpha_{ij}\}, \{\beta_k\} = \arg\min_{\vec{g}_1, \vec{g}_2, \{\alpha_{ij}\}, \{\beta_k\}} E \]

\[E = \gamma(E_{X \rightarrow C} + E_{C \rightarrow X}) + (1 - \gamma)(E_\alpha + E_\beta) \]

\[E_{X \rightarrow C} = \sum_i \sum_j \alpha_{ij}^2 \| \vec{x}_{ij} - \vec{c}(i, j) \|^2 \]

\[E_{C \rightarrow X} = \sum_{k=1}^{\vert C \vert} \beta_k^2 \| \vec{c}_k - \vec{x}(k) \|^2 \]

\[E_\alpha = \sum_i \sum_j (1 - \alpha_{ij}^2)^2 \quad E_\beta = \sum_k (1 - \beta_k^2)^2 \]

\[X = \text{grid} \quad C = \text{transform cluster} \]
Once the basic repeated pattern is determined, we simultaneously (re-)optimize the pattern generators and the repeating geometric element it represents, going back to the original 3D data.

We inteleave:

- region growing
- re-optimization of the generating transforms of the pattern by performing simultaneous registrations on the original geometry.
The Math

We optimize a generating transform T represented by 4x4 matrix H, by trying to improve the alignment of all patches put into correspondence by T, using standard ICP techniques.

\[
\tilde{H}_+ \approx \tilde{H} + \epsilon \tilde{D} \cdot \tilde{H},
\]

\[
\tilde{D} = \begin{pmatrix}
\delta & -d_3 & d_2 & d_1 \\
d_3 & \delta & -d_1 & d_2 \\
-d_2 & d_1 & \delta & d_3 \\
0 & 0 & 0 & 0
\end{pmatrix}
\]

\[
T_+(\tilde{x}) \approx T(\tilde{x}) + \epsilon (\tilde{d} \times T(\tilde{x}) + \delta T(\tilde{x}) + \tilde{d})
\]

\[
T_+^k \approx (\tilde{H} + \epsilon \tilde{D} \cdot \tilde{H})^k \rightarrow \tilde{H}_+^k \approx \tilde{H}_+^k + \epsilon f_k(\tilde{H}, \tilde{D}) + \epsilon^2(\ldots), \quad \text{with}
\]

\[
f_k(\tilde{H}, \tilde{D}) = \tilde{D} \cdot \tilde{H}_+^k + \tilde{H} \cdot \tilde{D} \cdot \tilde{H}_+^{k-1} + \cdots + \tilde{H}_+^{k-1} \cdot \tilde{D} \cdot \tilde{H}
\]

\[
Q_{i,j} := \sum_l \left([(T_+^k(\tilde{x}_l) - \tilde{y}_l) \cdot \tilde{n}_l]^2 + \mu [T_+^k(\tilde{x}_l) - \tilde{y}_l]^2 \right)
\]

\[
F(\epsilon \tilde{D}) = \sum_{i,j} Q_{i,j}
\]
Scanned Building Facade

Output:

- Golden: 7x3 2D grid
- Blue: 5x3 2D grid
Back to Chambord
(30-100K Sample Points)
Amphitheater
Amphitheater

Output: 3 grids + associated patches
Robustness to Missing Data
III. Scalar Field Analysis over Riemannian Spaces

[F. Chazal, L. G., S. Oudot, P. Skraba]
Scalar Field Analysis

- We are given a Riemannian space X and a Lipschitz function f over X. We know X, f only through samples. We can access
 - the distances between the samples
 - the values of f at the samples

- We want to analyze the shape of f:
 - Detect significant peaks/valleys
 - Detect changes in the sublevel sets of f

- We approach the problem through *persistent homology*
Clustering Density Functions

- Point cloud
- Density estimation
- Rips filtration

Initial basins/clusters
Persistence barcode
Final basins/clusters
IV. Fingerprints for Distributed Data Analysis

[M. Pauly, J. Giesen, N. Mitra, L. G.]
Probabilistic Fingerprints

Shapes are never directly compared
Fingerprint Pipeline
Data Reduction

- quantization
- min hashing

100k 100k 100k 1k

set size remains constant

set reduction

Shingles → Signatures → Descriptors → Fingerprint

1252
15
375
836
9
Applications

• Resemblance between partial scans
Applications

• Adaptive feature selection for stitching
Applications

• Shape distributions
Challenge: From 3-D to Any-D

- Presented work on structure extraction for 3-D data sets of scanned geometry
- Can these techniques be applied to higher-dimensional settings (low-d data sets in high-d ambient space)?
 I. How do we estimate good local descriptors for high-dimensional data?
 II. What if the data is sparse?
 III. Are there “structure-preserving” low-d projections and embeddings?
Challenge: Exploiting Structure for Interaction

Structure → User
- We can extract interesting parts of the data, or relationships between parts, or regular patterns present in the data
- But how can one display effectively discovered structure in higher dimensions?

User → Structure
- How should the user be able to influence the structure discovery process?
- How can the user
 - seek additional data to confirm structure?
 - manipulate data to enhance structure?
FODAVA Contribution

- If we succeed, we will have a set of tools for data analysis that
 - have a rigorous mathematical foundation
 - efficiently discover intrinsic structures in data
 - can deal in a lightweight fashion with large scale, distributed data sets
 - integrate well with techniques for visualization and interactive exploration
 - can be of interest to other communities within computer science and applied mathematics