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Project Goals

Bring tools from Computational Geometry and 
Topology to the analysis and visualization of 
massive, distributed data sets
Perform global structure discovery on such data

Produce meaningful topological maps over the data
Extract internal self-similarities of the data 
(symmetries, repeated patterns)

Exploit this discovered structure in enabling 
visual exploration and human interaction with 
the data
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A Few Quick Vignettes from 
Current Work

Morse theory for combinatorial views of 
data
Mining in transform spaces:

Partial and approximate symmetry extraction
Repeated pattern detection

Scalar field analysis over metric spaces
Fingerprints for lightweight distributed 
data fusion

3Mostly for 3D point clouds – but with a view towards high-d extensions



I. Mapper: Morse Theory for 
Combinatorial Views of Data

[G. Carlsson, F. Memoli, G. Singh]
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Simplicial Complexes

We cover a space X with a 
system U of open sets
We form a simplicial complex 
from the intersection patterns 
of these sets
This is the nerve N of U, or 
the Čech complex of the set 
system
Under some mild conditions, 
the topology of N captures 
that of X
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Open Covers from Filter 
Functions

Consider a filter function
Cover      with intervals
Use connected components of their inverse 
images for the     cover
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Overlap Structure of the 
Components
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The Mapper Recipe
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Mapper

Combinatorial
Visual
Scalable

Clustering replaces 
connected components
in sampled spaces



Miller-Reaven Diabetes Study

9

Mapper on the same data, using
L2 distance and a Gaussian density
estimator as the filter function



Eccentricity Filter Function
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II. Mining in Transform Space
A. Partial and Approximate Symmetry 

Extraction 
[N, Mitra, L. G., M. Pauly]
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Symmetries and Regular Patterns In 
Natural and Man-Made Objects

“Symmetry is a complexity-reducing concept [...]; seek it everywhere.
Alan J. Perlis
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Partial/Approximate
Symmetry Detection

Given:
Object/shape (represented as point cloud, mesh, ... )

Identify and extract similar (symmetric) patches of 
possibly different sizes, across different resolutions

Goal:
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Transform Voting Example:
Reflective Symmetry
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Reflective Symmetry : Voting 
Continues

15



Reflective Symmetry : Voting 
Continues
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Reflective Symmetry : Largest 
Cluster

• Height of cluster→ size of patch

• Spread of cluster→ approximation level 17



Pipeline
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Pruning: Local Signatures

Local signature → invariant under transforms
Signatures disagree → points don’t correspond 

Example: use (κ1, κ2) for curvature 
based pruning
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Reflection: Normal-Based 
Pruning
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Point Pair Pruning

all pairs curvature based curvature + normal based
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Mean-Shift Clustering

Kernel:
Type → radially symmetric hat function
Radius
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Verification

Clustering gives a good guess of the dominant 
symmetries
Suggested symmetries need to be verified against the 
data
Locally refine transforms using ICP algorithm [Besl and 
McKay `92]
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Compression: Chambord
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Compression: Chambord
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Opera
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Approximate Symmetry: Dragon

correction fielddetected symmetries
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• Invariance under  translation, rotation, reflection 
and scaling (Isometries of the ambient space)

• Invariance of geodesic distances under self-
mappings. For a homeomorphism 

Extrinsic vs. Intrinsic Symmetries

• Break under isometric deformations of the 
shape

• Persist under isometric deformations

• Introduced by Raviv et al. in NRTL 2007

Extrinsic symmetry Intrinsic symmetry

[M. Ovsjanikov, J. Sun, L. G.] 28



Global Intrinsic Symmetries
Signature space

For each point p define its signature s(p) [Rustamov, SGP 2007]

is the value of the i-th eigenfunction of the Laplace-
Beltrami operator at p
Invariant under isometric deformations

Main Observation: Intrinsic symmetries of the object become  
extrinsic  symmetries of the  signature space.

Positive Negative 29



Global Intrinsic Symmetries
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[M. Pauly, N. Mitra, J. Wallner. L. G., H. Pottmann]
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II. Mining in Transform Space
A. Repeated Pattern Detection



Structure Discovery

Discover regular structures in 3D 
data, without prior knowledge of 
either the pattern involved, or the 
repeating element

Algorithm has three stages:
Transformation analysis
Model estimation
Aggregation
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Regular structureChallenges: joint discrete and continuous
optimization, presence of clutter and outliers



Algorithm Overview
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A.

B.

C.



Algorithm Overview
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Repetitive Structures

Regular structures:
rotation + translation + scaling → any commutative 
combinations in the form of 1D, 2D grid structures   

1D structures 2D structures
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Similarity Sets
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Based on shape descriptors
alone

Pruned, after validation w.
geometric alignment

Compare all pairs of small patches, using local
shape descriptors



Transform Analysis

Regularity in the spatial domain is enhanced in the 
transform domain
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Density Plots in Transform 
Space
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Model Estimation:
Where is the Grid?

39



Grid Fitting with Clutter and Outliers
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X = grid
C = transform cluster

α β

Clusters in
transform space



Aggregation
Once the basic repeated pattern is determined, we 
simultaneously (re-)optimize the pattern generators and 
the repeating geometric element it represents, going 
back to the original 3D data
We inteleave

region growing
re-optimization of the generating transforms of the pattern by 
performing simultaneous registrations on the original geometry
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The Math
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We optimize a generating transform T
represented by 4x4 matrix H, by trying to 
improve the alignment of all patches
put into correspondence by T, using 
standard ICP techniques

→



Scanned Building Facade

Output:

‐ Golden:  7x3 2D grid
‐ Blue:  5x3 2D grid 43



Back to Chambord
(30-100K Sample Points)
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Amphitheater
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Amphitheater

Output: 3 grids + associated patches
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Robustness to Missing Data
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III. Scalar Field Analysis over
Riemannian Spaces
[F. Chazal, L. G., S. Oudot, P. Skraba]
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Scalar Field Analysis

We are given a Riemannian space X and a 
Lipschitz function f over X. We know X, f only 
through samples. We can access

the distances between the samples
the values of f at the samples

We want to analyze the shape of f:
Detect significant peaks/valleys
Detect changes in the sublevel sets of f

We approach the problem through persistent 
homology 49



Clustering Density Functions
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Point cloud Density estimation Rips filtration

Initial basins/clusters

Persistence barcode

Final basins/clusters



IV. Fingerprints for Distributed 
Data Analysis

[M. Pauly, J. Giesen, N. Mitra, L. G.]
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partial 
similarity

Probabilistic Fingerprints

probabilistic
fingerprint

probabilistic
fingerprint

comparecompact

independent

Shapes are never 
directly compared
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Fingerprint Pipeline
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Data Reduction

Shingles Signatures Descriptors Fingerprint

quantization min hashing

set size remains constant

100k 100k 100k 1k

set reduction
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Applications

• Resemblance 
between 
partial scans
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Applications

• Adaptive feature selection for stitching
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Applications

• Shape distributions
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Challenge: From 3-D to Any-D
Presented work on structure extraction for 
3-D data sets of scanned geometry
Can these techniques be applied to 
higher-dimensional settings (low-d data 
sets in high-d ambient space)?
I. How do we estimate good local descriptors 

for high-dimensional data?
II. What if the data is sparse?
III. Are there “structure-preserving” low-d 

projections and embeddings?
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Challenge: Exploiting 
Structure for Interaction

Structure → User
We can extract interesting parts of the data, or 
relationships between parts, or regular patterns present 
in the data
But how can one display effectively discovered structure 
in higher dimensions?

User → Structure
How should the user be able to influence the structure 
discovery process?
How can the user

seek additional data to confirm structure?
manipulate data to enhance structure?
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FODAVA Contribution

If we succeed, we will have a set tools for data 
analysis that

have a rigorous mathematical foundation
efficiently discover intrinsic structures in data
can deal in a lightweight fashion with large scale, 
distributed data sets
integrate well with techniques for visualization and 
interactive exploration
can be of interest to other communities within 
computer science and applied mathematics
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