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Project Goals 

Bring tools from Computational Geometry and 

Topology to the analysis and visualization of 

massive, distributed data sets 

Perform global structure discovery on such data 

Exploit this discovered structure in enabling 

visual exploration and human interaction with 

the data 

 

Recent focus: relationships between data sets 
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Finding Correspondences and  

Maps Between Data Sets 
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Typically, by solving an 

optimization problem 



Understanding Data via Maps 
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Maps, at What Scale? 
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Joint Understanding Goals 

To understand the relationships between data 

sets, pairwise as well as in higher order 

combinations 

To extract the shared structure as well as the 

variability across the entire collection 
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Talk Outline 

 

 Multi-way data set relationships 
Consistent segmentation 

Map networks 

Shape space navigation 

 

Other topics 
 Fuzzy maps 

 Metric reconstruction 

 Mapper cancer data analysis 

 

PNNL collaboration 
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Diverse Data Sets 

3D scans and meshes 

GPS vehicle traces 

Microarray genomic data 
Image collections 
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Joint Shape Segmentation 

via Linear Programming 
[with Huang, Koltun, SiggraphAsia ’11] 

Poster 



Shapes Have Semantics 

Beyond Surface Geometry 

Surface geometry 

alone may not 

capture all that is 

important about 

the shape 

 

Internal structure 

 

Function or use 
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Why Joint Segmentation 

Single shape segmentation 

Low saliency 

Joint shape segmentation 



Why Joint Segmentation 

Single shape segmentation 

Consistency 

Joint shape segmentation 

  



Why Joint Segmentation 

Single shape segmentation Joint shape segmentation 

  

Extraneous geometric clues 



380 shapes in 19 categories 

Manual segmentations for each shape (4300 in total) 

Evaluation metrics  

 

Segmentation Evaluation: 

Princeton Segmentation Benchmark 

[Chen et al. 09] 



Overview 



Initial Segments 

Patches, N-cuts 

[SM97] 
Randomized  

Segmentations [GF08] 

Initial Segments 



Segment Weights 

Frequency in randomized 

segmentations 

Most similar segment 

on each other shape 

Geometry based similarity score 

Importance diffusion 



Pair-wise Co-Segmentation 

Optimize over segmentations and mappings 

between them 

Each segmentation is given by a subset of initial 

segments 

Directed maps   



Objective Function  

(      ) + (          ) + (         ) + ¢ ¢ ¢

(             ) (                 ) 

[Anguelov et al. ‘04] 



Constraints 

Segmentation constraints 

Each patch is in exactly one selected segment 

 

 

 

Mapping constraints 

An injective map from the segmentation of 

one shape to another  

the set of all segments that cover 

patch p 



Integer Programming 

Formulation 

Assign segments and correspondences with 

binary indicator variables 

Encode all possible configurations 

Map constraints: 



Binary Integer Programming 

Formulation 

 Assign segments and correspondences  with 

binary indicator variables 

Mapping 

constraints 

Seg. constraints 



Linear Programming Relaxation 

Linearize the objective function [Kumar et al. 09] 
 

 

Relax the variables 



Multi-way Joint Segmentation 

Combines objective functions of pairs of similar 

shapes 

 Threshold on values of objective functions 

Block coordinate descent for efficiency 



Rand Index Scores on PSB 

Significantly better than single shape 

segmentations 

Comparable or slightly better than 

supervised segmentation 

JointAll is slightly better than Joint 

 
Joint: JS within a class 

JointAll: JS over full DB 

SD: shape diameter 

RC: randomized cuts 

Supervised 



Rand Index Scores on PSB 

Joint wins when per category shape variation is big 



Rand Index Scores on PSB 

Joint wins when per category shape variation is big 



Rand Index Scores on PSB 

Less benefit when per category shape variation is small 



Joint versus JointAll 



Joint versus JointAll 



Versus Supervised Segmentation 

[KBS10] 

Supervised segmentation Joint 



Rand Index Scores on PSB 

Failure case 



Different Levels of Similar Shapes  

very similar shapes less similar shapes 



The Lessons 

By segmenting shapes jointly, we capture 

better semantic notions of shape parts 

Less influenced by local geometry artifacts 

The truth has less places to hide 
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Graphs of Map Systems 

 

35 

[with Nguyen, Ben-Chen, Welnicka, Ye, SGP ’11] 

Poster 



Optimal Maps Can Be 

Ambiguous or Unstable 
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Equally good isometric maps 



Problem Statement 

Input 

A collection of related 

shapes 

 

A collection of maps 

between all pairs of 

shapes 

 

A distance measure 

on each shape 

Output 

A collection of 

improved maps 

between all pairs of 

shapes. 

 

 Improved in the 

sense of being more 

Accurate (close to 

ground truth) 

Consistent (with each 

other) 
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Network Representation 
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Maps can be composed. 

For self-maps, easy to tell if they are good. 



Approach: From 

Consistency to Accuracy 

Cycle consistency tells 

us something about 

accuracy 

 

Remove the 

inconsistencies we find 

 

Repeat using the 

improved collection 
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3 cycles 



Proposal – Linear Program 

For each 3-cycle ° in the graph, compute 

the distortion C° 

Solve the following linear program to 
assign errors ce to the edges: 

Minimize 

 

Subject to 

 

 

Where 
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X

e2E
Wece

X

e2°
ce ¸ C° 8°

ce ¸ 0 8e 2E

We = 1=(
X

°:e2°
C°)

L1 concentrates the error 

on few edges 



Proposal – Map Replacement 

LP gives us a weighted graph 

 

Remove bad maps: replace with shortest 
paths 

 

New collection of maps 

 

Run the LP again? 
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Convergence - Experimental 
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Map Type LP Weights Final accuracy 



Results – 2D (DTW) 
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Results – 2D (DTW) 
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Results – 3D (Heat Kernel) 
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Results – 3D (Blended Maps) 
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Animals 



A Shape Morphing Result – 3D 
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The morph sequence 

is recovered ... 

Correspondences computed with 

Mobius voting + GMDS 

1 
6 10 

16 20 

Phenotype genealogies 

use frequency 



The Lessons 

Map networks are more powerful than graphs because 

maps can be composed 

 

They assist in the estimation of the consistency of 

shapes in a collection and thus can be used to used to 

understand the overall structure of the collection 
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Exploration of Continuous Variability 

in Shape Collections 

[with Ovsjanikov, Li, Mitra, Siggraph ’11] 

No correspondences or maps 



Large Shape Repositories 
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• Millions of models available 

• Incorporating 3D models into workflows is challenging 

• difficult to know what is there 

 



Text-Based Exploration 
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The Approach 
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Analysis Stages 

Convert to descriptor space 

 

Select template 

 

Deform to fit observed variability 

 

Generate morphable model 
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S1 S2 

D2 D1 



Deformation 

54 

But no orderings, no correspondences, no segmentations ... 

Descriptor space 



Template Deformation Model 



Choosing a Template Shape 
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Remove outliers 

Compute mean descriptor 

Take closest shape (restrict number of mesh 

components) 

 

X 



Deformable Model 
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Exploration 
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The Lessons 

Within a class, shape variability can be 

learned -- even without correspondences 

 

Shape collection navigation is just as 

important as shape search 
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Cancer Data Analysis via 

Mapper [Calrsson Group] 

 Analysis of cancer genomic data to identify high 

survival groups using topological methods 

 

 

 

 

 

 

 

 

Methods also applicable to social network analysis 60 



PNNL Collaboration 
Topic: Morphological signatures for predicting 

nanoparticle biological interactions 

Shape of a nanoparticle affects:  
Cellular internalization  

Adhesion to surfaces 

Transport in the body 

61 
[From Vácha et al.: Endocytosis is suppressed for particles with sharp edges]  

Collaboration with 

Nathan Baker Lab 

[From Champion et al.]  
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