Structure Discovery in Sampled Spaces

Leonidas Guibas Computer Science

Gunnar Carlsson Mathematics

- Bring tools from Computational Geometry and Topology to the analysis and visualization of massive, distributed data sets
- Perform global structure discovery on such data
- Exploit this discovered structure in enabling visual exploration and human interaction with the data
- Recent focus: relationships between data sets

Finding Correspondences and Maps Between Data Sets

Understanding Data via Maps

Maps, at What Scale?

Joint Understanding Goals

- To understand the relationships between data sets, pairwise as well as in higher order combinations
- To extract the shared structure as well as the variability across the entire collection

Talk Outline

Topology

3D scans and meshes

GPS vehicle traces

Diverse Data Sets

Joint Shape Segmentation via Linear Programming

[with Huang, Koltun, SiggraphAsia '11]

Shapes Have Semantics Beyond Surface Geometry

- Surface geometry alone may not capture all that is important about the shape
- Internal structure
- Function or use

Why Joint Segmentation

Single shape segmentation

Joint shape segmentation

Low saliency

Why Joint Segmentation

Single shape segmentation

Joint shape segmentation

Consistency

Why Joint Segmentation

Single shape segmentation

Joint shape segmentation

Extraneous geometric clues

Segmentation Evaluation: Princeton Segmentation Benchmark [Chen et al. 09]

- 380 shapes in 19 categories
- Manual segmentations for each shape (4300 in total)
- Evaluation metrics

Initial Segments

Patches, N-cuts [SM97]

Randomized Segmentations [GF08]

Initial Segments

Segment Weights

Frequency in randomized segmentations

Most similar segment on each other shape

$$w_s = \sum_{j=1}^n w_{(s,s_j^*)} r(s_j^*)$$

Geometry based similarity score

Importance diffusion

Pair-wise Co-Segmentation

- Optimize over segmentations and mappings between them
 - Each segmentation is given by a subset of initial segments
 - Directed maps

Objective Function

$$\max_{S_{1} \subset \mathcal{I}_{1}, S_{2} \subset \mathcal{I}_{2}} \operatorname{seg}(S_{1}) + \operatorname{seg}(S_{2}) + (\max_{\mathcal{M}_{12} \in S_{1} \times S_{2}} \operatorname{consistency}(\mathcal{M}_{12}) + \max_{\mathcal{M}_{21} \in S_{2} \times S_{1}} \operatorname{consistency}(\mathcal{M}_{21}))$$

$$\operatorname{seg}(S_{i}) = \sum_{s \in S_{i}} \overline{w}_{s} = \sum_{s \in S_{i}} \overline{\operatorname{area}}(s) w_{s}$$

$$\overline{w}(\bigcirc) + \overline{w}(\bigcirc) + \overline{w}(\bigcirc) + \cdots$$

$$\operatorname{consistency}(\mathcal{M}_{12}) = \lambda \sum_{c \in \mathcal{M}_{12}} \overline{w}_{c} + \mu \sum_{(c,c') \in \mathcal{A}_{12}} \overline{w}_{(c,c')}$$

$$[\operatorname{Anguelov et al. '04]} \overline{w}(\bigcirc)$$

$$\overline{w}(\bigcirc)$$

Constraints

Segmentation constraints

Each patch is in exactly one selected segment

 $|\operatorname{cover}(p)| = 1, \quad \forall p \in \mathcal{P}_i$

the set of all segments that cover patch p

Mapping constraints

 An injective map from the segmentation of one shape to another

 $\mathcal{M}_{12} \subset \text{Injective}(S_1 \times S_2)$ $\mathcal{M}_{21} \subset \text{Injective}(S_2 \times S_1)$

Integer Programming Formulation

- Assign segments and correspondences with binary indicator variables
 - Encode all possible configurations

$$x_s = \begin{cases} 1 & s \in S_1 \cup S_2 \\ 0 & \text{otherwise} \end{cases}$$

$$y_c = \begin{cases} 1 & c \in \mathcal{M}_{12} \cup \mathcal{M}_{21} \\ 0 & \text{otherwise} \end{cases}$$

Map constraints:

Binary Integer Programming Formulation

 Assign segments and correspondences with binary indicator variables

$$\max \sum_{i \in \{1,2\}} \mathbf{x}_i^\mathsf{T} \mathbf{w}_i^{\mathsf{seg}} + \sum_{ij \in \{12,21\}} \left(\lambda \mathbf{y}_{ij}^\mathsf{T} \mathbf{w}_{ij}^{\mathsf{corr}} + \mu \sum_{(c,c') \in \mathcal{A}_{ij}} y_c y_{c'} \overline{w}_{(c,c')} \right)$$

s.t.
$$A_1 \mathbf{x}_1 = 1$$
 Seg. constraints $A_2 \mathbf{x}_2 = 1$
 $B_{12} \mathbf{y}_{12} \leq D_{12} \mathbf{x}_1$ Mapping $B_{21} \mathbf{y}_{21} \leq D_{21} \mathbf{x}_2$
 $B'_{12} \mathbf{y}_{12} \leq D'_{12} \mathbf{x}_2$ constraints $B'_{21} \mathbf{y}_{21} \leq D'_{21} \mathbf{x}_1$
and $x \in \{0, 1\}$ $\forall x \in \mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_{12}, \mathbf{y}_{21}$

Linear Programming Relaxation

Linearize the objective function [Kumar et al. 09]

 $z_{(c,c')} = y_c y_{c'}$

Relax the variables

$$\max \sum_{i \in \{1,2\}} \mathbf{x}_i^{\mathsf{T}} \mathbf{w}_i^{\mathsf{seg}} + \sum_{ij \in \{12,21\}} (\lambda \mathbf{y}_{ij}^{\mathsf{T}} \mathbf{w}_{ij}^{\mathsf{corr}} + \mu \mathbf{z}_{ij}^{\mathsf{T}} \mathbf{w}_{ij}^{\mathsf{adj}})$$

s.t. $A_1 \mathbf{x}_1 = 1$ $B_{12} \mathbf{y}_{12} \leq D_{12} \mathbf{x}_1$ $B'_{12} \mathbf{y}_{12} \leq D'_{12} \mathbf{x}_2$ $E_{12} \mathbf{z}_{12} \leq F_{12} \mathbf{y}_{12}$ and $0 \leq x \leq 1$ $A_2 \mathbf{x}_2 = 1$ $B_{21} \mathbf{y}_{21} \leq D_{21} \mathbf{x}_2$ $B'_{21} \mathbf{y}_{21} \leq D'_{21} \mathbf{x}_1$ $E_{21} \mathbf{z}_{21} \leq F_{21} \mathbf{y}_{21}$ $\forall x \in \mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_{12}, \mathbf{y}_{21}, \mathbf{z}_{12}, \mathbf{z}_{21}$

Multi-way Joint Segmentation

- Combines objective functions of pairs of similar shapes
 - Threshold on values of objective functions

$$\max \sum_{i=1}^{n} \mathbf{x}_{i}^{\mathsf{T}} \mathbf{w}_{i}^{\mathsf{seg}} + \frac{n}{|\mathcal{E}|} \sum_{(i,j) \in \mathcal{E}} (\lambda \mathbf{y}_{ij}^{\mathsf{T}} \mathbf{w}_{ij}^{\mathsf{corr}} + \mu \mathbf{z}_{ij}^{\mathsf{T}} \mathbf{w}_{ij}^{\mathsf{adj}})$$

s.t. $A_i \mathbf{x}_i = \mathbf{1}, \ \mathbf{0} \leq \mathbf{x}_i \leq \mathbf{1}$ for all $\mathbf{1} \leq i \leq n$

and $B_{ij}\mathbf{y}_{ij} \leq D_{ij}\mathbf{x}_i, \ B'_{ij}\mathbf{y}_{ij} \leq D'_{ij}\mathbf{x}_j, \ E_{ij}\mathbf{z}_{ij} \leq F_{ij}\mathbf{y}_{ij},$ $\mathbf{0} \leq \mathbf{y}_{ij} \leq \mathbf{1}, \ \mathbf{0} \leq \mathbf{z}_{ij} \leq \mathbf{1}$ for all $(i, j) \in \mathcal{E}$

Block coordinate descent for efficiency

	SD	RC	Supervised	Joint	JointAll	Human
Average	17.2	15.3	10.7	10.5	10.1	10.3

 Significantly better than single shape segmentations

- Comparable or slightly better than supervised segmentation
- JointAll is slightly better than Joint

SD: shape diameter RC: randomized cuts Supervised Joint: JS within a class JointAll: JS over full DB

Joint wins when per category shape variation is big

Armadillo

	SD	RC	Supervised	Joint	JointAll	Human
Armadillo	8.9	9.2	8.4	7.4	7.4	8.3

Joint wins when per category shape variation is big

Vase

	SD	RC	Supervised	Joint	JointAll	Human
Vase	23.6	12.7	17.1	13.5	13.2	14.4

Less benefit when per category shape variation is small

	SD	RC	Supervised	Joint	JointAll	Human
Airplane	9.3	13.4	8.2	12.9	10.2	9.2

Joint versus JointAll

Joint versus JointAll

Versus Supervised Segmentation [KBS10]

Supervised segmentation

Joint

Failure case

Octopus

	SD	RC	Supervised	Joint	JointAll	Human
Octopus	4.8	6.4	1.8	6.7	7.2	2.4

Different Levels of Similar Shapes

The Lessons

- By segmenting shapes jointly, we capture better semantic notions of shape parts
 - Less influenced by local geometry artifacts
 - The truth has less places to hide

Graphs of Map Systems

[with Nguyen, Ben-Chen, Welnicka, Ye, SGP '11]

Optimal Maps Can Be Ambiguous or Unstable

Equally good isometric maps

Problem Statement

Input

- A collection of related shapes
- A collection of maps between all pairs of shapes
- A distance measure on each shape

Output

- A collection of improved maps between all pairs of shapes.
- Improved in the sense of being more
 - Accurate (close to ground truth)
 - Consistent (with each other)

Network Representation

Approach: From Consistency to Accuracy

- Cycle consistency tells us something about accuracy
- Remove the inconsistencies we find
- Repeat using the improved collection

3 cycles

Proposal – Linear Program

- For each 3-cycle γ in the graph, compute the distortion C_{γ}
- Solve the following linear program to assign errors c_e to the edges:
 - Minimize

$$\sum_{e \in E} W_e c_e$$

Subject to

$$\sum_{e \in \gamma} c_e \geq C_\gamma \; orall \gamma \ c_e \geq 0 \; orall e \in E$$

L¹ concentrates the error on few edges

• Where
$$W_e = 1/(\sum_{\gamma:e\in\gamma} C_{\gamma})$$

Proposal – Map Replacement

LP gives us a weighted graph

 Remove bad maps: replace with shortest paths

New collection of maps

Run the LP again?

Convergence - Experimental

Мар Туре

LP Weights

Final accuracy

Results – 2D (DTW)

Results – 2D (DTW)

44

Results – 3D (Blended Maps)

A Shape Morphing Result – 3D

Correspondences computed with Mobius voting + GMDS

The morph sequence is recovered ...

use frequency

15

10

Phenotype genealogies

20

The Lessons

- Map networks are more powerful than graphs because maps can be composed
- They assist in the estimation of the consistency of shapes in a collection and thus can be used to used to understand the overall structure of the collection

Exploration of Continuous Variability in Shape Collections

[with Ovsjanikov, Li, Mitra, Siggraph '11]

No correspondences or maps

Large Shape Repositories

- Millions of models available
- Incorporating 3D models into workflows is challenging
 - difficult to know what is there

Text-Based Exploration

The Approach

Analysis Stages

Convert to descriptor space

Select template

Deform to fit observed variability

Generate morphable model

Deformation

But no orderings, no correspondences, no segmentations ...

Template Deformation Model

Choosing a Template Shape

- Remove outliers
- Compute mean descriptor
- Take closest shape (restrict number of mesh components)

Deformable Model

Exploration

The Lessons

 Within a class, shape variability can be learned -- even without correspondences

 Shape collection navigation is just as important as shape search

Cancer Data Analysis via Mapper [Calrsson Group]

 Analysis of cancer genomic data to identify high survival groups using topological methods

Methods also applicable to social network analysis

PNNL Collaboration

- Topic: Morphological signatures for predicting nanoparticle biological interactions
 Collaboration with
- Shape of a nanoparticle affects:
 - Cellular internalization
 - Adhesion to surfaces
 - Transport in the body

[From Vácha et al.: Endocytosis is suppressed for particles with sharp edges]

Acknowledgements

• Collaborators:

- Current and past students: Daniel Chen, Peter Huang, Andy Nguyen, Maks Ovsjanikov
- Current and past postdocs: Mirela Ben-chen, Adrian Butscher
- Senior: Fred Chazal, Vladlen Koltun, Wilmot Li, Niloy Mitra

Sponsors:

