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Research Directions

Sparse recovery in infinite dictionaries (Koltchinskii and Minsker,
COLT 2010, 420–433)
Active learning (Koltchinskii, J. Machine Learning Research, 2010,
11, 2387–2415)
Sparsity in multiple kernel learning (Koltchinskii and Yuan, Annals
of Statistics, 2010, 38, 3660–3695)

applications of multiple kernel learning to heterogeneous data
fusion and multi language document analysis (with Haesun Park,
Pedro Rangel)

Low rank matrix learning:
nuclear norm approach (Koltchinskii, Lounici and Tsybakov, 2010)
von Neumann entropy penalization (Koltchinskii, 2010)
learning of low rank kernels on graphs (Koltchinskii and Rangel)
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Low Rank Matrix Recovery

Suppose that A is a large matrix and
either it has low rank,
or it can be well approximated by a low rank matrix.

The goal is to estimate A based on noisy measurements of linear
functionals of A

Matrix Completion: Candes and Recht (2009), Candes and Tao
(2009), ...
Matrix Regression: Candes and Plan (2009), Rohde and
Tsybakov (2009), Koltchinskii, Lounici and Tsybakov (2010), ...
Quantum State Tomography: Gross et all (2009), Gross (2009),
Koltchinskii (2010)
Learning Kernels based on Empirical Data
Covariance Matrix Estimation
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Quantum State Tomography

Mm(C) the set of all m ×m matrices with complex entries

S :=
{

S ∈Mm(C) : S = S∗,S ≥ 0, tr(S) = 1
}

ρ ∈ S a density matrix
X1, . . . ,Xn i.i.d. Hermitian matrices (observables) with distribution
Π independent of ξ1, . . . , ξn (for instance, a sample from the Pauli
basis)
Regression Model:

Yj := tr(ρXj) + ξj , j = 1, . . . ,n

Random Noise: {ξj} i.i.d. random variables with Eξj = 0,
σ2
ξ := Eξ2

j < +∞
Goal: estimate ρ based on (X1,Y1), . . . , (Xn,Yn)
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von Neumann Entropy Penalization

von Neumann entropy:

E(S) := −tr(S log S),S ∈ S.

Entropy penalized least squares method: Trade-off between
minimizing the empirical risk and maximizing the entropy

ρ̂ε := argminS∈S

{
n−1

n∑
j=1

(Yj − 〈S,Xj〉)2 + ε tr(S log S)

}
.

Koltchinskii (2010) von Neumann Entropy Penalization and
Low Rank Matrix Estimation, arXiv:1009.2439v1: bounds on the
error of ρ̂ε in terms of the rank or “approximate rank” of ρ.
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From Quantum State Tomography to Learning Kernels
on Graphs

Learning Kernels: Cristianini et al (2002), Lancriet et al (2004)):
the goal is to find a symmetric nonnegatively drfinite kernel “well
aligned” with the data.
Applications:

prediction of similarities between points outside of the observed
sample;
embeddings of the data into a Euclidean feature space
design kernel machines for classification and other learning
problems

Tsuda and Noble, Learning kernels from biological networks
by maximizing entropy, Bioinformatics, 2004: applications of von
Neumann entropy maximization to design of locally constrained
diffusion kernels for prediction problems on protein and gene
networks.
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Learning Kernels on Graphs

(V ,E) a graph
X1, . . . ,Xn an i.i.d. sample from a probability distribution in V ;

S an n × n symmetric empirical similarity matrix;
each entry sij describes how “similar” the vertices Xi and Xj are.
Goal: to design a kernel K (=symmetric nonnegatively definite
matrix (K (u, v))u,v∈V ) that approximates the similarity matrix and,
at the same time, reflects the geometry of the graph.
K (u, v) = 〈φ(u), φ(v)〉, u, v ∈ V , φ an embedding of V into a
Euclidean feature space;
energy of the embedding φ :

tr(KL) =
∑

u,v∈V ,u∼v

‖φ(u)− φ(v)‖2,

where L is the Laplacian of the graph.
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Entropy Penalization Approach to Learning

Similarity matrix S is properly normalized;
tr(K ) = 1, i.e., K is a density matrix;
von Neumann entropy can be used as a complexity penalty to find
a low rank estimate of K :

K̂ = argminK∈S

[
λ1

n(n − 1)

∑
i 6=j

(sij − K (Xi ,Xj))2 +

λ2 tr(KL) + λ3 tr(K log K )

]
,

λ1, λ2, λ3 > 0 are regularization parameters.
The estimator K̂ provides a trade-off between fitting the
kernel for the data, minimizing the energy of the embedding
defined by the kernel and maximizing the von Neumann
entropy of the kernel
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Learning kernels for prediction on graphs

A social network G = (V ,E).
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Learning kernels for prediction on graphs

A social network G = (V ,E).
Assume that a function on V
represents political preferences
of the individuals.
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Learning kernels for prediction on graphs

A social network G = (V ,E).
Assume that a function on V
represents political preferences
of the individuals.
The goal is to design a kernel for
predicting how the individuals
are going to vote in the
forthcoming elections.
This approach takes into
account both the political
preferences and the interactions
between the individuals reflected
in the geometry of the graph
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Experiments

Heat map for the adjacency matrix of the graph. Note that this heat
map does not show any particular structure
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Experiments

Heat map for the estimated kernel (the vertices are reordered to reveal
the clusters of the graph)
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Experiments

The estimated kernel naturally induces an embedding of the graph in a
high dimensional feature space projected further into two dimensions.
The clusters of the network and voting preferences become visible
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Experiments

Using the kernel to solve a learning problem. Classification error vs
number of labeled data.
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Future Directions

Estimation error bounds, in particular, oracle inequalities for K̂
(such as in quantum state tomography and other low rank matrix
estimation problems)
Tuning methodology for regularization parameters
Simultaneous learning of the classifier and of the kernel in kernel
machine design for binary and multiclass classification
Learning graph laplacians based on samples of vertices and
edges
Simultaneous learning of similarity kernels and laplacians
Methods of embedding and visualization of graphs based on
kernel learning
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