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Abstract—In this paper, we study the sensitivity of centrality metrics as a key metric of social networks to support visual reasoning. As

centrality represents the prestige or importance of a node in a network, its sensitivity represents the importance of the relationship

between this and all other nodes in the network. We have derived an analytical solution that extracts the sensitivity as the derivative of

centrality with respect to degree for two centrality metrics based on feedback and random walks. We show that these sensitivities are

good indicators of the distribution of centrality in the network, and how changes are expected to be propagated if we introduce changes

to the network. These metrics also help us simplify a complex network in a way that retains the main structural properties and that

results in trustworthy, readable diagrams. Sensitivity is also a key concept for uncertainty analysis of social networks, and we show

how our approach may help analysts gain insight on the robustness of key network metrics. Through a number of examples, we

illustrate the need for measuring sensitivity, and the impact it has on the visualization of and interaction with social and other scale-free

networks.

Index Terms—Social network visualization, centrality, sensitivity analysis, eigenvector and Markov importance.

Ç

1 INTRODUCTION

SOCIAL network analysis and visualization have become
increasingly important with the growing popularity of

Websites such as Facebook and Flickr. Although statistical
analysis is often used for discovering patterns and
formulating hypotheses about the social interaction, visual
analysis can provide better overviews and reveal patterns
missed via quantitative measures alone. Recently, Perer and
Shneiderman argued for the tight integration of social
network statistics and visualization as a fundamental tool
toward effective exploration of social networks [42].

One of the most studied statistical metrics for social and
other scale-free networks is centrality. Central nodes in a
graph are often deemed as important hubs through which
social interaction is conducted and are good indicators of
the relative popularity of individual nodes and clusters.
Centrality has also been recognized as an important statistic
for biological networks. For instance, Jeong et al. found a
significant relation between lethality and centrality in
protein networks [29]. As a consequence, it is important to
not only enhance visualizations of social networks with
centrality metrics, but also to understand the factors
involved in the centrality of a given node.

In this paper, we study an aspect of centrality often
ignored in visualization: its sensitivity. In general, the
sensitivity of a function refers to the change in the output
values in terms of changes in its inputs. In the case of a

social network, we can consider the centrality of nodes as a
function of structural variables, such as degree, or, more
generally, as a function of the adjacency matrix of a
network. Centrality is in fact a multivariate function,
affected by each individual node in a network. Therefore,
we can think of the centrality sensitivity of a node with
respect to another as the change in the centrality metric of
the first after a change in the second. The study of
sensitivity helps us answer questions such as: if we add
one or more edges to a node, how would the centralities of
the other nodes change? Do nodes in a subnetwork increase
importance together, i.e., is it a collaborative network, or do
nodes compete in importance with each other? To support
these queries, we visualize the sensitivity values directly on
the social network visualization. An overview of the
network, enhanced with sensitivity parameters, helps us
gain insight on the global distribution of importance.
Overviews help us answer questions such as: to what
group of nodes can we associate the importance of a given
node? Are all nodes surrounding it equally responsible for
its centrality? What are the most important nodes relative to
a single focal node?

To this end, we approach the problem from the
perspective of calculus of variations. In general, computing
the sensitivity of a multidimensional data set is a challen-
ging task, as the number of possible variations grows
exponentially with the number of variables. Common
approaches include analytical differentiation, local meth-
ods, which approximate the sensitivity in a neighborhood
along each variable at a time, and Montecarlo simulations,
which use stochastic searches of the subspace of variations.
In our case, we follow a hybrid approach using local
neighborhoods and analytic derivation, which computes
sensitivity of a function as its partial derivative with respect
to each of the variables. We describe a general method for
computing these derivatives for centralities that can be
expressed as functions of the adjacency matrix, such as the

106 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 18, NO. 1, JANUARY 2012

. C.D. Correa is with Lawrence Livermore National Laboratory, Box 808, L-
422, Livermore, CA 94551-0808. E-mail: correac@llnl.gov.

. T. Crnovrsanin and K.-L. Ma are with the University of California, Davis,
2063 Kemper Hall, One Shields Avenue, Davis, CA 95616-8562.
E-mail: {tecrnovrsanin, ma}@ucdavis.edu.

Manuscript received 9 Dec. 2009; revised 23 June 2010; accepted 1 Nov. 2010;
published online 7 Dec. 2010.
Recommended for acceptance by A. MacEachren.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2009-12-0283.
Digital Object Identifier no. 10.1109/TVCG.2010.260.

1077-2626/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society



eigenvector and Markov centralities [5], [48]. To better
understand the notion of sensitivity and derivatives of
centrality, let us analyze the problem for a small network.

1.1 An Illustrative Example

Consider the network depicted in Fig. 1a, a subset of a
network of intellectual influence among great thinkers in
History [25]. In this network of renowned artists, mathe-
maticians and philosophers, a link is made if a person’s
work has influenced the works of another. We see this
subnetwork as a combination of a star network rooted by
Husserl and a cluster formed by the nodes on the right,
including Russell, Frege, Godel, and others. To understand
sensitivity, we perform the following experiment. Take the
node Russell, and start increasing its degree. Because there
are so many combinations that lead to the same increment
in degree, let us assume that this change is stochastic. In this
example, we assume that all links incident to Russell have
the same probability of 1=5 (since there are five edges).
Then, we start increasing all these edges by 1=5, then 2=5,
and so on. At each step, we measure the centrality of all
nodes. The result is depicted in Fig. 1b. The x-axis
represents the change in the weights associated to the
edges incident to Russell and the y-axis is centrality. Each
line corresponds to the centrality of one of the nodes in the
cluster. We clearly see that the changes applied to Russell
have both positive and negative effects, e.g., it boosts the
centralities of James, Bolzano, Frege and Godel, but also
hinders the centralities of Husserl and Carnap. Notice also
that in the latter case, the impact is indirect, since Russell
and Carnap are not directly connected. Notice also that the
rate at which the change occurs is not uniform. This rate, the
derivative of those curves, is the sensitivity of centrality,
and can be computed analytically for some centrality
functions, as described in Section 3.

An example visualization of these derivatives is shown in
Fig. 1c, where color denotes the sign and strength of the
sensitivity. Red and blue links denote negative and positive
sensitivity, respectively, while the saturation of color in-
dicates strength. For example, Frege’s sensitivity to Russell is
smaller than that of James’. Dashed lines denote indirect
sensitivities, which occur between pairs of nodes not directly
connected. These are useful to visualize the “region” of
influence of a node. If we repeat the experiment for all nodes,

we end up with a pairwise matrix of sensitivities. In Fig. 1d,
we visualize the pairwise sensitivity between all connected
nodes using the same color scheme. Note that sensitivity is,
in general, not symmetric. For example, the sensitivity
between Husserl and Frege is asymmetric.

1.2 Contributions

In this paper, we provide an analytical mechanism for
computing sensitivities of centrality and show their
practical value for visual reasoning about social networks.
In particular, we provide:

1. a general strategy for computing the variation of
centrality as an analytical expression for eigenvector
and Markov centralities, and a numerical approx-
imation for centrality functions in general,

2. sensitivity overviews in node-link diagrams as a
mechanism for characterizing and filtering complex
social networks,

3. a network simplification strategy that preserves the
centrality distribution of the original network, and

4. a mechanism for assessing uncertainty in networks
and its application in understanding the robustness
of network metrics.

The study of sensitivity in social networks is important to
characterize networks that are seemingly similar, to under-
stand the sources of variability in metrics such as centrality,
and to gain insight on the social dynamics of a network. To
the best knowledge of the authors, this is the first
variational study of social networks from the perspective
of visualization.

2 RELATED WORK

2.1 Network Centralities

The issue of centrality has been widely explored in
numerous settings, including sociometry, biology and
information systems [43]. One of the most obvious ways of
measuring centrality of a node is via its degree, as first noted
by Shaw [44]. However, this simple definition of centrality
may not suffice to capture the complex structural relation-
ships in a graph. Harary and Hage [19] proposed a centrality
based on eccentricity, defined as the maximum distance of
any node to other nodes in the network. Other metrics are
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Fig. 1. Centrality sensitivity. (a) Subnetwork of the genealogy of influence data set [25]. (b) Plot of changes in centrality for some key nodes as the
degree of Russell changes. We see that some nodes become less important while others improve. The rate of change of these functions, their
derivatives, are the sensitivity parameters. (c) We can color code the sensitivity (red/blue indicates negative/positive influence) to understand how
centrality is propagated for a change in a given node. (d) A full visualization of the sensitivity parameters.



defined in terms of the total distance to other nodes in the
network. Nodes with small total distance are said to be
central. Numerous closeness metrics have been proposed,
including the information centrality and radiality of a node.
For a closer look at these metrics, refer to Jacob et al. [28] and
Newman’s survey [38].

Other more popular methods have been proposed for
applications such as the analysis of social networks and
Website ranking. These methods can be broadly categorized
as centralities based on shortest paths, feedback and random-
walks [7]. The most common metric based on shortest paths
is the betweenness centrality of a node, introduced by
Anthonisse [2] and Freeman [14], as an alternative for
closeness centrality in disconnected graphs. Feedback-
based metrics define the centrality of a node in terms of
the centralities of other nodes. Bonacich introduced a metric
based on the eigenvectors of the adjacency matrix of a
network [5]. Before Bonacich, Hubbell formulated the
problem in a similar fashion, where the centrality of a node
is a linear combination of the centralities of others, whose
solution can be found from the ensuing system of linear
equations [27]. These feedback-based methods became
more popular for Webpage indexing and are the core of
search algorithms such as PageRank [9], HITS [32], and
SALSA [37]. Unlike previous eigenvector centralities,
algorithms such as PageRank made the matrix stochastic,
ensuring that the corresponding Markov chain converges to
a stationary distribution. Finally, the idea of using random
processes to represent a network led to Markov centralities,
as proposed by White et al. [48]. Their metric is defined as
the mean first-passage time of the Markov chain derived
from the adjacency matrix of the network.

Several comparisons of these centrality metrics have
been performed. Freeman presents an exhaustive treatise of
these methods in his seminal paper [14]. Dwyer et al.
performed a visual analysis to compare different centrality
metrics [12]. They present a series of conventional visual
analysis methods and hierarchical views to correlate the
centralities of nodes under different metrics. Koschützki
and Schreiber present a comparison of centrality measures
for biological networks [35]. Although no method was
particularly better than the others, the authors recognized
that each centrality method provided interesting insight on
how proteins interact.

Inspired by these results, we saw a need to understand
the behavior of centralities. In this paper, we extract
sensitivity as a visual quantity that helps users gain
additional insight on the distribution and evolution of
centrality metrics, and consequently, on the structure and
dynamics of the social network. Similar studies have been
carried out to measure the sensitivity of centralities to small
perturbations in the network. Langville and Meyer [36]
studied the numerical stability of the eigenvector centrality
in the context of Web search. Ng et al. [40] were able to
provide bounds of the difference magnitude between old
and new centralities after a perturbation. These bounds
were later improved by Bianchini et al. [4]. In their study,
they were concerned mostly with the stability of the
centrality vector given a perturbation in the network. In
our paper, we have a similar goal, although we discriminate

these perturbations as changes in the degree of a node.
Therefore, the difference in centrality can be understood as
the partial derivative of the centrality with respect to the
degree. Naturally, these derivatives can be combined to
provide a bound (although not necessarily tight) of the
stability of the centrality of a node. A deeper analysis of the
stability of centralities is performed by Koschützki et al. [34]

2.2 Network Visualization

The literature in network and graph visualization is
extensive [13]. One of the most widely studied topics is
the issue of graph layout. Although force-directed place-
ment is popular and easy to implement, other more
sophisticated approaches have been proposed, such as
GRIP [15], ACE [33] and FM3 [18]. To improve the
exploration of such networks, a number of tools have
emerged, such as yEd [26], GUESS [23] and JUNG [24],
which provide a number of layouts, overview+detailed
views, magnifying glasses and color encoding of graph
properties. Heer and Boyd presented Vizster, a system for
visualizing social networks [21]. In addition to the cluster-
ing effect of forced-directed layouts, they also provide an
explicit visualization of communities.

Recently, there has been particular interest in guiding the
visualization of social and scale-free networks using
centrality. Perer and Shneiderman argue that an effective
social network system must tightly couple statistics and
visualization to provide a more effective exploration [42].
Brandes and Wagner discuss visone [8], a system for
visualizing social networks based on centrality, which
includes layered and radial layouts, similar to the Pajek
system [3]. To improve the layout of large graphs, Girvan
and Newman [16] propose edge filtering based on the
betweenness centrality of edges. By removing the edges
with high BC, they obtain simpler layouts that capture the
structure of the network. A similar approach was explored
by van Ham and Wattenberg [46]. The minimum spanning
tree retains these clusters. When the highest BC edges are
added back to the tree, the result is a filtered, but
structurally meaningful, network. A different approach is
taken by Jia et al. [30], who used the highest BC edges to
construct the tree. They based their approach on the
observation that scale-free networks are mostly minimally
connected. Using the highest BC nodes, they extract the
communication channels that are most important in the
network. In our paper, we show that centrality sensitivity
also provides a ranking of the edges, and that, when used to
compute a minimum spanning tree, the result maintains the
centrality of the important nodes. This property is im-
portant to ensure the correct interpretation of a simplified
network diagram.

3 CENTRALITY SENSITIVITY

A graph G ¼ fV ;Eg consists of a set of nodes V and a set of
edges E. A node centrality is a function C : V 7! R, that
assigns a real value to each node in V . The larger the value
CðvÞ is, the more important a node v is. One of the simplest
ways to measure the centrality of a node is via its degree. The
degree of a node is the number of edges incident to that node.
In a more general sense, for weighted graphs we can define
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the degree or valency of a node as the sum of weights of all

the edges incident to that node. Unweighted graphs are just a

special case where the weight of an edge is 1. To this end, it

becomes convenient to represent a graph via its adjacency

matrix A of size n� n, where n is the number of nodes.
For directed graphs, it is often common to divide this

metric as indegree and outdegree, corresponding to the sums

of weights for incoming and outgoing edges of a node,

respectively. During our discussion, we will derive central-

ities in terms of the adjacency matrix, regardless of whether

the matrix denotes a directed or an undirected graph.
We can see that the degree of a node is a somewhat local

metric of centrality. Other measures, such as betweenness

and eigenvector centralities, as discussed below, act

globally, and the weights associated to the edges incident

to a node can potentially affect the centrality of other nodes

throughout the network. The measure of how much a node

can affect the centrality of others is called sensitivity, within

the context of sensitivity analysis [10]. One mechanism for

computing sensitivity is via function derivatives [17].
In a general sense, sensitivity analysis explores the

variation of a function in terms of the variation of its inputs.
For social networks, we can consider the centrality as a
multidimensional multivariate function, which takes an
adjacency matrix as input and its output is an n-dimensional
vector, where each of its components is the centrality of a
node. To find the sensitivity of this function, we must first
define the variable with respect to which we compute the
derivative. In principle, it is possible to compute the
sensitivity of centrality with respect to each edge, which is
analogous to computing the derivative of the centrality
function with respect to each entry in the adjacency matrix.
However, the resulting sensitivity space is astronomical,
since it must consider all possible variations of variables.
Even in the simplest case, where the sensitivity is computed

with respect to each edge independently, the number of
sensitivity parameters would grow cubically with the
number of nodes. Instead, we define one variable per node,
which is not only computationally less expensive, but it
results in a measure of sensitivity easy to understand. The
definition of these variables and the associated derivatives is
formalized below.

3.1 A Variational Definition of a Social Network

A variational definition of a social network describes its

structure, typically the adjacency matrix, and subsequent

metrics, as functions of variables associated to its elements.

In this paper, we define variables associated to each node.

Let us define n independent variables representing a

parameterized space for the weighted degree of each node

t1; t2; . . . ; tn. Therefore, we can think of the adjacency matrix

as a function of these parameters, and consequently, a

centrality metric as a composite function in terms of the

adjacency matrix.
We, therefore, write centrality as a function:

Cðt1; t2; . . . ; tnÞ; ð1Þ

with partial derivatives with respect to these parameters

@Cðt1; . . . ; t; . . . ; tnÞ
@t

¼ lim
h!0

Cðt1; . . . ; tþ h; . . . ; tnÞ � Cðt1; . . . ; t; . . . ; tnÞ
h

:

ð2Þ

Therefore, the derivatives of centrality can be represented
as a matrix S where each element

sij ¼
@Ciðt1; . . . ; tnÞ

@tj
; ð3Þ

encodes the sensitivity of node i with respect to node j. To
find an infinitesimal change in the centrality, and therefore,
its derivative, we observe that many centrality metrics are
algebraic operations on the adjacency matrix. Therefore, we
can expand the derivative in terms of the derivatives of the
adjacency matrix, using the chain rule of differentiation:

@CðAÞ
@t

¼ dC
dA

@A

@t
; ð4Þ

where the derivative of the adjacency matrix is, analogously,

@Aðt1; . . . ; t; . . . ; tnÞ
@t

¼ lim
h!0

Aðt1; . . . ; tþ h; . . . ; tnÞ �Aðt1; . . . ; t; . . . ; tnÞ
h

:

ð5Þ

This means that, if we know the closed form of both the
centrality function and the adjacency matrix, we can readily
compute the sensitivities of centrality via symbolic differ-
entiation. However, adjacency matrices are seldom, if ever,
defined analytically in terms of a set of parameters. Instead
they are defined discretely as a collection of edges that may
change over time. For this reason, we must approximate the
variation of the adjacency matrix for a given change in one
of the variables ti. Because we define ti as a variable that
models the degree distribution, an infinite number of
adjacency matrices can result in the same variation. Say,
for example, that we want to measure the variation in the
adjacency matrix that results from adding 1 to the degree
variable ti. Naturally, this can be obtained by adding a new
edge incident to i of weight 1, or increasing the weights of,
say, 10 edges incident to i by 0.1, and so on. We adopt an
stochastic approach and define the variation of the
adjacency matrix as a probabilistic change in all the edges
incident to that node. The probabilities are given by the
edge weights. Formally, we can define the variation matrix
with respect to node k as follows:

Aijðt1; . . . ; tþ h; . . . ; tnÞ � Aijðt1; . . . ; t; . . . ; tnÞwijðt; hÞ ð6Þ

wijðt; hÞ ¼
1þ h

degðtÞ ; i ¼ k or j ¼ k
1 otherwise;

(
ð7Þ

where degðtÞ is the degree function, so that degðtiÞ ¼
degreeðviÞ, for a node vi. It can be seen that degðtþ hÞ ¼
degðtÞ þ h, for all t. This equation simply states that the
adjacency matrix is updated to “report” a change in degree as
the change of the edge weights proportional to the
probability of each edge.

This definition does not assume anything particular
about the adjacency matrix, such as symmetry. Therefore,
this variational approach can be applied to directed and
undirected networks alike. Fig. 2 shows the result of

CORREA ET AL.: VISUAL REASONING ABOUT SOCIAL NETWORKS USING CENTRALITY SENSITIVITY 109



extracting sensitivities for different variants of the network
depicted in Fig. 1. From left to right, we show the
sensitivities for a weighted undirected network (edges are
bidirectional with the same weight, i.e., A is symmetric), for
a weighted (Fig. 2c) and an unweighted (Fig. 2d) directed
network. Overall, the sensitivities exhibit similar behavior,
since the network is small, but subtle relationships emerge.
For example, James is more sensitive to Russell than Bolzano
is, when considering uniform edges. But this ranking is
reversed when weighting is used.

In the following sections, we follow this variational
approach to derive formulas for the sensitivity of both
eigenvector and Markov centralities, based on feedback and
random walks of the adjacency matrix, for which there is a
continuous function. Then, we describe a general approach
for approximating sensitivity via forward differences.

3.2 Eigenvector Centrality

For the case of eigenvector centrality, whose variants are at
the core of PageRank [9] and HITS [32], the centrality of a
node can be formulated as a linear combination of the scores
of the other nodes, which results in the eigenvector equation:

Ax ¼ x; ð8Þ

where A is the adjacency matrix of the network. The
solution can be found as the eigenvector corresponding to
the eigenvalue � ¼ 1. Alternatively, one can normalize the
adjacency matrix A so that the sum of columns is 1. In this
case, the solution to the problem is the eigenvector
corresponding to the largest eigenvalue (which equals 1).
The eigenvector centrality of a node is therefore CEðvÞ ¼ xv.

To find the derivative with respect to a degree variable ti,
let us denote Q ¼ A� I, so that Qx ¼ 0. Differentiating at
both sides, we have:

@ðQxÞ
@ti

¼ 0

@Q

@ti
xþQ@x

@ti
¼ 0;

from which it follows our formula for the eigenvector
centrality sensitivity:

@x

@ti
¼ �Qþ @Q

@ti
x; ð9Þ

where Qþ is the pseudoinverse of Q (since Q is, in general, a

singular matrix). This pseudoinverse can be computed

using the singular value decomposition of Q or the least

squares pseudoinverse: Qþ ¼ ðQ>QÞ�1Q>.

3.3 Markov Centrality

This centrality interprets the network as a Markov process,
and can be understood intuitively as the amount of time an

imaginary token performing random walks spends on each
node. According to White et al. [48], this can be computed
as the mean first-passage time in the Markov chain [31]:

mrt ¼
X1
n¼1

nf
ðnÞ
rt ; ð10Þ

where f
ðnÞ
rt is the probability that the chain first returns to

node t in exactly n steps. According to Schaffer et al., this
can be computed as a matrix M,

M ¼ ðI � Z þ EZdgÞD; ð11Þ

where I is the identity matrix, E is a matrix containing all
ones, and D is a diagonal matrix where each element in the

diagonal is the reciprocal of the stationary distribution xðvÞ
of a node v. Z is the fundamental matrix of the Markov
Chain, and Zdg is a matrix consisting of the diagonal

elements of the fundamental matrix. Z is defined as:

Z ¼ ðI �A� exTÞ�1; ð12Þ

where A is the Markov transition probability matrix and x

is a column vector of the stationary probabilities, which are
the same ones computed for the eigenvector centrality as
the solution to Qx ¼ 0.

The Markov centrality of a node v (among n nodes) can

therefore be extracted from M as [7], [48]:

CMðvÞ ¼
nP

s2V Msv
: ð13Þ

The derivatives of M now can be found analytically as:

@M

@ti
¼ ðI � Z þ EZdgÞ

@D

@ti
þ � @Z

@ti
þ E @Zdg

@ti

� �
D; ð14Þ

where the derivative of the fundamental matrix, being the
inverse of another matrix, is
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Fig. 2. Visualization of sensitivities for different graph types. (a)-(b) Weighted undirected graph as an adjacency matrix (a) and a node-link diagram
(b). Notice the imbalance in the sensitivity between James and Russell. (c)-(d) Weighted and unweighted directed graph. Although the overall
distribution of sensitivity is preserved (two subnetworks separated by red links), we notice the sensitivities of James are reversed when weights are
added.



@Z

@ti
¼ �Z @Q

@ti
� e @x

@ti

T� �
Z: ð15Þ

The derivative @D=@ti is a diagonal matrix containing the
inverse of the derivatives of the stationary probabilities x,
and @Zdg=@ti is the diagonal of the derivatives of Z. The
partial derivatives of Q and x are computed as defined
above for the case of eigenvector centrality.

3.4 Sensitivity via Forward Differences

As described above, it makes sense to compute the
sensitivity as a derivative of the centrality function, since
it can be defined as a continuous function in terms of the
adjacency matrix A. Other types of centrality, such as
closeness and betweenness are usually defined in terms of a
count of shortest paths or other metrics. This makes it
difficult to obtain a derivative. However, a sensitivity
metric can still be obtained applying finite differences.

For a given centrality metric, we can approximate the
derivatives as the change in centrality induced by the
variation matrix. That is:

@CðAÞ
@t

� CðAðt1; . . . ; tþ h; . . . ; tnÞÞ � CðAðt1; . . . ; t; . . . ; tnÞÞ
h

;

ð16Þ

where CðAðt1; . . . ; tþ h; . . . ; tnÞÞ is the centrality function of
the graph that results from a variation matrix along
parameter t.

3.5 Validation

To evaluate the validity of our approach, we approximate the
derivatives via finite differences, as described in Section 3.4.
We then compute the mean square error of the linear fit
between the approximated and analytical values for the
eigenvector and Markov centralities. Fig. 3 shows the error of
the finite difference approximation for both the eigenvector
and Markov centralities. Although an approximation, it
helps us validate the results of our analytic derivation, since,
in theory, the derivatives should represent the amount of
change in the centrality of a node when the degree of another

node changes. Note the logarithmic scale on number of
nodes. Similar to the distribution of centrality of small world
networks, the error exhibits an exponential fall off. This
means that highly central nodes are more sensitive to
approximation error than other relatively unimportant
nodes. We see that the linear approximation is quite good
for both types of derivatives. This is important as many
centralities may be difficult to differentiate analytically. The
most dramatic difference can be seen between the flickr data
set and the other networks. We believe this is due to the tight
connectivity in the flickr data set compared to the rest. Since
each node practically influences directly every other single
node, there are less chances of introducing numerical error in
the approximation. As the length of random walks between
any pairs increases, the approximation of their relative
influence (partial derivative) becomes less accurate.

4 VISUAL REASONING

Here we discuss some of the applications of centrality
derivatives in the visualization of social networks to
improve the analysis and understanding of interaction
between nodes in a scale-free network. Some of the
questions that arise when analyzing social networks, which
centrality derivatives help answer via visual means, are:

1. What is the distribution of sensitivity in a social
network? Do links represent friendship or enmity
relationships? These questions can be answered, at a
glance, in a visualization of mutual sensitivity.

2. Can we simplify the network representation to its
core elements? Is the simplification meaningful?
Sensitivity-based simplification can be used to obtain
more manageable graph layouts that have a similar
centrality distribution to the original network.

3. What are the most important nodes in relation to a
given search, outside their immediate neighbors? Is
the range of sensitivity of a node large or local? With
a search-and-expand approach, we can provide
efficient means of social network navigation.

4. How reliable are centrality metrics?

This type of reasoning, about the analysis itself, is seldom
answered in typical visualization applications. Sensitivity
analysis is an essential tool for measuring the robustness
and uncertainty of centrality and related metrics.

4.1 Visualizing Friendship and Enmity

The natural application of sensitivities to visualization is the
generation of overviews. These overviews, where we
encode the sensitivity as a visual property, help understand
the distribution of importance and the types of relationships
represented by the links. One of the properties of sensitivity
parameters is that they can be characterized by their
magnitude and sign. This generates a signed network that
is essential for analyzing the social balance of a network. In
this context, we can refer to positive links as representing
“friendship,” while negative links represent “enmity.” This
analogy, widely used within the context of social dynamics,
helps us understand the evolution of social networks in
terms of the balance of the signed edges in triads [1]. For
example, a balanced network is likely to evolve into an
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Fig. 3. Error plot of finite difference approximation and analytic derivation
for eigenvector (left) and Markov (right) centralities. The x-axis plots
nodes in decreasing order of the error. The y-axis denotes the mean
square error (MSE) of the linear fit between the approximated and the
analytic derivative. Although an approximation, it serves for validating
the correctness of our derivation. Notice the difference in accuracy of the
flickr data with respect to the others. This is due to the tight connectivity
in this data set, which makes the derivatives more accurate as they
influence each other directly.



“utopia,” formed by all positive links. Because this analogy
is easy to comprehend, we use the same terminology here.

We have experimented with a number of data sets with
different structure, and have identified key properties as a
result of the visualization of the sensitivity parameters. Fig. 4
contrasts several simple networks consisting of a core
network of six nodes and five peripheral nodes. Depending
on the topology of the core network, we observe different
relationships. For a complete graph, nodes are competing for
importance and we observe a large negative sensitivity
among all nodes. A similar behavior is seen for a ring
network, although we observe an asymmetric relationship.
Nodes are more sensitive to changes on the center of the star
(node 1), while having little impact on that node. For a cycle,
we see a more collaborative network, where each node is
“friends” with their own neighbors. Hybrid networks, like
seen in Fig. 4d show the two behaviors, as it is formed by a
complete graph connected to a wheel. In real networks, we
often find a combination of these types.

Fig. 5 summarizes our study with the selection of three
types of networks we have encountered in our experi-
ments. Fig. 5a shows a typical sparse network, often found
in hierarchies and exhibiting a number of subnetworks in
a star pattern. This particular example shows the core
network of the Friendster social network and the main
connections of these core nodes. We notice a predomi-
nancy of negative links between clusters. This is expected,

since each cluster center has roughly an equal chance of
becoming the most important node. Therefore, any change
in a cluster center will impact negatively the importance of
another. But the visualization also characterizes the
magnitude of this competitive relationship. We see that
the root of the largest cluster (toward the right) has a
larger sensitivity to the clusters in the middle (a darker red
edge) than the other cluster centers. Fig. 5b shows the
highly interconnected core of the cocitation ArXiv net-
work. A different pattern emerges. We do not see the
individual skeletal negative links, but we see them all
clustered within a single region. By contrast, other
interconnected groups, such as the one toward the right,
exhibits collaboration (all positive links) rather than
competition (all negative links). This indicates a separation
of groups that may not be evident in an overview and
seems typical of tightly connected networks, such as in
certain specialized cocitation or proximity networks.
Section 5.1 describes another example of this type of
behavior. Fig. 5c shows a hybrid network, where tightly
coupled subnetworks are connected via a few links,
resembling both the star-shaped clusters and the tightly
connected group. This example is the core subnetwork of
the del.icio.us graph, a Web tagging social networking site.
In this case, we see a similar behavior, but negative links
are not exclusive of intercluster links. We also see a
collection of groups of varying connectivity. Specifically,
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Fig. 4. Friendship and enmity on simple networks. Nodes in complete (a) and star (b) networks compete for importance, and therefore, exhibit strong
negative sensitivities, while nodes arranged in a ring (c) exhibit collaboration. Hybrid networks exhibit the two behaviors (d). (a) Complete, (b) Star,
(c) Ring, and (d) Ring+Complete.

Fig. 5. Color encoding of sensitivities helps identify different types of interaction. (a) Collection of star-shaped networks, intercluster links exhibit
negative sensitivity (Friendster). (b) Tightly connected networks with either a strong positive or a strong negative sensitivity. Here, we see one
competitive and one collaborative network (Astrophysics). (c) Hybrid case with tightly-connected groups linked via a core network (Del.icio.us).



the group in the lower part suggests that it is formed by
smaller subclusters, one of them highly competitive (red
links) while others, less tightly connected and more
collaborative (blue links). Notice how this cluster resem-
bles the distribution of sensitivity of the ArXiv network.

4.2 Sensitivity-Guided Simplification

Another important application of centrality derivatives is
the ranking of edges for filtering and simplifying complex
networks. This idea was suggested by Girvan and Newman
[16] and van Ham and Wattenberg [46]. Both use the
betweenness centrality of edges, analogous to the between-
ness centrality of nodes, to rank the edges. By removing the
highest BC edges, van Ham and Wattenberg obtain a
minimum spanning tree that preserves the structural
properties of the network, in particular, the presence of
clusters of interest. In a diametrically opposite direction, Jia
et al. [30] consider the highest BC edges first to construct a
maximum spanning tree. This metric preserves the com-
munication paths that form the network.

Sensitivity, although not equivalent to edge betweenness
centrality, also provides an edge ranking. Therefore, it is only
natural to study the implications of this metric in simplifying
a social network. We follow the general strategy laid out by
previous simplification approaches and compute the mini-
mum spanning tree of the graph, where each edge is
weighted, in our case, by the centrality sensitivity. We first
performed a qualitative analysis where we obtained simpli-
fications of a number of data sets under different weighting
schemes, including uniform weighting, where all edges are
equally important, weighting based on edge betweenness
and weighting based eigenvector sensitivities. Fig. 6 com-
pares the results for the network of genealogy of influence, a
network that relates great thinkers in History depending on
the influence of one thinker on the works of another [25]. In
this visualization, we use circles to represent each node, with
sizes proportional to their centrality. Labels of the most
important nodes are also highlighted. At a glance, it is
difficult to judge which method is better. However, we were
able to identify structural properties that were retained
during the simplification. In this paper, we are interested in
how centrality was preserved. For the cases of uniform and

edge betweenness weighting, centrality of nodes is barely
preserved. For the latter, a global notion of centrality
remains, since the most important nodes remained clustered
together. However, we see that important nodes often appear
at the edges of the network rather than at its center. This is
somewhat solved with the sensitivity, and we now see the
highlighted names at the center of local groups. For
betweenness sensitivity (not shown), we found that groups
are often connected through unimportant nodes, since
shortest paths can short-circuit through relatively unim-
portant paths. For the eigenvector centrality sensitivity, the
nodes retained the centrality better, and important nodes
appear connected in a single skeletal path, highlighting what
Jia et al. identified as important communication paths.

In general, selecting an appropriate simplification
scheme depends on the task at hand and no single method
can be said to be superior to others. Simplification based on
edge betweenness retains most local clusters, but they
appear connected in a rather arbitrary way. Eigenvector
derivatives, on the other hand, preserve centrality, but may
break apart some loosely coupled clusters. We show an
example of such a case in Section 5.3. This observation
prompted us to perform a systematic evaluation of the
result of simplification from a structural point of view.

4.2.1 Preservation of Centrality

To validate how effective is a simplification, we must first
measure the quality of a simplification in a meaningful way.
At a higher level, the individual task, the semantics of the
data and the context are factors that determine whether a
specific layout is useful or not. These are difficult to measure
and isolate, and, to the knowledge of the authors, there has
not been a convincing study that helps reveal these issues.
On the other hand, from an algorithmic point of view, one
can study simplification algorithms in terms of their
performance to preserve structural properties. In previous
simplification approaches, the main goal is to preserve
clusters, but evaluation is performed mostly as a qualitative
assessment. Here, we performed a systematic evaluation and
analyzed the relationship between the network statistics
before and after simplification. In particular, we were
interested in the degree to which centrality is preserved
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Fig. 6. Comparison of edge simplification methods for the influence data set [25]. Size and opacity denote the centrality of a node. We compare
several edge weighting strategies: uniform, edge betweenness, betweenness sensitivity and eigenvector sensitivity. The latter is the one that
preserves node centralities the most. (a) Unweighted, (b) Edge betweenness, and (c) Eigenvector sensitivity.



after simplification. We argue that a good network simpli-
fication should retain the centrality distribution of the original
graph. This property is important to avoid misleading
visualizations. Node link diagrams often convey the notion
that, if a node is connected to many other nodes, it is
regarded as important. When the network is described as a
hierarchy, it is, therefore, expected to see important nodes at
the higher levels. We studied the impact of simplification on
the centrality metric for a number of data sets. Fig. 7
summarizes the results for seven networks and three
weighting schemes for simplification: eigenvector sensitiv-
ity, uniform weighting and edge betweenness. Each graph
plots the original centrality of each node in the x-axis versus
the new centrality in the simplified network (y-axis). A
centrality-preserving simplification should result in a dis-
tribution of points near the diagonal. Notice how eigenvector
sensitivities consistently result in a better preservation of
centrality than the other two schemes. For example, note that
the few important nodes remain important for the most part
(points in the upper right corner of plots). In addition, we
gain insight about the nature of the network by looking at
these plots. We can identify four types, Fig. 7a, Fig. 7b,
Figs. 7c, 7d, 7e, and 7f, and Fig. 7g. The first one corresponds
to a proximity network, which behaves different to social
networks in that there is no preferential attachment. Every-
one has roughly the same probability of being in proximity to
others. The second is a synthetic data set. The third group
corresponds to real social networks from online dynamics or
cocitation patterns. Last, Fig. 7g is a protein network, which
appears more consistent across the different metrics.

4.3 Search and Explore

Centrality derivatives are also useful for bottom-up visua-
lization approaches, where we begin with a given node,
possibly as a result of a search, and then expand the context
and navigate around the network to discover important
relationships of that node. This approach has been shown to
be effective when exploring large graphs [45]. An example is

shown in Fig. 8, for the core network of the del.icio.us data

set. To support effective exploration of the network,

centrality derivatives can be used to visualize the magnitude

(saturation) and sign (hue, red for negative and blue for

positive) of the influence of a given node. On top, we show

the distribution of sensitivity to a selected node (center of
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Fig. 7. Measuring centrality preservation of simplification strategies for a number of networks. Top: eigenvector sensitivity. Middle: Edge
betweenness. Bottom: Uniform. The eigenvector sensitivities consistently preserve the centralities of important nodes (closer to diagonal).

Fig. 8. Sensitivity-guided search and exploration of the del.icio.us
network. (a) A large group in the network appears as a connected
cluster. (a1-3) Encoding sensitivity as color (blue for positive, red for
negative sensitivity) helps the user recognize three distinct clusters
intertwined together. (b) Sensitivity-guided navigation. (b1) After
selecting a node (center of blue cluster), we see a salient node (circled)
which has a strong sensitivity even when not directly connected to the
selected node. This prompts the user to navigate further in the network
centering at that node (b2), to discover that the node connects to an
important cluster.



leftmost cluster highlighted in blue). All other nodes are
color-coded based on the sensitivity to the selected node. We
see two salient nodes in dark blue, which indicate a high
positive sensitivity, even though they are not directly
connected to the selected node. This prompts the user to
follow the links of these nodes (circled), and we observe that
the node is connected to the center of a cluster, therefore,
acting as a critical bridge between the two clusters. At the
bottom, sensitivity-guided navigation helps us visualize
different clusters which are otherwise obscured by the
layout. After selecting one of the cluster centers, we see that
the other (possible) cluster centers exhibit a large negative
sensitivity (since they are “competitors” for importance).
Selecting one of these nodes highlights its local structure
(seen as blue nodes) and also highlights the other two cluster
centers in red. Without this interaction, the boundaries
between these intertwined clusters are difficult to define. As
suggested by this example, one can define a heuristic for
navigating large graphs, which dictates that one should
follow the nodes with highest sensitivity, either positive or
negative, in order to quickly traverse full regions without
getting stuck in local structures.

5 EXAMPLES

Here we illustrate how we use centralities sensitivities to
improve the insight gained about three social networks.

5.1 MIT Reality Data Set

The MIT Reality data set collects information about one
hundred subjects from the MIT Media Lab and the School of
Management, using a series of communication devices,
powered with Bluetooth chips, throughout a period of about
two years. The data set contains several ways in which a
social network can be extracted, such as call and texting logs,
as well as proximity data. Here, we focus on the proximity
data. In this part of the data set, a link is created between two
actors if they were in close proximity to each other for a
period of time. One of the key questions that the MIT Reality
group wants to answer with the compilation and analysis of
this data set is whether the topology of the network can be
inferred from the proximity data alone, since it provides
information that may not be captured by tracking calls.

Indeed, when we plot the network using a force-directed
layout, we get the inevitable hairball. This is not surprising,
as most nodes are in close proximity to each other for some
period of time, and the vast amount of links forces the
nodes to clump together. This is depicted in Fig. 9a. Color
coding denotes the position held by the person, a simple
identifier that helps find clusters. Along this dimension, we
clearly see a big group in blue, corresponding of students of
the Sloan School of Management, and various groups in
green, corresponding to first year, graduate and senior
students, as well as faculty and researchers from the Media
Lab. Unidentified actors are represented in gray. Although
we already know there is a clear separation of roles (Sloan
versus Media Lab), the goal of the analysis and the
collection of the data is to find out if this can be extracted
by structural properties alone. Evidently, it is difficult to
observe such separation visually without the semantic
clues. We performed a centrality analysis, and found that
the two main clusters could be characterized by the sign
and magnitude of their sensitivities. Actors within each
group had positive influence to each other, while the
sensitivity with respect to actors in the other group was
mostly negative. Fig. 9b shows the result after laying out the
graph considering only those edges that represent a positive
sensitivity. Certain layout algorithms, such as those based
on LinLog energy models, often extract clusters better [41].
In this example, a LinLog layout results in an equivalent
separation to that in Fig. 9b, validating the capability of
sensitivities to retrieve clusters.

We explored the data set further for those links with
larger sensitivity. If we “weaken” the edges with low
sensitivity, a graph layout algorithm starts revealing a
hidden structure. In Fig. 9c, we see that the two clusters
behave differently. The Sloan cluster remains tightly
connected while the Media Lab cluster begins to separate
into three or four groups, one of them consisting pre-
dominantly of first year students. This strategy can be used
to determine how tightly connected is a visible cluster in a
network and provides a simple, yet robust, methodology
for social network exploration.

5.1.1 Reasoning about Uncertainty

We expanded our analysis of this network to understand
more how centrality is distributed. First, we observed that
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Fig. 9. Exploration of MIT Reality Data set (a) Force-directed layouts do not convey groups, except via semantic attributes (blue for Sloan members,
green for MediaLab members) (b) Considering only positive sensitivities, we see a better separation between the two groups. (c) This becomes clear
when filtering edges based on sensitivity magnitude. The Sloan group persists, while the MediaLab splits into a small number of subclusters.



several centrality metrics provide different, often contra-
dicting results. This is not at all surprising, since centrality
metrics are, in general, defined differently. A node with a
high degree may have low betweenness if no shortest paths
go through it. To this end, we study the aggregate effect of
sensitivities in the centrality of each node. This can be
approached from the perspective of uncertainty analysis. As
pointed out by Wasserman [47], social network representa-
tions may not be an accurate depiction of the underlying
social structure. Moreover, biological networks often
include an inherent measurement error that cannot guar-
antee complete accuracy. Therefore, every edge between
two nodes carries an inherent uncertainty that is propa-
gated through network operations, such as clustering,
filtering and, naturally, and centralities. Let us define the
uncertainty of a node vi as the variance �i of its
corresponding variable ti. We can think of this uncertainty
as the inverse probability of increasing the degree of a node
by one degree (i.e., adding or removing a node). The
uncertainty of the centrality of a node �CðtiÞ is a linear
combination of the uncertainties of these variables, using
the law of propagation of uncertainties:

�2
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where �2
i is the variance in the degree of a node and COVij

is the covariance of the degrees of nodes i and j. If we
simplify the uncertainty modeling to describe each node as
an independent variable, the resulting uncertainty is just the
linear combination of the variances of each node.

Fig. 10 shows an uncertainty analysis of the MIT
proximity data set for three centralities: betweenness,

eigenvector and Markov centralities. On top, we plot the
distribution of centrality for all nodes (in descending order)
as a uncertainty area curve, where the area represents
variance. We first notice that Markov centrality is more
robust than the other two metrics, since it looks at the long
term stability of random walks, more sensitive to variation
than betweenness, which is prone to short-circuit errors.
This confirms the observation by Carpenter et al. [11] about
betweenness. Fig. 10-bottom shows a detailed view of
uncertainty. Color indicates centrality, while transparency
indicates uncertainty. More uncertain nodes are more
transparent. We notice that the sloan cluster on the left
has a consistent behavior of relatively unimportant nodes
with high uncertainty. We also identify certain nodes with
low uncertainty in the MediaLab cluster (right). Although
not the most important, they are the most reliable. These
uncertainty views are useful to predict the expected
behavior of nodes in a dynamic network. As nodes
disconnect and reconnect from their neighbors, the cen-
trality of certain nodes will undoubtedly change. With these
plots, we can predict where these changes are most likely to
occur. For example, according to the eigenvector centrality,
a change in the degree of nodes is likely to change the
centrality of the nodes in the bottom part of the plot (which
happen to be members of the “Sloan” group), while the
central nodes in the rightmost cluster (“Media Lab”) are
more likely to remain constant. We see a few exceptions in
the Media Lab cluster, where the variance of the eigenvector
centrality is high. Further inspection shows a different role
of these people (they are not students or “new grads”),
which may hint at the source of this disparity.

5.2 Genealogy of Influence

The genealogy of influence is a network compiled by Mike
Love [25], that describes the intellectual influence among
the works of great thinkers in History including renowned
artists, writers, mathematicians, philosophers and scientists.
Although the network was built synthetically after studying
what are deemed to be the most influential works for each
person, the network has traits of a social network. This is
manifested by the typical hairball in Fig. 11a. Identifying
meaningful clusters is practically impossible. We have
applied our approach to look at meaningful relationships
in terms of sensitivity. We then applied the filtering
approach based on the minimum spanning tree of the
eigenvector centrality. The resulting visualization is shown
in Fig. 11b, and we begin to see emergent clusters. To retain
the original edge connectivity, we use a hierarchical edge
bundling strategy to group links together and avoid
excessive clutter [22]. The bundles are routed through the
hierarchy computed in the minimum spanning tree. We
highlight two clusters. One of them, in orange, is a cluster of
Russell and highlights the well-known connections with
mathematicians and logicians such as Godel, Quine and
Whitehead. We even see the connection to Vico, a philoso-
pher from the seventeen hundreds that inspired mathema-
ticians such as Russell. This connection is hard to identify
from the original visualization (Fig. 11d). Although this
cluster can be found in close proximity in an unaugmented
visualization, it would not stand out visually as a single
coherent group. When we consider the cluster highlighted
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Fig. 10. Uncertainty visualization for centrality. Left: overview of
centrality metrics and uncertainty as area error for Betweenness,
eigenvector, and Markov centralities. Right: Detail uncertainty view,
where each node shows the scores for the three centralities, mapped as
size and color. Transparency encodes uncertainty. We see a consistent
trend of high-uncertainty nodes in the cluster on the left, with a mix of
low- and high-uncertainty nodes in the cluster on the right.



in magenta (Husserl group), these connections are even

more difficult to identify together without filtering. The

overwhelming amount of nodes connected to the most

central ones creates a hairball where the locations of nodes

become increasingly arbitrary.

5.3 Astrophysics Collaboration Network

This data set contains the collaboration network of scientists

publishing abstracts on the astrophysics e-print archive

(arXiv) between 1995 and 1999 [39]. A link between authors

is created if they are coauthors of an abstract. Fig. 12 shows

a sensitivity-guided visualization of the network. We follow

the general strategy of simplifying the network in terms of

sensitivity. First, we obtained the minimum spanning tree

of the network using the derivatives of eigenvector

centrality as weights. The resulting tree is visualized using

a radial layout, where nodes higher in the MST hierarchy

are positioned closer to the center of a circle, while leaf

nodes are farther from the center. After this, we represent

the original edges from the graph using a hierarchical

bundling technique similar to that of Holten et al. [22]. The

result is shown in Fig. 12a, with edges representing those

links with higher positive sensitivity. We see the emergence

of interconnected clusters. In Fig. 12b, we visualize the links

with high negative sensitivity, which helps us see the core

network, formed by highly central nodes. In traditional

layouts, without considering the effects of sensitivity, these

nodes are inevitably collapsed together at the center of the

layout, as seen in Fig. 12c for the linlog (top) and force-

directed layouts (bottom). We also see that the more

evident clusters are well represented in all three types of

layouts (clusters in purple and magenta), while other

groups of nodes, for example the co-authorship networks

of Filippenko (orange) and Stetson (yellow), are not evident
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Fig. 12. Visual reasoning for the astrophysics collaboration network. (a) Sensitivity-guided radial layout showing only positive sensitivities helps us
identify clusters and their connections. The use of hierarchical edge bundling helps us make sense of the multitude of connections. (b) The same
layout showing the links with negative sensitivity highlights the core network formed by the nodes with higher coauthorship. (c) Layouts without a
sensitivity augmentation often produce visualizations where clusters cannot be easily identified, as seen for the orange and yellow groups (top:
Linlog layout bottom: mass-spring layout).

Fig. 11. Visualizing the genealogy of influence network. (a) Traditional visualization prevents users from identifying any meaningful group. (b) A
simplified network using eigenvector centralities allows us to see individual clusters. (c) Close-up views of two highlighted clusters. (d) The same
clusters, in an unfiltered visualization, are hard to identify.



at all in force-directed layouts, and not clearly separable in
linlog layouts. In a sensitivity-guided visualization, these
clusters appear as separate groups. By following the
bundled edges, we can still make sense of the connectivity
of these two clusters with other groups. Note that
sensitivity-guided strategies can be applied to other layouts
and they are not intended as a replacement of a good
layout. However, these strategies suggest to us that we
should exploit the implicit hierarchy given by MST and
the centrality ranking of nodes. Layouts that exploit these
properties, such as the radial layout, are likely to produce
better diagrams. Although simplification is not new here,
the use of sensitivity provides a robust mechanism to obtain
the critical links in terms of the dynamics of the network.
Preservation of centrality is ideal to identify the represen-
tative actors in a cluster and it turns out to be useful when
using visual representations intended for hierarchical
structures, such as radial layouts and edge bundling.

6 DISCUSSION

We have shown a number of applications of the centrality
derivatives for the visualization of social networks. The
networks used in this paper are summarized in Table 1.

Centrality operations, however, are often costly. For
example, betweenness centrality can be computed in
OðkV kkEk þ kV k2Þ time for unweighted graphs, or, when
using the Floyd-Warshall algorithm, in time OðkV k3Þ [7].
Approximating the derivative using finite differences im-
plies increasing the cost by a factor proportional to OðkV kÞ.
Brandes presented a fast approximation of betweenness
centrality [6] that runs inOðkV kkEkÞ for unweighted graphs.
Using such an implementation, the evaluation of derivatives
using finite difference approximations is more feasible. For
the case of eigenvector centralities, the costlier operation is
the solution to the eigenvector problem. A number of
acceleration techniques have been proposed, as surveyed
by Langville and Meyer [36]. The derivatives only imply an
additional matrix multiplication, or equivalently, solving the
linear system of equations in (9). Table 1 shows a comparison
of timing among different techniques for computing
sensitivity, including betweenness derivatives using finite
differences and eigenvector sensitivities using analytic
derivatives. We see that for moderate graphs, numerical
approximation becomes impractical and analytic derivatives
can be computed an order of magnitude faster. As a way to

compare the complexity of eigenvector sensitivities, we also
show the time complexity of edge betweenness using
Brandes’ fast algorithm [6]. For sparse graphs, this fast
implementation proves much faster than computing sensi-
tivities. However, edge betweenness does not account for
indirect influences between nodes, for which a complete
graph is required, e.g., one computing all pairwise distances.
We see that as graphs become complete, edge betweenness
and the eigenvector analytic derivative can be computed at
the same cost. Nonetheless, analytic derivation is highly
parallelizable. A simple multithreaded version of the
algorithms proves faster than other alternatives for dense
graphs. Markov centralities are probably the most expensive,
which are OðkV k3Þ, due to the computation of an inverse
matrix during the estimation of the fundamental matrix. In
this sense, the use of analytical derivatives become advanta-
geous, since they can be computed as a constant sequence of
matrix products. In contrast, a numerical approximation
using central differences would require timeOðkV k4Þ, which
is impractical even for relatively small networks. Harrison
and Knottenbelt describe a method for approximating the
first passage time and its derivatives using a novel Laplace
transform [20]. We believe methods like this would greatly
improve the scalability of our approach. Given the complex-
ity of social networks, neither the analytic expressions for
centrality derivatives nor their linear approximations can be
applied directly to large networks. Although they are useful
for local analysis of the social network (considering subnet-
works at a time), more effective means are necessary. One
may perform a similar analysis as the one presented in this
paper for known approximations of the centrality measures
or apply a hierarchical solution that works locally in
subnetworks at a time and progressively expands to larger
portions of the network.

7 SUMMARY AND FUTURE WORK

Several researchers have stressed the importance of coupling
statistics and visualization to improve the exploration of
large networks. This has been capitalized upon by recent
attempts to produce effective visualizations based on
statistical measures such as centrality. These efforts resulted
in insightful color and shape encodings of nodes in social
networks, radial layouts and graph simplifications. How-
ever, none has considered the variational aspects of these
centrality metrics, essential for understanding the process by
which a given node becomes important. In this paper, we
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TABLE 1
Network Properties for the Data Sets used in This Paper and Comparative Timing for Several Techniques (Seconds)



presented a general methodology to extract the sensitivity of
centrality and apply it to typical visualizations of social
networks. The quantification of sensitivity is addressed in
this paper as an analytical derivative, following our varia-
tional description of the social network. We show that
multiple tasks in visual reasoning can be supported with this
new type of information. Overviews show friendship and
enmity relationships, useful for characterizing the coopera-
tion or competition within networks. Filtering can be
supported in a more effective manner, as sensitivity provides
a robust mechanism to simplify the network, and bottom-up
approaches, such as search and expand on demand, can be
improved by representing the relative importance of actors
with respect to a given focal node.

While we have shown important applications of this
work for social and other scale-free networks, our analysis
can be applied to network analysis in general. Since the
notion of sensitivity is based on the immediate change in
the degree of a node, we believe our approach can provide
insight on the behavior of dynamic graphs as well. Just as
the addition or removal of edges may change the centrality
of a node, sensitivity coefficients provide hints about how
drastic are those changes and let users find the most reliable
nodes or communication channels. Our approach is not
restricted to the particular metrics used throughout this
paper. We focused on common centrality metrics, which
span a vast selection of algorithms, based on shortest-paths,
feedback and Markov processes, but our general notion of
sensitivity applies to other centrality metrics, such as
closeness centrality and radiality.
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[34] D. Koschützki, K.A. Lehmann, D. Tenfelde-Podehl, and O.
Zlotowski, “Advanced Centrality Concepts,” Network Analysis:
Methodological Foundations, U. Brandes and T. Erlebach, eds.,
pp. 83-104, Springer, 2005.
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