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Abstract—This paper presents a novel methodology for social
network discovery based on the sensitivity coefficients of impor-
tance metrics, namely the Markov centrality of a node, a metric
based on random walks. Analogous to node importance, which
ranks the important nodes in a social network, the sensitivity
analysis of this metric provides a ranking of the relationships
between nodes. The sensitivity parameter of the importance
of a node with respect to another measures the direct or
indirect impact of a node. We show that these relationships help
discover hidden links between nodes and highlight meaningful
links between seemingly disparate sub-networks in a social
structure. We introduce the notion of implicit links, which
represent an indirect relationship between nodes not connected
by edges, which represent hidden connections in complex
networks. We demonstrate our methodology on two social
network data sets and use sensitivity-guided visualizations to
highlight our findings. Our results show that this analytic tool,
when coupled with visualization, is an effective mechanism for
discovering social networks.

Keywords-Social networks, Sensitivity analysis, Markov cen-
trality, Network visualization.

I. INTRODUCTION

Social networks have emerged as one of the most popular

applications on the Web, as capitalized by the popularity

of sites such as Facebook and Flicker. Their analysis and

visualization, however, has only become more complex

over time. When coupled with node-link visualizations, the

analysis of social networks is a powerful technique for

understanding complex social structures. However, node-link

diagrams, often derived from extracted data such as calls and

common interests, do not always represent the underlying

social structure that exists in the real world. Even when two

nodes do not appear to be linked in the visualization, they

may carry influence on each other in the real social network.

In an attempt to rank nodes in a social network beyond

the information that direct links offer, people have applied

the concept of importance or centrality. Although some have

proposed simple metrics for centrality based on degree and

betweenness, global measures (e.g., PageRank and Markov

centrality) prove to be robust estimators of importance in a

social network. However, there is a question that arises when

considering importance: how much impact has any given

node on the importance of another? Answering this question,

which we dubbed importance sensitivity, is the focus of

this paper. We present a method for deriving the sensitivity

parameters of a social network based on Markov impor-

tance [1]. Analogous to Markov importance, which ranks

the nodes in a social network, the sensitivity parameters rank

each pair of nodes. In this way, we can extract and visualize

the most important node-to-node relationships that may or

may not be represented explicitly in the social network

graph. In particular, we are interested in extracting implicit

links between nodes, which are links between two nodes

that are not represented as an edge, but that exhibit a large

sensitivity. Implicit links may indicate indirect relationships

between centric nodes in a social network in terms of

the sub-networks they share. In other cases, implicit links

show bridging nodes between seemingly disconnected sub-

networks. Through a couple of examples, we show that

these newly found links are important for social network

discovery.

To validate our approach, we applied the methodology

to two data sets. One is a synthetic social network created

for the VAST challenge 2008 [2], which contains a hidden

social network that must be found through analytic and

visual means. We show that our approach gives the answer

by discovering the hidden relationships among the actors

of interest. The second data set is the MIT reality network

[3], consisting of communication, proximity and activity

information from 100 subjects at MIT. Our approach sim-

plifies the analysis of the network by discovering the most

important links between seemingly disparate sub-networks.

II. RELATED WORK

The analysis of social networks has a long and exhaus-

tive treatment in the literature, from the statistical [4], [5]

and visual perspectives [6], with wide applications in the

biological sciences, sociology and information systems [7].

A vast number of statistical properties for measuring

social networks has been proposed, including clustering,

degree distributions and centrality [4]. Centrality determines

the relative importance of a node in a network. Some of these

metrics are degree, betweenness and closeness centrality [8].

A more sophisticated approach is eigenvector centrality, used

widely in Web ranking, as described in the seminal papers

detailing the PageRank [9] and HITS algorithms [10]. White

and Smyth describe an alternative approach, called Markov

centrality, which considers a social network as a Markov

chain [1], based on the mean first-passage time metric



[11]. These methods are inherently global and help extract

important nodes of an otherwise vast network. In this paper

we derive a sensitivity analysis of the Markov centrality

metric. Similar to node centrality, sensitivity coefficients

provide an idea of the importance of links in a network.

Unlike the node-centered metrics, these coefficients rank the

node-to-node connections, even when no explicit link exists

between two nodes.

Other alternatives include link prediction for time-varying

networks [12]. Sensitivity coefficients answer to the hypo-

thetical question of how would centrality change if there

is a small change in a node’s set of connections. Given a

time-varying network, this could be derived via statistical

prediction. In the absence of temporal networks, an analytic

derivation (or model fitting) is necessary. In this paper,

we opt to derive an analytic expression to compute the

sensitivity parameters. In the context of protein networks,

Goldberg and Roth use mutual clustering to rank the links

between nodes [13]. Our approach, although focused on

centrality, could be applied to other similar metrics.

A recent effort for analyzing social networks uses visual

metaphors [14], [15]. Dwyer et al. compare the different

centrality measures using visual means [16]. van Ham and

Wattenberg, on the other hand, exploit centrality to guide the

visualization of small world graphs [17]. In this paper, we

guide the visualization of node links using the sensitivity co-

efficients. We show that, depending on these values, we can

tag derived implicit links between otherwise disconnected

nodes or highlight existing connections.

III. METHODOLOGY

Our approach to finding hidden relationships consists of

two stages. First, an analysis stage computes the Markov

importance of each node and their sensitivity parameters

with respect to the degree of each node. Second, we encode

visually each node-pair depending on the magnitude of the

sensitivity parameter and whether there exists an edge for

that pair.

A. Markov Importance

As described in [1], the importance of a node in a social

network graph can be measured as the mean first-passage

time in the social network graph when understood as a

Markov chain. The mean first passage time can be defined

as the expected number of nodes a message starting from a

given node s encounters until it reaches another node t for

the first time [18]. White and Smyth found that this mean

first passage can be computed as a matrix:

M = (I − Z + EZdg)D (1)

where I is the identity matrix, E is a matrix containing all

ones, D is a diagonal matrix where each element in the

diagonal is the reciprocal of the stationary distribution π(v)

of a node v, and Z is the so called fundamental matrix,

given by:

Z = (I − A − eπT)−1 (2)

where A is the network adjacency matrix and π is a column

vector of the stationary probabilities. The importance of a

node v is the inverse of the average of the corresponding

column in M :

I(v) =
n

∑
s∈V msv

(3)

B. Sensitivity Parameters

To find hidden relationships between nodes, we look at the

sensitivity parameters of the importance metric of one node

with respect to the degree of the other. In this way, we can

measure how much would the importance change if we were

to add or remove an edge to another node. Important hidden

relationships arise when the sensitivity parameters are larger

than a given threshold. According to sensitivity analysis

methods, one can describe the sensitivity of a given function

with respect to another variable as its partial derivative:

sij =
∂Ii

∂Λj

(4)

where Ii is the importance of node i and Λj is the degree

of node j.

The sensitivity coefficients of the entire matrix M with

respect to a node i can be computed as :

∂M

∂Λi

= (I − Z + EZdg)
∂D

∂Λi

+ (−
∂Z

∂Λi

+ E
∂Zdg

∂Λi

)D (5)

The derivative of the fundamental matrix is computed as:

∂Z

∂Λi

= −Z(
∂Q

∂Λi

− e
∂π

∂Λi

T

)Z (6)

where ∂Q
∂Λi

= − ∂A
∂Λi

is the derivative of the probability

matrix Q = I −A, computed via finite differences, and ∂π
∂Λi

is the partial derivative of the stationary probabilities with

respect to the degree of node i. Since Qπ = 0, differentiating

at both sides yields

Q
∂π

∂Λi

+
∂Q

∂Λi

π = 0 (7)

from which we can obtain the derivative of Q, as described

by Haverkort [19]:

∂π

∂Λi

= −Q−1
∂Q

∂Λi

π (8)

The derivatives of A can be approximated via finite

differences: ∂A/∂Λi ≈ A′

i − Ai, where A′

i is the matrix

of probabilities that results when adding 1 to the degree of

node i (Both A′ and A are normalized to represent a matrix

of probabilities).

The matrix of coefficients, formed by the partial deriva-

tives of Mi with respect to the degree of each node,



(a) VAST Challenge (b) MIT Call data (c) MIT Proximity data

Figure 1. Data sets used for validation. (a) VAST Challenge data set consisting of 400 nodes. The highly connected network makes visual-based analysis
difficult (b) MIT communication data consisting of 100 nodes. We can see two big disconnected sub-networks. (c) MIT proximity data for one week. In
terms of proximity, some of the nodes in (b) now appear to be linked together, but the high density of links destroys the readability of the network.

represents a ranking of the edges in terms of impact of

changes in a node to the importance of another. The most

important edges are those where the absolute value of the

sensitivity coefficient is largest. Note that the derivatives can

also be negative, meaning a negative impact of a node into

another.

C. Visualization

Once we have found the sensitivity parameters, we can

guide our visualization to help us discover hidden relation-

ships. We can distinguish three types of edges. Let the user

define a sensitivity threshold τ . Let us denote σij as the

sensitivity of a node i with respect to another node j.

• When σij ≥ τ and ij ∈ E, where E is the set of

edges in the social network, the sensitivity indicates an

important connection between nodes that are explicitly

linked. These are shown in the figures as thick blue

lines.

• When σij ≥ τ and ij /∈ E, the sensitivity indicates

an important connection that is implicitly represented

in the network. These are hidden relationships which

may provide additional insight into the social structure.

These are shown in the figures as dashed lines.

• When σij < τ , the sensitivity does not indicate an

important connection and it is not shown to avoid

clutter.

IV. RESULTS

To validate our results, we present two case studies using

the VAST challenge social network data set and the MIT

Reality data set. The objective was to see if any hidden

relationships could be found with the sensitivity analysis.

A. VAST Challenge

The VAST Challenge social network data set consists of

communication logs among 400 unique cell phones during

a span of a 10 day period in June 2006. The social network

is a synthetic data set detailing the communication patterns

of a fictitious organization centered around a person named

Ferdinando Catalano, associated in the data set to the device

with identifier 200. The purpose of the challenge task was

to characterize his social network.

The entire social structure is dense, and each node shares

at least two connections with any other node. This makes

visual analysis and discovery a tedious task. See for example

the node-link diagram in Figure 1(a). The clutter makes

the structure illegible. As an initial step, we computed

the Markov importance on the network and threshold it

to show us the highest ranked nodes, leading to the visu-

alization in Figure 2(a). Now we can see the immediate

social network around identifier 200, consisting of nodes

1, 2, 3 and 5. According to this metric, another sub-network

appears (nodes 300, 306, 309, 360 and 397) connected to the

previous sub-network via node 0. To further investigate the

relationship between these two sub-networks, we turn to

sensitivity analysis. Our approach generates a ranking of the

edges as depicted in Figure 2(a). Dashed lines show a strong

connection between nodes that were not explicitly linked via

calls. This shows a mutual impact between the importance

of the two connected nodes. For instance, a change in node

1 affects the importance of node 309. A similar relationship

was discovered for the node pairs 5 − 306, 2 − 397 and

3 − 360. In addition, the blue thick lines highlight existing

links that are also important. In this case, we noticed a

symmetry between the groups formed by 2 − 3 − 5 − 200



(a) (a) (b) (b)

Figure 2. (a) Discovered links in the core network of the VAST challenge. The dashed lines show a strong connection between certain pairs of nodes that
are not otherwise explicitly connected. Note also the mirroring of the blue links between the groups 200,3,2,5 and 300,397,360,306. (b) Validation of the
VAST Challenge. Further inspection of the data set shows that certain pairs of nodes (e.g., 1 and 309) share a sub-network. This situation was identified
as the fact that the same people use two different cell phones to communicate. The pairing of cell phones per person, inferred from the nodes at the center
of the common sub-networks, are precisely the one detected in Fig.2(a) (1-309, 5-306, 2-397 and 3-360)

and 360 − 397 − 306 − 300.

To validate these findings, we plotted the sub-network

formed by the two-degrees of separation from identifiers 200
and 300. The result, as shown in Figure 2(b), shows the

overall social network sought after in the challenge. Notice

that the four pairings that we found with our approach appear

as the loci of four sub-networks. For example, node 5 and

306 share most of the connections among themselves. This

suggests that the pairings correspond to device identifiers

belonging to the same people. With our approach, these links

become evident as depicted in Figure 2(a). Our results are

further validated with respect to the answers obtained by

other challenge participants [20].

This case study shows a good example of the uses of

our approach for social network discovery. Node importance

metrics by themselves cannot fully explain the relationships

between two sub-networks of interest. In this case, Markov

centrality highlights the most central nodes in the social

structure, but cannot convey the implicit relationships that

arise from each of their own sub-networks. Looking at the

sensitivity coefficients, we are able to extract that informa-

tion.

B. MIT Reality

The MIT reality data set keeps track of 100 subjects

at MIT over the course of the 2004-2005 academic year,

containing over 350, 000 hours of human activity. Although

seemingly small in terms of communication (64 users, as

shown in Figure 1(b)), the data set is rich with information

about proximity, infrastructure and activity logs. One of the

key questions is to be able to characterize the social structure

and find out if the topology can be inferred from proximity

data alone.

Figure 1(b) shows the node-link diagram for the com-

munication network. Two different networks appear in the

graph, corresponding to people in the MIT Media Lab

(bottom right) and the MIT Sloan business school (top left),

respectively. Looking at calls alone, we see that there is no

apparent connection between these two sub-networks. When

looking at proximity data, as shown in Figure 1(c), we see

a much more connected graph, given that the two buildings

are adjacent. Even when considering a single week, the

network is cluttered and difficult to read. The purpose of our

study was to discover important links between the two sub-

networks based on proximity alone. We used sensitivity on

the proximity data to rank the connections between nodes in

the call network. The call network provides us a more com-

pact view of the social structure, while proximity provides an

aggregated connection between disjoint sub-networks. The

result is depicted in Figure 3(a). When considering only the

highest ranked links, we see a majority of connections within

each of the sub-networks. This expected behavior confirms

the mirroring of the calls in the proximity data set. As an



(a) (b)

Figure 3. (a) Result of highlighting important edges on the MIT reality data set. Although a number of links are highlighted, we immediately discover the
connection between the two sub-networks, as shown between nodes 75 and 86. They indicate a commonality between the two networks that is difficult to
see from the proximity data. (b) Combining centrality-based visualization with sensitivity parameters. By thresholding the network with respect to centrality,
we get a more compact representation of the social structure. The sensitivity parameters highlight those relationships that are more important.

interesting result, we see a dashed line between nodes 75
and 86 that connects the two sub-networks. Node 75 can

be identified as the only graduate student in the Sloan sub-

network. Their activity patterns seem to overlap with those

of other students in the Media Lab sub-network. However,

we cannot tell with certainty that these two nodes are in close

proximity of each other, but rather that they have a strong

impact on the importance of each other. When considering

the social structure of two adjacent but different buildings,

it is likely that the students will provide the bridge between

the two. A more compact diagram, obtained by showing

only the nodes with highest ranking, is depicted in Figure

3(b). The simplified representation also shows the tight

connectivity in the Sloan sub-network (everyone impacts

almost each other), reflected in the number of implicit links

(dashed lines), compared to the Media Lab sub-network.

Sensitivity coefficients are therefore a metric for analyzing

the asymmetry of social networks.

We also noticed strong links between connected nodes in

the call graph. These are depicted as thick blue lines. For

example, we notice a clique formed by students 29, 39, 57
and 86. The sensitivity analysis therefore provides a starting

point for further discovery.

V. DISCUSSION

Our approach provides important information about hid-

den relationships within social networks. Just like impor-

tance metrics rank nodes, our method ranks the links be-

tween nodes, even those that are not explicitly represented.

In this paper, we focused on the visualization of implicit

links (dashed lines) as a means for social network discovery.

The emphasis on important explicit links (thick blue lines)

steered our attention towards cliques or sub-networks of

interest. There are many aspects of these sensitivity param-

eters that can be further explored. Unlike the importance

function, sensitivity parameters can be negative. A change

of a node can have a detrimental impact on the importance of

another, say, by becoming more important and out-ranking

the other node. In our examples, we have only considered the

positive impact between two nodes as a measure of relative

importance. However, some applications may benefit from

the signed nature of the sensitivity parameters. For example,

the distribution of the sign of the sensitivity parameters may

give hints about the asymmetry of the network. In addition,

sensitivity metrics can lead to an uncertainty analysis of a so-

cial network. Although social networks are commonly built

on actual communication, proximity or activity patterns, they

rely on assumptions about social interaction that may not be

captured in the form of digital data. Therefore, the analysis

of the mutual impact of any two given nodes provides a

tool to quantify the uncertainty of network metrics, such as

centrality.

One of the limitations of our approach is the reliance on a

global algorithm to compute importance and its derivatives.

Markov centrality requires a computational cost of O||V ||3),
where ||V || is the number of nodes in the network. This

makes this approach unfeasible for extreme scale social



networks. As an alternative, one can consider the sensitivity

coefficients among clusters and groups instead of individual

nodes or apply the model locally for partial analysis.

VI. CONCLUSION

We have presented a novel methodology for discovering

relationships in social network graphs. Based on the sen-

sitivity coefficients of the Markov importance of a node,

our approach identifies those edges with the largest mutual

impact in importance. This impact can indicate a number

of things in the social network, such as presence of hidden

connections between seemingly separate sub networks. One

of the applications we explored was the guidance of visual-

ization to aid in discovery. However, our approach can be ex-

tended as a means to filter out unimportant parts of the data

and focus on connections that may not be extracted using

traditional filtering methods. Furthermore, as demonstrated

in the MIT reality data set, we can use sensitivity coefficients

from one data set to complement the view of another, such

as proximity, communication or activity. The exploration of

sensitivity parameters of commonly used analytical metrics

leads to novel ways of looking at social network data, and

offers insight for both local (e.g., the relationship between

two particular nodes) and global inquiries (e.g., the overall

social structure). Coupled with visualization, these analytic

tools help understand the complex relationships between

actors in a social network.
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