
Phoenix++: Modular MapReduce for
Shared-Memory Systems

Justin Talbot, Richard M. Yoo, and Christos Kozyrakis
Computer Systems Laboratory

Stanford University
{jtalbot, rmyoo, kozyraki}@stanford.edu

ABSTRACT
This paper describes our rewrite of Phoenix, a MapReduce
framework for shared-memory CMPs and SMPs. Despite
successfully demonstrating the applicability of a MapReduce-
style pipeline to shared-memory machines, Phoenix has a
number of limitations; its uniform intermediate storage of
key-value pairs, inefficient combiner implementation, and
poor task overhead amortization fail to efficiently support
a wide range of MapReduce applications, encouraging users
to manually circumvent the framework. We describe an al-
ternative implementation, Phoenix++, that provides a mod-
ular, flexible pipeline that can be easily adapted by the user
to the characteristics of a particular workload. Compared to
Phoenix, this new approach achieves a 4.7-fold performance
improvement and increased scalability, while allowing users
to write simple, strict MapReduce code.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—concurrent pro-
gramming ; E.2 [Data]: Data Storage Representations

General Terms
Algorithms, Design, Measurement, Performance

Keywords
Shared-Memory MapReduce, Modularity, Performance

1. INTRODUCTION
MapReduce [3] is a functional language-inspired parallel

programing model for large-scale machines. Its simplicity,
coupled with its applicability to practical problems, has led
to adoption on a range of computing platforms [11, 4]. The
Phoenix project [9, 12], in particular, demonstrated that
the MapReduce model could be used on shared-memory ma-
chines, with scalability comparable, in some cases, to hand-
coded PThreads solutions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MapReduce’11, June 8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0700-0/11/06 ...$10.00.

While cluster-based MapReduce performance is limited
primarily by disk and network I/O, shared-memory Map-
Reduce performance, without these bottlenecks, is sensitive
to a wide range of workload-influenced details such as inter-
mediate key-value data layout, memory allocation pressure,
and framework overhead [12].

Despite the wide variation in possible MapReduce work-
load characteristics, Phoenix adopts a static MapReduce
pipeline similar to cluster-based implementations. For ex-
ample, intermediate key-value pairs are always stored in a
fixed-size hash table and combiner execution always occurs
at the end of the map stage. However, these implementa-
tion decisions are inefficient for many types of workloads.
As a result, we have found that users often have to work
around the Phoenix pipeline—managing memory manually,
implementing combiner functionality in the map function,
etc.—to get high performance. Furthermore, the framework
exposes internal task scheduling details, requiring the user
to manage library and scheduling overhead. Phoenix 2 [12],
although significantly improved in terms of scalability and
NUMA-awareness, suffers from similar problems since it is
based on the same Phoenix code.

More recent shared-memory MapReduce implementations
have attempted to address this performance issue by modi-
fying the MapReduce paradigm. The Tiled-MapReduce sys-
tem [1] executes the map and combine tasks in groups to
minimize resource usage and increase locality, resulting in a
maximum reported speedup of about 3.5x over Phoenix 2.
The MATE system [7] uses a heavily revised MapReduce
API that requires the user to write combined map / reduce
functions, producing a 1x-3x speedup over Phoenix.

We take a different approach to enabling high performance
shared-memory MapReduce. Phoenix++ is a complete revi-
sion of the Phoenix framework that achieves speed through
modularity in performance critical sections. It provides a
flexible intermediate key-value storage abstraction that per-
mits workload-tailored implementations and a more effective
combiner implementation that can minimize memory usage,
all the while hiding the task scheduling details in a modular
fashion and maintaining the basic MapReduce model. We
demonstrate that on a 32-core Linux machine, the result
is an average 4.7-fold performance improvement and sub-
stantially improved scalability over Phoenix 2, while greatly
reducing the amount of code that users must write.

In the next section, we characterize MapReduce workloads
along key application dimensions and discuss the implica-
tions on MapReduce library design. Section 3 discusses the
shortcomings of Phoenix design and demonstrates how users



must work around the framework to get good performance.
Then, in Section 4, we describe our system, Phoenix++,
which overcomes these problems with a flexible, modular
pipeline design. In Section 5, we show that this approach
achieves better performance and scalability than Phoenix,
while significantly reducing the amount of code that a user
must write. In Section 6 we position the new implementa-
tion among related work, and Section 7 concludes.

2. WORKLOAD CHARACTERIZATION

Per Task 

Computation

Key 

Distribution

# Values per 

Key

*:*

*:k

1:1

kmeans

string_match

matrix_multiply

pca

linear_regression

histogram

word_count

Cluster MapReduce / 

Phoenix Coverage

Figure 1: Phoenix sample workloads organized by
workload characteristics (see text for description).

To better understand how different workloads impact shared-
memory MapReduce performance, we tried to systemati-
cally characterize the 7 example workloads included in the
Phoenix 2 distribution [12]. After some iteration, we settled
on three dimensions (shown in Figure 1):

1. the map task to intermediate key distribution,
with three possible values,

*:* any map task can emit any key, where the number
of keys is not known before execution,

*:k any map task can emit any of a fixed number of
keys, k, and

1:1 each task outputs a single, unique key.

2. the number of values emitted per key, which typ-
ically scales with the data set size, and

3. the amount of per task computation compared
to the total framework overhead.

While not completely orthogonal, we believe that these di-
mensions capture the important workload characteristics that
impact performance on shared-memory MapReduce. Ta-
ble 1 summarizes the impact of each workload dimension on
key framework design decisions.

The key distribution is the relationship between the set
of map tasks and intermediate keys. For highest perfor-
mance, the runtime must leverage key distribution knowl-
edge to provide efficient key-value storage between the map

and reduce phases. While *:* workloads such as word_
count must use a hash table storage structure, other key
distributions can use more efficient data structures that con-
sume less memory and have lower fixed costs.

The number of emitted values per key typically grows with
the size of the data set used in the workload. Larger data
sets stress the runtime’s capability to efficiently manage in-
memory buffer space. Hence it is preferable to invoke com-
biner functions frequently, but individual combiner call over-
heads can add up.

Finally, per task computation is the ratio between the com-
plexity of the user-provided map or reduce functions and
the overhead of the MapReduce framework, such as time
necessary to dequeue the task or to emit the intermediate
key-value pair. When the per task computation is low, as
in the linear_regression and histogram workloads,
such overhead can dominate.

3. LIMITATIONS OF PHOENIX
Like the cluster-based MapReduce implementations that

preceded it, Phoenix is statically optimized for a particular
class of workloads (shown in gray in Figure 1), featuring
high per task computation and a large, unknown number of
keys. Phoenix’s design decisions are summarized in Table 1.
In the rest of the section, we describe Phoenix’s design in
more detail and demonstrate how users are forced to work
around the Phoenix framework to improve performance.

3.1 Inefficient Key-Value Storage
In a shared-memory MapReduce implementation, main-

taining the intermediate key-value storage is a complicated
task, since containers must provide fast lookup and retrieval
over potentially large dataset, all the while coordinating ac-
cesses across multiple threads.

The approach proposed in Phoenix is to utilize map thread-
specific fixed-width hash tables (i.e., the number of hash
buckets is constant) [12]. The fixed size is necessary to
permit reduce threads to access the hash tables in a cross-
cutting fashion, taking matching key-value pairs from the
same bucket in each hash table, without requiring locking.

However, the fixed-width hash table is not a good fit for
any of the workload key distribution categories we identified;
its fixed-width limits the performance over *:* workloads
with large number of keys, and it is inefficient for other dis-
tributions. Listing 1, for example, shows the map function
of the histogram application, which counts up the number
of times a particular red, green, or blue component value oc-
curs in a large image. As can be seen in lines 5∼7, in order to
avoid the costly overhead of using the fixed-width hash table
of Phoenix, the programmer uses fixed-size arrays instead, to
manually store the component counts before emitting them.
This optimization is possible since the user knows a priori
that the number of possible keys is limited to the 768 pixel
values (i.e., a *:k workload).

3.2 Ineffective Combiner
In standard MapReduce, a user can optionally specify a

combiner function [3], typically associative and commuta-
tive, which is run locally on key-value pairs emitted by the
map function. On clusters of machines, the combiner func-
tion reduces the number of key-value pairs that must be
exchanged between machines. In Phoenix 2, combiner func-
tionality was introduced to lower memory traffic between



Dimension Affects Phoenix Phoenix++

key distribution intermediate key-value storage hash table workload-tailored storage
# values per key combiner implementation combiner run after the map

stage
combiner run for every emitted
key-value pair

per task computation scheduling / library overhead amortized in user code via task
chunking

eliminated by the compiler
through code inlining

Table 1: Workload characteristics and their impact on design decisions. Phoenix and Phoenix++ denote
each implementation’s choices.

1 void hist_map(map_args_t *args) {
2 unsigned char *data = (unsigned char *)

args->data;
3

4 /* Manually buffer intermediate results
*/

5 intptr_t red[256] = {0};
6 intptr_t green[256] = {0};
7 intptr_t blue[256] = {0};
8

9 /* Count occurrences, amounts to manual
combine */

10 for (int i = 0; i < args->length * 3; i
+=3)

11 {
12 red[data[i]]++;
13 green[data[i+1]]++;
14 blue[data[i+2]]++;
15 }
16

17 /* Selectively emit key-value pairs */
18 for (int i = 0; i < 256; i++)
19 {
20 if(red[i] > 0)
21 emit(i, red[i]);
22 if(green[i] > 0)
23 emit(i+256, green[i]);
24 if(blue[i] > 0)
25 emit(i+512, blue[i]);
26 }
27 }

Listing 1: The Phoenix map function for the
histogram workload. In an effort to improve
performance, the body of the map function has been
made overly complex.

the map and reduce phases [12]; the user specifies the com-
biner function through a separate function pointer, and for
each thread, it is run at the end of the map phase on top of
the key-value hash table.

However, unlike cluster-based implementations, on SMP
machines memory allocation costs tend to dominate, even
more than the memory traffic. Running the combiner at
the end of the map phase may reduce the total overhead to
invoke the combiner, but it fails to reduce the memory al-
location pressure, since generated key-value pairs must still
be stored. Further, by the time the combiners are run, those
pairs may no longer be in the cache causing expensive mem-
ory access penalties.

A better approach is to run the combiner more frequently.
In lines 10∼15 of Listing 1, we can see that the Phoenix-
provided combiner is ignored in favor of manually imple-
menting the combiner inside the map function. This bypass
substantially reduces memory allocation pressure.

1 class Histogram : public MapReduceSort<
2 Histogram,
3 pixel, intptr_t, uint64_t,
4 array_container<intptr_t, uint64_t,

sum_combiner, 768> > {
5 public:
6 void map(pixel const& p, container& out)

const {
7 emit(out, p.r, 1);
8 emit(out, p.g+256, 1);
9 emit(out, p.b+512, 1);

10 }
11 };

Listing 2: The histogram map function written
for Phoenix++. Templates are used to adapt
the MapReduce pipeline to the workload while
maintaining a simple programmatic interface.

3.3 Exposed Task Chunking
Typical MapReduce implementations internally group tasks

into chunks to reduce scheduling costs and amortize per-task
overhead. Phoenix exposes this chunking to the program-
mer, passing chunks, rather than individual tasks, to the
map function (e.g., line 10 in Listing 1).

This design enables the user-implemented optimizations
described in the previous two sections. However, it also
has two drawbacks—first, extra code to deal with chunks
is pushed into user code, complicating the map function.
Second, and more important, if the user leverages the ex-
posed chunk to improve performance, the framework can no
longer freely adjust the chunk size since doing so will affect
the efficiency of the map function. Phoenix addresses this
dependency by requiring the user to specify the chunk size
as a parameter; however, the user’s fixed chunk size may be
far from optimal and could work against load balancing.

3.4 Performance Impact
We tried rewriting the Phoenix histogram application to

use an “ideally” simple map function that used the built-in
hash table storage for key-value pairs, relied on the Phoenix-
provided combiner, and operated on a single pixel at a time.
Our tests showed that this ran 10x slower than the ver-
sion in Listing 1. In a more extreme case, the linear_
regression workload showed a 24x slowdown. Thus, there
is considerable incentive for users to work around the Phoenix
framework to improve performance.

4. PHOENIX++ DESIGN AND
IMPLEMENTATION

Motivated by the shortcomings of Phoenix discussed in
the previous section, we designed a modular MapReduce



C C

C C

C C

C C C

C

(a) Hash Container

C C C C C C C C

(b) Array Container

Figure 2: Container class implementations. Each
“C” represents a combiner object, which stores emit-
ted values associated with a single key.

framework, Phoenix++, where users can adapt performance
critical elements of the pipeline to match the known charac-
teristics of their workload. In particular, we expose the run-
time’s intermediate key-value grouping and storage respon-
sibility through two abstractions: containers, which allow
us to tune the framework to each workload’s key distribu-
tion, and combiner objects, which permit efficiently handling
workloads with large numbers of values per key. We further
increase the modularity of the pipeline by allowing the user
to easily replace the memory allocator and by making the
final key-value sort optional. Lastly, we hide the task chunk-
ing granularity to provide a cleaner interface.

Unfortunately, increasing the modularity of the frame-
work can reduce performance due to additional function
calls, less opportunities for compiler optimizations, etc. This
is particularly a concern in Phoenix++ because the interme-
diate key-value storage is on the critical performance path.
This issue motivated us to implement Phoenix++ in C++
where templates provide a mechanism to statically inline
code, allowing us to build an adaptive framework without
paying a performance penalty.

The result is a consistent and simple MapReduce-style
programmatic interface with very high performance and scal-
ability across all workload dimensions. Listing 2 shows the
histogram workload written in Phoenix++. Compared to
Phoenix, the amount of user-written code is substantially
decreased. Even so, this runs faster than the corresponding
Phoenix 2 code. The Phoenix++ design choices are summa-
rized in Table 1 and are discussed in the following sections.

4.1 Containers
In Phoenix++, containers provide the standard group-by

functionality between the map and reduce phases, group-
ing emitted key-value pairs by key and then storing them
in combiners. Figure 2 depicts two example container con-
figurations and their relationship to combiner objects. By
mixing and matching container and combiner implementa-
tions we can get high performance key-value storage for a
wide range of workloads.

To provide the highest possible performance for each key
distribution, we define 3 default container implementations
tuned to each of the *:*, *:k, and 1:1 workload classes.

• hash container (*:*): a variable-width hash table
implementation where each map thread can resize its
own hash table (in contrast to Phoenix where all tables
are the same fixed width),

initialize(num map threads, num reduce tasks)
- Initialize the container
container get()
- Create a thread-local container “instance”
put(container)
- Return control of the instance to the container
combiner iterator out(reduce task id)
- Output combiner objects for processing by a reduce task

Table 2: Container interface functions.

• array container (*:k): a fixed-size, thread-local ar-
ray implementation, which requires that the keys be
integers within an a priori known range [0,K-1], and

• common array container (1:1): a non-blocking ar-
ray structure shared across all threads.

Figure 2(a) depicts the hash container implementation. In
contrast to the default fixed-width hash table in Phoenix, we
allow each map thread to control the width of its own hash
table. This ensures that we can maintain O(1) insertion
performance even in the presence of an unexpectedly large
number of keys. However, since each hash table has different
width, the correspondence between keys and bucket indices
has been lost. This makes it more difficult to group values
with the same key across threads. We address this issue by
copying values out of the hash tables at the end of the map
phase and inserting them into a new fixed-width hash table
with the same number of buckets as reduce tasks. This extra
copy is unfortunate, but as we show in Section 5, the overall
performance is higher than the fixed-width hash table.

Figure 2(b) shows the arrangement of the array container.
For tasks with a known, small key cardinality, insertion into
a fixed size array avoids the cost of hashing keys and re-
peatedly checking if the hash table should be resized. This
structure can provide a substantial performance increase, es-
pecially in cases where the amount of computation per task
is small. In Listing 2, line 4, we can see that the Phoenix++
histogram workload uses the array_container.

Lastly, the common array container leverages the fact that
each emitted key is unique in 1:1 workloads; all threads can
write into the same array without any synchronization.

Interface. The user is also free to specify her own
container through the common interface shown in Table 2.
Through the get() method, each map thread can ask the
container class for a container “instance”. When done emit-
ting key-value pairs into the instance, each map thread re-
turns its instance through the put() method. Using this
instance interface permits us to support a wide range of
possible container implementations. For example, when the
get() function is called, the container is free to return ei-
ther a thread-local data structure, which it will later merge
with similar structures from other map threads, or a global
data structure, which is controlled by locks or other syn-
chronization mechanisms. When the workload properties
permit, the container can even expose a global data struc-
ture without any synchronization mechanisms at all, as is
the case for the common array container.

4.2 Combiner Objects
The combiner object abstraction in Phoenix++ is used

to store all emitted values with the same key. Thus, in
Phoenix++, combiners are not just functions, but are state-
ful objects. In order to maximally reduce memory pressure



initialize()
- Initialize the combiner object
add(value)
- Insert a new value into the combiner object
add(combiner)
- Combine the state of two combiner objects
bool discard()
- Return true if the combiner object should not be passed
to the reduce stage
value* next()
- Iterate over values in the combiner object
- Return NULL if all values have been returned

Table 3: Combiner class member functions.

due to intermediate key-value storage, Phoenix++ invokes
the combiner immediately after each key-value pair is emit-
ted by the map function.

The default combiner, buffer_combiner, implements
the standard MapReduce behavior, buffering up all emitted
values until the reduce function is called. The implementa-
tion follows Phoenix 2 in eliminating the need to copy values
when concatenating buffers from different threads.

By contrast, the associative_combiner does not buffer
values. Instead, it leverages the fact that the combiner will
be called for every emitted value, and maintains a single
aggregate value which is incrementally combined with each
emitted value. This completely eliminates the overhead as-
sociated with maintaining a buffer. In the sample workloads,
we make wide use of the sum_combiner (Listing 2, line 4),
an instantiation of associative_combiner which simply
stores the sum of all the values inserted into it.

Additionally, unlike the standard MapReduce formulation
which specifies that combiner functions are run per machine,
and then reduce functions are run across machines [3], in
Phoenix++ we guarantee that combiners will be run on all
emitted values across all threads, before the combiner object
is passed to the reduce phase. This means that the user only
has to implement the combiner function once; code does not
have to be duplicated in the reduce function.

Interface. The set of functions supported by the com-
biner class is given in Table 3. We use an initialize()
method rather than a constructor since, to minimize mem-
ory allocations, the runtime may reuse combiner objects.
Within each thread, the values will be added to the combiner
object through add(), as they are emitted from the map
function. The second add() method combines combiner
objects created for the same key in different threads. The
discard() method permits the user to mask certain com-
biner objects—typically empty combiner objects that were
proactively created by the runtime—from being passed on to
the reduce function. Finally, the next() method is used by
the reduce function to iterate through the values in the com-
biner object. Table 4 describes how the buffer_combiner
and the sum_combiner implement this common interface.

4.3 Other Modularity in Phoenix++
Generic, optional sort. In the original Google imple-

mentation, MapReduce sorts the final output [3]. Consider-
ing that I/O is the dominant factor in cluster-based Map-
Reduce, additional sorting does not cause much overhead.
However, for shared-memory MapReduce implementations,
sorting at the merge phase can impose significant overhead.
Thus, we permit the user to completely disable the final sort.

(a) buffer_combiner Implementation

State
- Linked list of vectors of values
initialize()
- Clear linked list
add(value)
- Append value to first vector in linked list
add(combiner)
- Concatenate combiner objects’ linked lists (avoids copy-
ing)
bool discard()
- Return true if no values were inserted
value* next()
- Iterate over all elements in all vectors in linked list

(b) sum_combiner Implementation

State
- Single value (typically numeric)
initialize()
- Set state to 0
add(value)
- state += value
add(combiner)
- state += combiner.state
bool discard()
- Return true if state == 0
value* next()
- Return state and then NULL on the next call

Table 4: Combiner class implementations provided
by Phoenix++.

Additionally, if sorting is enabled, we allow the user to
provide a custom sorting function that is defined over key-
value pairs, rather than the keys alone. In cases such as
word_count, which require a more complicated result sort-
ing, the custom sorting function avoids the need for a second
MapReduce pass.

Custom memory allocators. In Phoenix 2, the authors
noted the importance of the memory allocator on the overall
library scalability [12]. In Phoenix++, we use STL’s custom
allocator interface to support more scalable allocators (e.g.
Intel’s TBB scalable_allocator [6]) for the containers
and combiners.

4.4 Efficient Modularity
As discussed in the previous sections, in Phoenix++, we

permit the user to swap in and out core functionalities of
the framework. Moreover, we have hidden the task chunking
granularity, allowing the user to write a map function that
works on a single map task. While these changes simplify
programming, they do introduce a large number of function
calls in the inner task loops which can quickly dominate the
runtime for applications with low per task computation.

To eliminate the function calls we leverage a C++ tem-
plate technique known as the Curiously Recurring Tem-
plate Pattern (CRTP) [2]. As shown in Listing 2, the first
argument to the template (line 2) is the inheriting class
(Histogram) itself. This means that the user-provided map
and reduce functions are statically determined, and as a re-
sult the compiler can inline them into the task loop specified
in the framework’s code. Additionally, since the container
and combiner objects are also specified as template parame-
ters, the compiler can inline them as well. The result is that
all the function calls in the inner loops can be eliminated.



log # of threads

lo
g 

ru
nt

im
e 10s

1s

0.1s

1 4 16 64

 histogram  kmeans  linear regression  matrix multiply  pca  string match 

1 4 16 64

 word count 

log # of threads

lo
g 

sp
ee

du
p

1x

4x

16x

64x

1 4 16 64

 histogram  kmeans  linear regression  matrix multiply  pca  string match 

1 4 16 64

 word count 

Figure 3: Performance (top) and scalability (bottom) comparisons of Phoenix++ (blue) and Phoenix 2
(orange). Vertical lines mark 32 threads, the number of physical cores on our test machine. For the scalability
comparison, black lines represent ideal scaling.

Hardware Settings

CPU

4 Nehalem-EX chips
8 cores per chip
2-way Hyper-Threading per core
Total 64 hardware contexts on system

Cache
Per core data / instruction L1, 32 KB
Per core L2, 256 KB
Shared L3, 24 MB

Memory 32 GB
Interconnect Point-to-point QuickPath interconnect

Software Settings
Operating System Linux kernel 2.6.32
Compiler GCC 4.4.3 with -O3 optimization

Table 5: Experiment settings.

5. EXPERIMENTAL RESULTS
Table 5 describes the hardware and software settings for

our experiment. We ported the test cases that ship with the
Phoenix 2 release [12] to work with Phoenix++. During the
porting process, we updated a few of the workloads to more
efficient implementations, in order to evaluate against more
realistic usage scenarios. To make the comparison fair, we
back-ported those optimizations to the Phoenix 2 versions.
Likewise, to make replication possible, we report results us-
ing the (relatively small) data sets available on the Phoenix 2
website [10]. All the results are the averages of 5 runs when
the machine was idle; the execution of the various configu-
rations were interleaved to reduce bias.

5.1 Performance Summary
Figure 3 compares the performance of Phoenix++ against

Phoenix 2. Phoenix++ is substantially faster and more scal-
able across all workloads; notice that the axes are log scales.

Some workloads exhibit peak performance at 32 threads, as
the performance degrades slightly when we start to utilize
Hyper-Threads. At 32 threads, Phoenix++ achieves a 4.7x
speedup on average over Phoenix 2.

Profiler analysis reveals that Phoenix++ achieves this per-
formance improvement through combinations of all the ma-
jor enhancements described in Section 4. The newly in-
troduced containers improved most of the workloads, even
word_count, for which Phoenix 2 had been optimized. The
more effective combiner objects contributed to better data
locality and lower memory allocation pressure, resulting in
substantial scalability improvement on most applications.
For matrix_multiply and string_match, which do not
emit any intermediate key-value pairs, the combiner’s
discard() interface function turned out to be useful, as
Phoenix 2 suffered high overheads executing empty reduce
tasks. Finally, histogram and linear_regression, which
exhibit the smallest per task computation, benefited signifi-
cantly from the reduced function call overhead due to func-
tion inlining enabled with CRTP.

In the following sections, we try to quantify the benefit of
each of these optimizations.

5.2 Container Performance
As described in Section 4.1, containers were introduced

to provide a modular way to cover different key distribu-
tions. In Figure 4, we compare the performance of the three
default containers provided by Phoenix++ against a fixed-
width hash container which mimics the container used in
Phoenix. Notice that not every container can be used with
every workload, and that matrix_multiply and string_
match are not included in the plot, since they do not emit
any key-values during the map phase and are, thus, insensi-
tive to container choices.



log # of threads

lo
g 

ru
nt

im
e

10s

1s

0.1s

 histogram  linear regression  kmeans 

1 4 16 64

 pca  word count 

Figure 4: Workload sensitivity to container choice:
variable-width hash table (green), array (blue), com-
mon array (pink), and, for comparison, a Phoenix-
like fixed-width hash table (orange). The default
Phoenix++ containers provide high performance
and scalability across a range of workloads.

The first observation to make is that no single container
prevails across all the workloads, justifying our approach of
providing various container implementations; the *:k work-
loads, histogram, linear_regression, and kmeans,
perform the best with the array container, and the 1:1
workload, pca, benefits the most from the common array
container. Second, the default Phoenix++ containers pro-
vide better performance and scalability than the Phoenix-
like fixed-width hash container—even the *:* workload,
word_count, benefits from the new hash container.

5.3 Combiner Performance
Figure 5 shows the performance when using an

associative_combiner to incrementally aggregate emit-
ted values, compared to using a buffer_combiner to sim-
ply buffer up key-value pairs for the reduce task.

Combiners provide a dramatic absolute performance im-
provement, especially for those workloads with low per task
computation: e.g., histogram and linear_regression.
With the exception of word_count, they also provide a sub-
stantial scalability improvement across all thread counts.

Note that this contradicts the Phoenix 2 conclusion [12],
where the authors observed minimal performance improve-
ment through combiners. The difference in conclusions can
be attributed to two factors; first, Phoenix 2 only invoked
the combiner at the end of the map phase. In contrast,
Phoenix++ invokes the combiner after every emitted value,
thus improving locality and reducing memory allocation pres-
sure. Second, as shown in Listing 1, users tend to implement
their own combiners in Phoenix 2, which hides the utility of
a library-provided combiner.

5.4 Function Call Overhead
As described earlier, we use templates with CRTP to elim-

inate function calls in the map and reduce inner loops in-

log # of threads

lo
g 

ru
nt

im
e

10s

1s

0.1s

 histogram  linear regression  kmeans 

1 4 16 64

 pca  word count 

Figure 5: Comparison of workloads with (blue) and
without (green) using a combiner. In contrast to the
Phoenix 2 results, we see a substantial improvement
from the combiner.

log # of threads

lo
g 

ru
nt

im
e

10s

1s

0.1s

1 4 16 64

 histogram  linear regression 

Figure 6: Improvements due to function inlining via
CRTP (blue) compared to without (yellow) on work-
loads with low per task computation.

troduced by our modularization of the pipeline. To demon-
strate that these introduced function calls can be problem-
atic, we force the compiler, using GCC’s noinline function
attribute, to not inline the emit_intermediate calls into
the map function nor inline the map function into the frame-
work’s task loop.

The histogram and linear_regression workloads,
which exhibit the smallest per task computation, are partic-
ularly sensitive to the function call overhead (Figure 6). The
other workloads, with higher per task computation, were not
substantially affected by the change.

5.5 Code Size Comparison
In addition to the significant performance improvements,

the other important objective of Phoenix++ was to provide
a cleaner interface, allowing users to write strict, simple
MapReduce code. To quantify the improvement, we com-
pare the lines of source code for the map, reduce, and com-
biner functions for each workload implemented in Phoenix 2
and Phoenix++. Table 6 shows the results.

Much of the code reduction in map functions is due to the
fact that Phoenix++ allows users to write map functions



map reduce combiner
P++ P2 P++ P2 P++ P2

histogram 5 39 0 13 0 11
kmeans 30 47 5 33 11 0
linear regression 9 34 0 14 0 14
matrix multiply 12 26 0 0 0 0
pca 24 56 0 0 0 0
string match 31 36 0 0 0 0
word count 26 53 0 13 0 11

Table 6: Code size comparison in lines of source code
for workloads in Phoenix++ and Phoenix 2.

that work on a single map task, rather than an entire chunk.
Thus, chunk looping code can be eliminated from most work-
loads, except for string_match and word_count which
already were single task functions in Phoenix 2.

Comparing the reduce and combiner function code size re-
veals that (1) our combiner objects obviate the need to spec-
ify the aggregation function in multiple locations, and that
(2) the two combiner abstractions, buffer_combiner and
associative_combiner, provided by the runtime are suf-
ficient to cover most of the workloads; thus, users rarely have
to specify their own. One exception is the kmeans workload
which requires the combiner to allocate memory to hold the
aggregate value. This is not supported by the simple sum_
combiner, so we had to provide a custom associative_
combiner implementation. Phoenix 2 does not use a com-
biner for this workload.

Finally, with the generic sorting interface (Section 4.3),
we could eliminate a second MapReduce pass to sort the
results of the word_count workload, further reducing the
necessary code.

6. RELATED WORK
Previous efforts have noted the importance of adapting to

variations in workload characteristics. Phoenix 2 [12] allows
the users to specify the width of the hash table, but the
initial value could be difficult to determine. Metis [8] sub-
stitutes the hash table representation with a more complex
B+tree, trying to handle both the small and large key spaces
with a single structure. Phoenix++, on the contrary, lever-
ages object-oriented modularity to provide different contain-
ers that are tailored to different key distributions.

Other shared-memory MapReduce implementations, such
as Tiled-MapReduce [1] and MATE [7], have tried to achieve
higher performance by modifying the MapReduce paradigm.
In contrast, Phoenix++ uses modularity and function inlin-
ing to achieve low resource usage and high locality, without
substantially changing the standard MapReduce interface.

There exist other MapReduce implementations written
in C++. Hadoop [11], for example, provides C++ bind-
ings, and the Boost.MapReduce project [5] plans to bring
MapReduce functionality to the Boost C++ libraries. How-
ever, neither of these strategically exploits C++ features to
achieve high performance and concise code.

7. CONCLUSION
We have demonstrated that shared-memory MapReduce

frameworks can achieve much higher performance by adapt-
ing to the characteristics of their workloads. To make this
possible, we specified interfaces for containers and combin-
ers, and showed that modularity overhead could be effec-

tively reduced using templates. As a result, Phoenix++
allows the user to write very high performance code, with-
out having to manually circumvent the library or the Map-
Reduce paradigm. The source code is publicly available at
http://mapreduce.stanford.edu.

Acknowledgments
This work was supported by the Stanford Pervasive Par-
allelism Laboratory. We appreciate Intel Corporation for
donating the machine used in this study. Justin Talbot is
supported by FODAVA grant 0937123. Richard Yoo is gen-
erously supported by the David and Janet Chyan Stanford
Graduate Fellowship.

8. REFERENCES
[1] R. Chen, H. Chen, and B. Zang. Tiled-MapReduce:

Optimizing resource usages of data-parallel
applications on multicore with tiling. In Proc. of the
19th Int’l Conference on Parallel Architectures and
Compilation Techniques, pages 523–534, 2010.

[2] J. O. Coplien. Curiously recurring template patterns.
C++ Rep., 7:24–27, February 1995.

[3] J. Dean and S. Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proc. of the 6th
Symposium on Operating Systems Design &
Implementation, 2004.

[4] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and
T. Wang. Mars: a MapReduce framework on graphics
processors. In Proc. of the 17th Int’l Conference on
Parallel Architectures and Compilation Techniques,
pages 260–269, 2008.

[5] C. Henderson. Boost.MapReduce. http:
//www.craighenderson.co.uk/mapreduce.

[6] Intel Corporation. Threading Building Blocks.
http://www.threadingbuildingblocks.org.

[7] W. Jiang, V. T. Ravi, and G. Agrawal. A Map-Reduce
system with an alternate API for multi-core
environments. In Proc. of the 10th IEEE/ACM Int’l
Symposium on Cluster, Cloud, and Grid Computing,
pages 84–93, 2010.

[8] Y. Mao, R. Morris, and F. Kaashoek. Optimizing
MapReduce for multicore architectures. Technical
Report MIT-CSAIL-TR-2010-020, 2010.

[9] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,
and C. Kozyrakis. Evaluating MapReduce for
multi-core and multiprocessor systems. In Proc. of the
13th Int’l Symposium on High Performance Computer
Architecture, pages 13–24, 2007.

[10] Stanford University. The Phoenix system for
MapReduce programming.
http://mapreduce.stanford.edu.

[11] The Apache Software Foundation. Hadoop.
http://hadoop.apache.org.

[12] R. M. Yoo, A. Romano, and C. Kozyrakis. Phoenix
rebirth: Scalable MapReduce on a large-scale
shared-memory system. In Proc. of the 2009 IEEE
Int’l Symposium on Workload Characterization, pages
198–207, 2009.


