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ABSTRACT

Geometric Wavelets is a new multi-scale data representation tech-
nique which is useful for a variety of applications such as data com-
pression, interpretation and anomaly detection. We have developed
an interactive visualization with multiple linked views tohelp users
quickly explore data sets and understand this novel construction.
Currently the interface is being used by applied mathematicians to
view results and gain new insights, speeding methods development.

Index Terms: H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces (GUI); I.5.1 [Pattern
Recognition]: Models—Geometric

1 GEOMETRIC WAVELETS

Data sets such as images, documents or gene expression data may
be modeled as point clouds in high-dimensional Euclidean space.
In the case of images, each pixel can be thought of as one coordi-
nate in a vector with a length equal to the numberD of pixels in
the image, and the intensity of each pixel corresponds to theco-
ordinate magnitude in that pixel’s direction. Real data points of-
ten have structure which has dimensiond much smaller than the
ambient space dimensionD, for example under the well-studied
case when they lie near a low-dimensional manifoldM . Discov-
ering and characterizing this lower-dimensional structure can dra-
matically affect the performance in tasks such as data compression,
interpretation, outlier detection, classification and clustering.

If M is just a linear subspace, Principal Component Analysis
(PCA) can discover a dictionary ofd vectors which describe the
data well at low computational cost. However, whenM is nonlin-
ear it is usually necessary to use random dictionaries or black box
optimization, which are much more costly and in general do not
yield interpretable features of the data. Geometric Wavelets [2] are
multi-scale dictionary elements which are constructed directly from
the data, adapt to arbitrary nonlinear manifolds, and have guaran-
tees on the computational cost, the number of elements in thedic-
tionary and the sparsity of the representation (as a function of an
approximation error parameter). In particular they provide feature
sets that may be particularly useful for data exploration, and tasks
such as anomaly detection and classification.

The mathematical details of the construction can be found in[1].
It proceeds in several steps: first, relationships between data points
are computed with respect to a given similarity function. Atthe
coarsest scale all data points are considered one group and global
PCA is performed, yielding ad-dimensional plane fit to the data
with axes in the directions of maximum variance, which we think
of as a parallel of “scaling functions” in wavelet analysis.The pro-
jection of the data points onto this plane is the coarsest-scale ap-
proximation of the data. Next, the graph is split into two groups
(e.g. by using METIS [3]). On each of these finer scale groups,
PCA is again performed and the projection of the data points onto
these two new planes will more accurately approximateM . To
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form a compact representation for the data at this finer scale, as in a
wavelet decomposition, we only encode the differences between the
original coarse projections of the data and the points projected onto
the planes at the finer scale. In order to do this an efficient scheme
is derived based on the construction of a minimal space spanning
this set of differences. The axes of this difference space are called
“geometric wavelets”, and the projections of the finer-scale correc-
tions to the data points onto the plane spanned by these axes are
called the “wavelet coefficients”. The process is continued, form-
ing a binary tree of parents and children at finer and finer scales
until no further details are needed to approximate the data up to a
pre-specified precision. Geometric wavelets provide a dictionary or
feature set of the data that efficiently captures coarse-to-fine struc-
ture in the data, and the data may be transformed back and forth
between its original representation and a geometric wavelet repre-
sentation via fast algorithms. Figure 1 shows a schematic ofthe
coarsest and the first finer scale of this decomposition. (Distances
are exaggerated for clearer viewing.)
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Figure 1: Geometric Wavelets schematic.

2 VISUALIZATION GUI

The mathematical methods behind this representation are being de-
veloped in Matlab (Mathworks), and the researchers often end up
with numerous static plots on the screen while viewing results. One
goal for the visualization is to allow users to quickly see and nav-
igate the representation. A second goal is to begin developing a
platform onto which we could build more specialized applications
as others start using these techniques with their own data. Anice
byproduct of the visualization is its usefulness for explaining Geo-
metric Wavelets and helping people gain more intuition about this
representation.

The application itself is implemented in Python, using PyQt4 to
glue together the views, which themselves are constructed using
wrapped classes and customized variants from VTK [7]. During
this development stage, the Geometric Wavelets are not computed
directly in the GUI – Matlab output is loaded from files.

Figure 2 shows the GUI layout and describes some of its fea-
tures. For this example, a data set consisting of 1000 ones and
1000 twos chosen at random from the MNIST handwritten digits
database is being used [4]. Initially only the icicle view ofthe bi-
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Figure 2: Annotated GUI for viewing and navigating the multi-scale Geometric Wavelets data representation.

nary splits (tree) of data point groups is shown (coarsest scale at the
top and finer below). Overlaid on this tree is the matrix of wavelets
coefficients for all data points at all scales. When a node of the
tree is selected, the wavelet coefficients are plotted in a scatter plot
on the left. Above the scatter plot are the node center, whichis
a quick reference of the “average” data point in that node, along
with the axes which define the wavelets. Clicking on the wavelet
images switches which dimensions are plotted, and hoveringover
a scatterplot point displays the original data as a “tooltip”. This is
an easy way to get an overview of what clusters and outliers inthe
plots represent. Below the tree, a parallel coordinates plot of the
wavelet coefficients for the data in the selected node at all scales
is shown. The current scale is highlighted in gold, and finer scales
have a semi-opaque overlay, indicating that these values are not
strictly comparable since child nodes lie in different spaces.

Groups of data can be selected in either the scatter or parallel co-
ordinates plots, and red highlights will show up for that data in those
plus the icicle view. After this type of subset selection is made,
the original data (images) associated with these points appears in a
scrollable “flow” view in the lower right. This allows easy group
data comparisons. If an individual image is clicked on, the detail
view above it shows the multi-scale characteristics of thatimage
through the wavelet images at each scale (and that point is high-
lighted in blue on the two plots and the icicle view). The opacity
tracks the absolute value of the wavelet coefficient in that direction,
so with a glance you can see the primary components that represent
that data point. By clicking on different scales in this detail view, it
is possible to navigate through the tree in the icicle view along the
path defined by this individual. This helps especially when trying
to see what groups an individual is a member of at different scales
for finding other similar data points (like outliers).

3 DATA EXPLORATION AND METHODS DEVELOPMENT
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We note here some observations from exploring various data sets
and their representations. At coarser scales you get generalized ap-
proximations of the data, with readily interpretable node centers
and wavelet directions. With the MNIST digits (e.g. ones andtwos,

as above), there is good separation of categories at coarse scales. At
finer scales it is easy to find anomalous data (either mis-categorized
or strangely shaped digits), by finding extreme wavelet coefficients
or wavelet axis images which are messy mixtures of shapes rather
than variations on recognizable digits. When viewing the Olivetti
faces (400 images of 40 people [6]), it is clear that coarser-scale
wavelets contain information which could be ignored for classifi-
cation tasks, but finer-scale wavelets encode more specific features
which cluster and characterize people and expressions.

The visualization GUI has been developed in close collaboration
with the Applied Math methods developers. While viewing scat-
terplots of the wavelet coefficients, they noticed that manynodes
have coefficients which are clustered along lines that do notneces-
sarily correspond to the directions of the wavelet space axes. This
means that a much more sparse representation will be possible if
the wavelet directions are optimized for the natural directions of
the data. The ability to quickly view the large and complex space
of results is already streamlining methods development.

4 FUTURE WORK

At this stage the dimensionalityd is fixed at the beginning of the
analysis, but in the future it will be variable and adapted tothe local
dimensionality of the data [5]. Methods are also under development
for pruning the tree to obtain an even more compact data represen-
tation. For the visualization we will be labeling data points and
defining groups for semi-supervised learning and analysis tasks, as
well as adapting the GUI to other data types and integrating it with
the wavelet construction.
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