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ABSTRACT

Geometric Wavelets is a new multi-scale data representégich-
nique which is useful for a variety of applications such asdam-
pression, interpretation and anomaly detection. We haveloieed
an interactive visualization with multiple linked viewshelp users
quickly explore data sets and understand this novel cartgiru

Currently the interface is being used by applied matheraaticto
view results and gain new insights, speeding methods dewvelot.

Index Terms.  H.5.2 [Information Interfaces and Presentation]:
User Interfaces—Graphical user interfaces (GUI); I.5.at{érn
Recognition]: Models—Geometric
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form a compact representation for the data at this finer saalm a
wavelet decomposition, we only encode the differences &etvhe
original coarse projections of the data and the points ptegeonto

the planes at the finer scale. In order to do this an efficidmgse

is derived based on the construction of a minimal space $&pann
this set of differences. The axes of this difference spaeealied
“geometric wavelets”, and the projections of the finer-scarrec-
tions to the data points onto the plane spanned by these exes a
called the “wavelet coefficients”. The process is contindedm-

ing a binary tree of parents and children at finer and finerescal
until no further details are needed to approximate the date &
pre-specified precision. Geometric wavelets provide aafiery or
feature set of the data that efficiently captures coardaostruc-
ture in the data, and the data may be transformed back artd fort

Data sets such as images, documents or gene expressionalata m between its original representation and a geometric wavejge-

be modeled as point clouds in high-dimensional Euclideatesp
In the case of images, each pixel can be thought of as oneieoord
nate in a vector with a length equal to the numBeof pixels in
the image, and the intensity of each pixel corresponds tathe
ordinate magnitude in that pixel's direction. Real datanpiof-
ten have structure which has dimensiwmuch smaller than the
ambient space dimensidd, for example under the well-studied
case when they lie near a low-dimensional manife#l Discov-
ering and characterizing this lower-dimensional struetan dra-
matically affect the performance in tasks such as data cessjon,
interpretation, outlier detection, classification andstduing.

If .# is just a linear subspace, Principal Component Analysis
(PCA) can discover a dictionary af vectors which describe the
data well at low computational cost. However, whenis nonlin-
ear it is usually necessary to use random dictionaries aktax
optimization, which are much more costly and in general do no
yield interpretable features of the data. Geometric Was¢R are
multi-scale dictionary elements which are constructeeay from
the data, adapt to arbitrary nonlinear manifolds, and hasean-
tees on the computational cost, the number of elements idithe
tionary and the sparsity of the representation (as a fumaifcan
approximation error parameter). In particular they previdature
sets that may be particularly useful for data exploration &sks
such as anomaly detection and classification.

The mathematical details of the construction can be foufitlin
It proceeds in several steps: first, relationships betwedm pbints
are computed with respect to a given similarity function. tiAe
coarsest scale all data points are considered one grouplaival g
PCA is performed, yielding a-dimensional plane fit to the data
with axes in the directions of maximum variance, which weakhi
of as a parallel of “scaling functions” in wavelet analysi$ie pro-
jection of the data points onto this plane is the coarsesiesap-
proximation of the data. Next, the graph is split into two upe
(e.g. by using METIS [3]). On each of these finer scale groups,
PCA is again performed and the projection of the data points o
these two new planes will more accurately approximate To
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sentation via fast algorithms. Figure 1 shows a schematibief
coarsest and the first finer scale of this decomposition. tdDies
are exaggerated for clearer viewing.)
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Figure 1: Geometric Wavelets schematic.

2 VISUALIZATION GUI

The mathematical methods behind this representation amg de-
veloped in Matlab Kathworks), and the researchers often end up
with numerous static plots on the screen while viewing tss@ne
goal for the visualization is to allow users to quickly see aav-
igate the representation. A second goal is to begin devedogi
platform onto which we could build more specialized applmas

as others start using these techniques with their own dataicé
byproduct of the visualization is its usefulness for explag Geo-
metric Wavelets and helping people gain more intuition alblois
representation.

The application itself is implemented in Python, using Py/€t
glue together the views, which themselves are constructetyu
wrapped classes and customized variants from VTK [7]. Qurin
this development stage, the Geometric Wavelets are not ai@tp
directly in the GUI — Matlab output is loaded from files.

Figure 2 shows the GUI layout and describes some of its fea-
tures. For this example, a data set consisting of 1000 ongs an
1000 twos chosen at random from the MNIST handwritten digits
database is being used [4]. Initially only the icicle viewtbé bi-
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Figure 2: Annotated GUI for viewing and navigating the multi-scale Geometric Wavelets data representation.

nary splits (tree) of data point groups is shown (coarsedest the
top and finer below). Overlaid on this tree is the matrix of alats
coefficients for all data points at all scales. When a nodenef t
tree is selected, the wavelet coefficients are plotted iratiescplot
on the left. Above the scatter plot are the node center, wisich
a quick reference of the “average” data point in that nodenal
with the axes which define the wavelets. Clicking on the wetvel
images switches which dimensions are plotted, and hoverieg
a scatterplot point displays the original data as a “totltighis is
an easy way to get an overview of what clusters and outlietisen
plots represent. Below the tree, a parallel coordinates gflthe
wavelet coefficients for the data in the selected node atcales
is shown. The current scale is highlighted in gold, and fiaies
have a semi-opaque overlay, indicating that these valueshatr
strictly comparable since child nodes lie in different sgsac
Groups of data can be selected in either the scatter or pecaH
ordinates plots, and red highlights will show up for thatdatthose
plus the icicle view. After this type of subset selection iada,
the original data (images) associated with these pointeappn a
scrollable “flow” view in the lower right. This allows easyaymp
data comparisons. If an individual image is clicked on, th&ai
view above it shows the multi-scale characteristics of thatge
through the wavelet images at each scale (and that poingfs hi
lighted in blue on the two plots and the icicle view). The dpac
tracks the absolute value of the wavelet coefficient in tiraction,
so with a glance you can see the primary components thats@qre
that data point. By clicking on different scales in this det&w, it
is possible to navigate through the tree in the icicle viesnglthe
path defined by this individual. This helps especially whgimg
to see what groups an individual is a member of at differeatesc
for finding other similar data points (like outliers).

3 DATA EXPLORATION AND METHODS DEVELOPMENT
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We note here some observations from exploring various @$a s
and their representations. At coarser scales you get daeerap-
proximations of the data, with readily interpretable noéaters
and wavelet directions. With the MNIST digits (e.g. ones amos,

as above), there is good separation of categories at camies sAt
finer scales it is easy to find anomalous data (either migyostzed
or strangely shaped digits), by finding extreme waveletfamehts
or wavelet axis images which are messy mixtures of shaphsrrat
than variations on recognizable digits. When viewing thivedti
faces (400 images of 40 people [6]), it is clear that coassate
wavelets contain information which could be ignored forsslé-
cation tasks, but finer-scale wavelets encode more speeifiaries
which cluster and characterize people and expressions.

The visualization GUI has been developed in close collatmra
with the Applied Math methods developers. While viewingtsca
terplots of the wavelet coefficients, they noticed that maagles
have coefficients which are clustered along lines that dmeoes-
sarily correspond to the directions of the wavelet spacs.aXhis
means that a much more sparse representation will be pestibl
the wavelet directions are optimized for the natural dioet of
the data. The ability to quickly view the large and compleacp
of results is already streamlining methods development.

4 FUTURE WORK

At this stage the dimensionality is fixed at the beginning of the
analysis, but in the future it will be variable and adaptethtolocal
dimensionality of the data [5]. Methods are also under dgmakent
for pruning the tree to obtain an even more compact datasepre
tation. For the visualization we will be labeling data peirtnd
defining groups for semi-supervised learning and analgsisst as
well as adapting the GUI to other data types and integratingtf
the wavelet construction.
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