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Abstract: Visualizing data by graphing a response against certain factors, and conditioning on other factors, has arisen indepen-
dently in many contexts. One is the interaction plots used inthe analysis of data from designed experiments; these plotsshow
conditional dependence based on the output of methods and models applied to the data. Trellis display, a framework for the
visualization of multivariable data, allows conditioningto be readily carried out in a general way. It was developed initially in
the context of data sets with a moderate or large number of observations to support the conditioning. This article demonstrates
through examples that trellis display is also a highly useful visualization framework for designed experiments with a small number
of runs. Trellis allows the visualization of conditional dependence, not based only on the output of models and methods,but also
based on the raw data directly, which greatly aids the model building process. Trellis can even succeed for highly fractionated
designs. The reason appears to be that for success, such designs require an engineering practice that keeps error variability small,
which allows interpretable patterns to emerge on conditioning displays with a limited number of plotted points.
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1. INTRODUCTION

Trellis display is a framework for the visualization of mul-
tivariable data [1, 2, 3, 4]. One capability is a mechanism to
study the dependence of a response variable on predictive fac-
tor variables. It does this through a mechanism for visualizing
the dependence of the response on one set of factors, given
values of other factors. The visual design allows assessment
of how the conditional dependence changes with the given
values. This can be done for both the raw data and for the
numeric and categorical output of mathematical methods and
models applied to the data. The former is particularly valu-
able, allowing an understanding of the patterns of dependence
in the data free of assumptions about the patterns. Figure 1 is
a trellis display that shows the dependence of a response on
one factor given three others using the raw data. The data and
the display will be described in Section 2.

The success of trellis display in the visualization of multi-
variable data has led to implementations in a number of soft-
ware systems including S-Plus [5], R [6], and Tableau [7].

Trellis display was originally developed in the context of
moderate, large, and very large data sets, and has been widely
used in this context. This article reports the results of an
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investigation of the use of trellis in analyzing data from de-
signed experiments that result in small data sets. While the
sizes of data sets have grown dramatically in many domains,
controlled experiments with a small number of runs are still
commonplace in the many settings where a single run is very
costly [8]. It is often the case that designed experiments are
highly fractionated: values of each factor are chosen, but the
experiment is run on just a small fraction of the number of
possible combinations of the values of the factors.

The question in our investigation was whether success us-
ing trellis conditioning methods and visual methods would be
inhibited by the limited number of runs and fractional exper-
imental design. It seemed quite possible to us that for such
data the number of observations in each subset resulting from
a multiple conditioning would often be too small for patterns
to be seen. Our investigation, over a long period, has consisted
of using trellis in the analysis of data from many experiments
reported in the literature, some arising in our own work.

Displaying data by conditioning has surfaced indepen-
dently in a number of places and for many different types of
data [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. The experimen-
tal design literature contains a long history of data visualiza-
tion [20, 21, 22, 23, 24]. Included in this design literatureis
a widely used method of visualizing conditional dependence
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by the interaction plot [13, 14, 25, 26, 27, 28]. This visual-
ization tool shows interaction effects based on the output of
methods and models applied to the data. Its use in practice
has chiefly been to show two-factor interactions, but in prin-
ciple, higher-order interactions can be shown [13, 14]. The
trellis mechanism described here is much broader, allowing,
as described above, conditional dependence to be studied for
the raw data as well.

Results of this article are conveyed through describing
analyses of three data sets from designed experiments in Sec-
tions 2 to 4. The data sets are representative of what we have
seen more generally. Section 5 is a discussion of results.

In the course of the discussion of trellis conditioning in
Sections 2 to 4, another important matter for all data visu-
alization is investigated in the context of designed experi-
ments. Methods of data analysis can be divided into two cat-
egories [29]: (1) mathematical methods and models in which
formulas are computed to produce numeric and categorical
output; (2) visualization methods whose output is visual dis-
plays, either of the raw data or of the output of mathemati-
cal methods and models. The analysis of variance (ANOVA),
used pervasively in the analysis of experimental data, is a
mathematical method for answering specific questions about
terms in a model for the data, and thus is a model building
tool. We discuss the relative power of ANOVA and the trellis
visual methods.

2. TRELLIS DISPLAY OF LEAD CONCENTRATION
DATA

Lead concentrations at a site next to a major roadway in
Ohio were measured and analyzed in an experiment to de-
termine their spatial variation [30]. The concentrations were
measured at 9 positions on one side of the roadway. There
were three setback distances from the roadway: 2.8 m, 7.1 m,
and 21.4 m. There were three heights: 1.1 m, 6.3 m, and 10.5
m. The 9 positions, each height combined with each setback
distance, form a 3 by 3 vertical spatial grid. Measurements
were made at the nine positions for 21 consecutive days. Each
measurement is an accumulation of lead over a period of 24
hours. Thus the data consist of 21 daily lead measurements at
each of the 9 positions; one observation is missing. For such
data we would expect the lead concentrations to be affected
by a host of factors: meteorological conditions; traffic, which
has a day-of-the-week effect; and spatial position.

The lead data consist of five variables: (1) lead concentra-
tion, L; (2) setback distance,S (3) height,H; (4) day-of-the-
week,D; (5) week number,W . D andW describe time — that
is, the day — but do so in a way that allows for a day-of-the-
week effect. There are 3×3×21−1= 188 measurements of
each of the five variables.

Figure 1 is a trellis display ofL againstH given D, W ,
and S. The display consists of 3×21 = 63 panels arranged
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Figure 1: Trellis display ofL againstH givenD, W , andS.

into 21 columns and 3 rows. Each panel has a scatter-plot ofL
againstH givenD, W , andS. The strip labels at the top of each
panel indicate the values of the three conditioning variables.S
changes with the row; for row 1, the bottom row,S is smallest,
and then increases as we go up the rows. As we go left to right
through the columns of each row, we go in order through the
days. In a similar manner, Figure 2 is a trellis display ofL
againstS givenD, W , andH.

Figure 1 shows thatL tends to decrease asH increases.
The decline as a function ofH lessens asS increases. In other
words there is a spatial effect with an interaction betweenH
andS, which is not surprising.

Figure 2 shows the spatial effect in a different way. There
is mixed behavior in the dependence of lead onS. For the
smallest value ofH, L decreases withS. But for the mid-
dle value ofH, L typically first increases withS and then de-
creases. For the largestH, lead occasionally has the increase-
decrease pattern for about 1/3 of the days, most of them days
with large concentrations, and is relatively stable for there-
maining days. This behavior is consistent with air transport
mechanisms. Lead is emitted at ground level from automo-
bile tail pipes. The closest of the 9 monitors, the one with
the smallest values ofH andS, has the largest concentrations
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Figure 2: Trellis display ofL againstS givenD, W , andH.

because it is close to the pollution source. From the source,
the lead is carried laterally by the wind, spreading upward as it
moves. This plume-like behavior can cause the concentrations
to be relatively small at the higher monitors with the closest
setback.

The arrangement of the panels in Figure 1 allows study of
3 collections of patterns, one collection for each row. This
provides a comparison of the patterns of dependence ofL on
H asS changes. Suppose, however, that we want to study the
3 patterns for each day, and then compare the 21 collections of
daily patterns. This is a more difficult task in Figure 1 because
the 3 panels for each day are arranged vertically in such a
way that we have a reduced ability to visually assemble the
3 patterns. In Figure 3, the panels have been rearranged to
facilitate the study of the daily patterns. Now the 3 panels for
each day are juxtaposed horizontally, and each row is now the
data for one week. The panels in the bottom row are week 1,
the panels in the middle row are week 2, and the panels in the
top row are week 3.

Figure 3 shows that the within variation of the 9 measure-
ments for each day is much smaller than the variation across
days. The cause is changing weather conditions which have a
substantial effect on the concentrations. Rain and high wind
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Figure 3: Trellis display ofL againstH givenS, D, andW .

speeds reduce concentrations and low wind speeds increase
concentrations; the 9 measurements on a given day are af-
fected in the same way by the weather. Weather conditions
are correlated through time; fronts move in and persist for
a few days. This is visible in the concentrations; the fig-
ure shows that collectively, low or high concentrations persist
across days. By contrast,D does not appear to be salient in
that there does not appear to be a systematic day of the week
effect in the data whose magnitude is more than minor com-
pared with the weather effect. The conclusion is that there is
a strong time correlation in the concentrations, across days,
which is not surprising.

Figure 3 also suggests spatial correlation, likely inducedby
the weather effects interacting with spatial position; theplume
has different shapes depending on the meteorological condi-
tions. For each of the three setbacks on one day, there are two
differences inL with height: L for H1 minusL for H2, andL
for H2 minusL for H3. There are 6 such differences for each
day. The 6 differences appear positively correlated. When one
difference is larger than average, the others tend to be larger
as well; a similar statement holds for smaller than average.A
robust estimate of the correlation matrix [31] of the six dif-
ferences is shown in Table 1. There are indeed high positive
correlations as expected from our observations of Figure 3.



2 TRELLIS DISPLAY OF LEAD CONCENTRATION DATA 4

Table 1: Robust estimates of correlation coefficients of differ-
ences.

S1:1-2 S1:2-3 S2:1-2 S2:2-3 S3:1-2 S3:2-3

S1:1-2 * 0.61 0.60 0.28 0.75 0.30

S1:2-3 0.61 * 0.75 0.51 0.91 0.73

S2:1-2 0.60 0.75 * 0.16 0.89 0.34

S2:2-3 0.28 0.51 0.16 * 0.26 0.85

S3:1-2 0.75 0.91 0.89 0.26 * 0.52

S3:2-3 0.30 0.73 0.34 0.85 0.52 *

In the source publication for the lead concentration data
[30], ANOVA was used as a model building tool. The author
states: “ One potential problem is that the lead concentration
data may be serially correlated and this could interfere with
the assumption of independently identically distributed errors.
This problem was minimized by introducing the effects of day
[day-of-the-week], week, and their interaction to isolatethe
variations due to the effects of time and hence serial correla-
tion.” Table 2 is an ANOVA for the same effects fitted by the
author. The missing value has been estimated by maximum
likelihood, but is treated as not missing for the purposes of
carrying out the ANOVA.

Table 2: Analysis of variance for lead concentration data.
Effect DF SS MS F P

S 2 0.30 0.148 5.35 0.00

H 2 2.97 1.486 53.70 0.00

D 6 16.64 2.773 100.22 0.00

W 2 19.22 9.611 347.41 0.00

S× H 4 1.00 0.251 9.06 0.00

W × D 12 38.13 3.177 114.85 0.00

S× W 4 0.07 0.018 0.65 0.63

H × W 4 0.18 0.045 1.63 0.17

Error 152 4.21 0.028

The significant effects shown in Table 2 are S, H, SH, W, D,
and DW, so these effects provide a modeling of the data. The
model is quite simple. LetLDW SH be the lead concentration
for day of the weekD, weekW , setbackS, and heightH.
Then the model is

LDWSH = µ +αDW +βSH + error

where
7

∑
D=1

3

∑
W=1

αDW =
3

∑
S=1

3

∑
H=1

βSH = 0.

In other words we model time effects with 21 coefficients that
sum to 0, and we model spatial variation with 9 coefficients
that sum to zero.

Figure 4 is the classical interaction plot discussed in Sec-
tion 1 for theH by S interaction, the spatial effect. The values
plotted are 1+ µ̂ + β̂SH for S = 1 to 3 andH = 1 to 3, whereµ̂
andβ̂SH are the least squares estimates. We see a summariza-
tion of the effect that was observed from Figure 2. These are
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Figure 4: Interaction plot forL by spatial location (H × S).
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Figure 5: Trellis display of residualL againstH given S, D,
andW .

the effects in the data as seen by the ANOVA and the resulting
model. Note that the interaction effects span a range of about
0.5 on the lead concentration scale.

The residuals from the model,̂RDWSH = LDW SH − µ̂ −
α̂DW − β̂SH , are the remaining variation inLDW SH after sub-
tracting the least squares model fit. TheR̂DWSH are the varia-
tion not explained by the model. Figure 5 graphs theR̂DWSH

in the same way that the raw data are graphed in Figure 3. We
can see clearly the correlation revealed in Figure 3 and Table
1. Now however we can judge the magnitude of the correla-
tion compared with the model fit. On many of the panels the
values span 0.5 or more, very significant compared with the
range of the effect, also 0.5. This means that the change in
the spatial effect with the meteorological conditions is quite
substantial.

The trellis plots of the lead concentrations show us that the
simple ANOVA model of the data misses an important effect
with a large magnitude. Furthermore, the effect is quite com-



3 MODELING DATA FROM A RESIST EXPERIMENT 5

plex, an interaction between meteorological conditions and
the spatial pattern — a changing plume. Unfortunately, the
current data are not sufficient to estimate this effect. Given
the salience of the effect we must conclude that the experi-
ment has not succeeded in its goal, which is an understanding
of spatial variation. Success would require detailed informa-
tion about the meteorology, or a large enough number of days
to provide a representative sample of meteorological condi-
tions.

3. MODELING DATA FROM A RESIST
EXPERIMENT

Computer chips are manufactured by creating them on wafers,
circular or near-circular silicon disks that are coated andpro-
cessed by hundreds of steps. Then the wafers are cut up to
produce the individual chips. One manufacturing process is
etching: coating a wafer with a resist solution, exposing the
resist to light to create the chip features, and then placingthe
wafer in a developer solution to remove the exposed areas of
the resist.

In an experiment run to improve the resolution of the fea-
tures, processing of the wafers involved the following steps
[32]: (1) coat a wafer with a resist solution containing a new
photoacid generator, whose amount, orload, was varied in the
experiment; (2) use one of twosolvents in the resist solution;
(3) expose the coated wafer to 248 nm light shone through a
photo mask; (4) bake the wafer at atemperature that was var-
ied and for aduration that was varied; (5) develop the wafer
for 60 seconds in a developer solution. The response in the
experiment is the clearing dose,C, measured in mJ/cm2. This
is the light energy per unit of area required to remove the resist
in a cross-shaped region 100µm by 150µm. This is deter-
mined by applying a series of light energies to determine the
smallest amount that removes the resist. The following are the
factors in the experiment: (1)T , temperature of bake cycle (◦

C); (2)L, load of the photoacid generator (% wt); (3)D, dura-
tion of bake cycle (sec); (4)S, solvent, with value 1 for solvent
1 and value 2 for solvent 2.

The experimental design consisted of 36 runs with values
of the factors in the design space chosen to optimize estima-
tion of a conjectured model for the response surface forC: a
full quadratic inT , L, andD; for S, a main effect and interac-
tions with the linear terms of the other variables.

3.1. Analysis of Variance

Table 3 shows an ANOVA for the conjectured model. The
F-values and probabilities are those for adding each term to
a model with all other terms. The quadratic term forT is
significant but not for the other two numeric variables. The
interaction ofS with the numeric variables is significant only
for L. The results are unintuitive. It is possible the design is

Table 3: Analysis of variance for resist data.
Effect DF SS MS F P

S 1 2193.36 2193.36 20.35 0.00

T 1 13323.44 13323.44 123.61 0.00

L 1 4977.83 4977.83 46.18 0.00

D 1 4054.75 4054.75 37.62 0.00

T2 1 1091.47 1091.47 10.13 0.00

L2 1 69.90 69.90 0.65 0.43

D2 1 29.37 29.37 0.27 0.61

D × T 1 1004.99 1004.99 9.32 0.01

T × L 1 1455.48 1455.48 13.50 0.00

D × L 1 1048.62 1048.62 9.73 0.00

S× T 1 52.46 52.46 0.49 0.49

S× L 1 554.89 554.89 5.15 0.03

S× D 1 66.41 66.41 0.62 0.44

Error 22 2371.33 107.79
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Figure 6: Conditioning intervals forD, L, andT .

not sufficient to estimate the effects. If we are to reliably es-
timate the effects we need more insight into the data than that
given by the ANOVA. We need some good luck in the form of
a simple model explaining the data, and we need methods that
allow us to perceive the simpler structure if it exists.

3.2. Trellis Display of the Raw Data

We will use trellis display of the raw data to search for insight
into the dependence of the response on the factors. Figure 6
shows intervals that will be used for conditioning on the three
numeric variablesT , D, andL. Each set of 3 conditioning
intervals consists of low, medium, and high values. Low val-
ues are a constant and high values are a constant in each case.
Conditioning onS is simple; there are two conditioning cate-
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Figure 7:C againstT givenD, L, andS.
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gories, solvent 1 (1) and solvent 2 (2).
Figure 7 is a trellis display ofC againstT givenD, L, andS.

Each panel shows the values ofC andT for those runs withD
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Figure 9:C againstL givenD, T , andS.

in one of its intervals andL in one of its intervals, and on the
panelS is encoded by the symbol color and plotting symbol;
solvent 1 is cyan+, and solvent 2 is magenta◦. To avoid
exact overlap of some data points, a small amount of random
uniform noise has been added to the values ofT . The intervals
of D are the same for all panels in the same column; as we go
from left to right through the columns, the intervals increase.
The intervals ofL are the same for all panels in the same row;
as we go from bottom to top through the rows, the intervals
increase. The strip label for each panel contains a graphical
portrayal of the conditioning interval. The strip has a scale
but there are no tick marks to indicate the numeric values of
the interval; the scale value at the left endpoint of a strip label
is the minimum value of the measurements of the conditioning
variable, the scale value at the right endpoint is the maximum,
and the darkened bar shows the interval. Figure 8 is a trellis
display ofC againstD givenL, T andS. Figure 9 is a trellis
display ofC againstL givenD, T , andS.

3.3. Exploiting An Observed Regularity

The three trellis displays show patterns that suggest a possible
route to a simple model. On each display the panels have a
nearly linear pattern with a negative slope, but as the overall
level ofC decreases, the absolute value of the slope decreases.
In addition, whenC is large overall, solvent 1 (cyan,+) has
somewhat larger values than those for solvent 2 (magenta,◦),
but for smaller values ofC overall, the two are quite close.
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This diminishing of the effects of the factors as the overall
levels of the response decrease would occur if a power trans-
formation of the response surfaceCλ (S,L,T,D) was linear in
the four factors. In this case we have

C(S,L,T,D) = (µ +αS+βL+ γT +δD)λ−1
.

The derivative ofC with respect to any one of the numeric
variables, sayL, is

dC
dL

= βλ−1(µ +αS+βL+ γT +δD)λ−1−1

= βλ−1C(S,L,T,D)λ−1−1.

It is easy to see that an analogous result holds forS. So the
derivatives change with the level ofC(S,L,T,D). If the above
linearity occurs for a power transformation ofC, if λ < 0, and
if α,β ,γ, andδ are all positive, then the behavior would be
like that in Figures 7 to 9.

The idea of using visual displays to spot removable non-
additivity is not new and has been explored extensively in the
past. Seminal work is that of Tukey [33, 34, 35]. What we
suggest here is that trellis display is an effective visualization
mechanism for carrying this out. An important point is that it
is not simply the existence of interactions that suggests trans-
formation, but rather the form they take, specifically the de-
pendence on the level ofC.

There are, in fact, other indications of the need for transfor-
mation ofC. When we fit the terms in Table 3 withp ≤ 0.03,
the residuals are skewed and their variance increases with the
level of the fitted values. Both of these can, when the structure
is of a certain form, also be removed by transformation.

We used the Box-Cox method [36] to investigate power
transformation, including the logarithm. The transformation
family is

C(λ ) =

{

Cλ−1
λ if λ 6= 0

log(C) if λ = 0.

The model is

C(λ )
i = µ +αSi +βLi + γTi +δDi + εi,

where theεi are independent N(0,σ2).
The maximum likelihood for fixedλ occurs at the least

squares estimates ofCi(λ ) fitted to the values of the factors.
Let Z(λ ) be the residual sum of squares of this fit, then the
maximized likelihood atλ is

(

n
Z(λ )

)n/2 n

∏
i=1

Cλ−1
i .

Let ℓ(λ ) be this maximized likelihood divided by its maxi-
mum acrossλ .

Figure 10 graphsℓ(λ ) for values ofλ from−2 to 1 in steps
of 0.001. The maximum ofℓ(λ ) occurs atλ =−0.405. How-
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Figure 10: Normalized, maximized likelihood function for
Box-Cox transformation.

ever,ℓ(−0.5) is not far from the value at the maximum, so we
take the transformation to be the inverse square root 1/

√
C.

The units ofC are mJ/cm2, so the units of 1/
√

C are cm/
√

mJ.
Figures 11 to 13 are trellis displays of 1/

√
C against each

of the three factorsT , L, andD with the same format as Fig-
ures 7 to 9. The plots suggests that the dependence of 1/

√
C

on the factors is linear and additive, that is, no interactions are
present.

Table 4 shows an analysis of variance for 100/
√

C, carried
out in the same manner as in Table 3. The new table also sug-
gests an absence of non-linearity and interaction. Nature has
been exceedingly good to us. A simple power transformation
of C has resulted in a very simple model.

Table 4: Analysis of variance for 100/
√

Ci fitted toTi, Li, Di,
andSi.

Effect DF SS MS F P

S 1 41.70 41.70 28.46 0.00

T 1 357.89 357.89 244.21 0.00

L 1 57.88 57.88 39.50 0.00

D 1 88.58 88.58 60.45 0.00

T2 1 0.05 0.05 0.03 0.86

L2 1 0.28 0.28 0.19 0.67

D2 1 0.05 0.05 0.03 0.85

D × T 1 3.70 3.70 2.52 0.13

T × L 1 0.37 0.37 0.25 0.62

D × L 1 4.33 4.33 2.96 0.10

S× T 1 0.38 0.38 0.26 0.61

S× L 1 1.50 1.50 1.02 0.32

S× D 1 0.10 0.10 0.07 0.79

Error 22 32.24 1.47
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Trellis displays of the residuals on the transformed scale
suggest our additive model has no appreciable lack of fit. One
such residual display is shown in Figure 14, a trellis graph of
the residuals againstT givenD, L, andS. A normal quantile
plot of the residuals shows that their distribution is well ap-
proximated by the normal. A spread-location, or s-l, plot [10]
shows that the variance does not change with the fitted values.
The estimate of the standard deviation using the residuals is
0.0121, a very small number since the range of 1/

√
C is close

to 0.30; the model explains much of the variation in the data.

3.4. Trellis Display of the Fitted Response Surface:
Higher Order Interaction Plots

Our goal in modeling is to find a parsimonious model that
uses as few degrees of freedom as possible to estimate param-
eters. Overall, this makes the process of experimental design
even more efficient. Doing this can involve, as in this case, a
transformation of the response. This can take us to a scale of
measurement for the response for which there is less intuition.
However, this need not interfere with interpretation because
we can transform back to the original scale in viewing results.
This is done next.

Trellis display is also very effective for studying models fit-
ted to data from designed experiments, providing a convenient
and effective expansion of the interaction plot to higher order
interactions. This is illustrated in the three trellis displays of
Figure 15. The simple model for 1/

√
C just fitted has been

transformed back to the original scale by the inverse square,
allowing study on the scale of mJ/cm2 to appeal to engineer-
ing intuition about clearing dose. There is one trellis display
for each numeric factor.

For example, in the left display of Figure 15,C is graphed
againstT given D, L, andS. There are 16 panels on the dis-
play. There are 4 equally spaced values ofD and 4 equally
spaced values ofL, each ranging from the minimum to the
maximum value in the data.C is valued for all 16 combina-
tions of these two factors at 50 values ofT for each of the two
values ofS. This results in two curves on each panel, one for
solvent 1 (cyan) and one for solvent 2 (magenta). The other
two displays have similar evaluations.

Figure 15 shows the non-linearity and the strong interac-
tions among all factors revealed in our initial trellis plots of
the data, albeit far more incisively here. For example, in the
left trellis display of Figure 15, we see clearly that as the con-
ditioning value ofD increases for fixedL, or as the condition-
ing value ofL increases for fixedD, the magnitudes of the
three quantities —C, dC/dT , d2C/dT 2 — all decrease. We
can also see that solvent 1 (cyan) results in a largerC than
solvent 2 (magenta). From this display we are able to assess
the complex properties, which possess complex interactions
of the factors. This shows why modeling on the original scale
of C, mJ/cm2, is so challenging.

4. MODELING LIQUID CRYSTAL DATA

4.1. Polymer-Dispersed Liquid Crystal Displays

Reflective displays that are visible in ambient lighting andop-
erate without back lights reduce weight and power require-
ments. Polymer dispersed liquid crystals (PDLCs) are promis-
ing materials for these reflective displays. Under normal con-
ditions, the droplets of a liquid crystal are randomly oriented,
and the material is white because light is scattered. But when a
voltage is applied to a section of the liquid crystal, the droplets
align, scattering is reduced, and the section becomes transpar-
ent. If the background behind the material is black, applying
a voltage makes the section go from white to black.

4.2. The Experiment

The switching voltage is the voltage necessary to align the
droplets. One series of experiments [37] studied the depen-
dence of switching voltage,V , on three factors:

• the amount,M, of liquid crystal in the mixture, measured
in wt %;

• the intensity,I, of the light used in the processing, mea-
sured in mW/cm2;

• the temperature,T , of the mixture during processing,
measured in◦C.

We will describe here the modeling of the data from the
pilot experiment that began the series. In the pilot, each triple
of values of the three factors was close to one of nine design
locations — the corners and center of a cube whose edges are
parallel to the factor axes. Eight of the design locations had
two runs and one had three, so there were 19 runs in all.

4.3. Analysis of Variance

Table 5 shows an ANOVA for an overall model that is
quadratic in the variables. If we drop the terms that are in-
significant, the residual sum of squares, 6.22 V2, remains
nearly the same and̂σ = 0.74 V. But if in this reduced model
we dropT 2 and replace it withM2, the residual sum of squares
also remains nearly the same. Thus this ANOVA does not
yield an unambiguous model specification. We should not
take this to mean that there is an irresolvable ambiguity in the
data because, our ANOVA rests on the unsubstantiated hy-
pothesis that the overall quadratic model adequately describes
the structure in the data.

4.4. Trellis Displays of the Raw Data

We will use trellis display to search for insight into the
dependence of the response on the factors. Each factor in the
experiment —I, M, andT — has low values, medium values,
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Figure 15: Left: FittedC againstT givenD, L, andS; Middle: FittedC againstD givenL, T , andS; Right: FittedC againstL
givenD, T , andS.
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Figure 16: Left:V againstM givenT andI; Middle: V againstT givenM andI; Right: V againstI givenM andT .

and high values. We will condition on each factor using three
intervals that divide its values into low, medium, and high.
The number of combinations of the three sets of three intervals
is 27. However, the design only covers 9 of them, so we can
expect to see gaps in the trellis displays.

The left trellis display of Figure 16 graphsV againstM
givenT andI. The values ofT go from low to medium to high
as we go from left to right through the columns. The values of
I go from low to medium to high as we go from bottom to top

through the rows. For the highest level ofT , there is a large
decrease inV with M; for the lowest level, there is a small
decrease. Furthermore, for the middle level ofT , the values
of V are close to what they are for the lowest level ofT . But
the changes inV with M do not appear to depend on the level
of I. Thus there appears to be a strong interaction betweenT
andM, but no interaction betweenI andM.

The middle trellis display of Figure 16 graphsV againstT
givenM andI. There is more information about theT andM
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Table 5: Analysis of variance for liquid crystal data.
Effect DF SS MS F P

I 1 6.49 6.49 9.40 0.01

M 1 219.23 219.23 317.38 0.00

T 1 126.43 126.43 183.04 0.00

I2 1 0.23 0.23 0.34 0.58

M2 1 0.64 0.64 0.93 0.36

T2 1 14.49 14.49 20.98 0.00

M × T 1 126.39 126.39 182.97 0.00

I × T 1 0.02 0.02 0.03 0.87

I × M 1 0.03 0.03 0.04 0.85

Error 9 6.22 0.69

interaction. ForM at the lowest level,V increases by a large
amount withT . But for M at the highest level, there does not
appear to be an effect due toT . And for M at the middle level,
V has values close to what they are forM at the highest level.
Finally, there appears to be no appreciable interaction between
I andT .

The right trellis display of Figure 16 graphsV againstI
givenM andT . As I increases,V decreases. The sizes of the
decreases vary but there is no consistent pattern to their varia-
tion and the magnitude of the variation is not large compared
with the variation of the replicated points, so there appears to
be little or no interaction betweenI and the other two factors.

4.5. Modeling the Data

The ANOVA carried out earlier was predicated on a
quadratic dependence ofV on the factors:M, T , andI. But
the structure of the data revealed by the trellis displays calls
into question the appropriateness of a quadratic model. The
reason is the radical change in slope. As a function ofM and
T , V is large forM at the lowest level andT at the highest.V
is much smaller and nearly flat elsewhere.

Let us describe the structure we observed in the trellis dis-
plays in terms of Figure 17, a scatter-plot of the measurements
of M and I with a small amount of uniform random noise
added to break up the overlap of plotting symbols. (The line
on the plot will be explained later.) At the points in the lower
right corner,V is high and much lower everywhere else. In
going from the points in the upper left to the lower left, there
is a small increase inV . In going from the upper left to the up-
per right,V is constant. At the two center points,V is between
where it is for the upper points (left and right) and where it is
in the lower left.

A simple model explains the structure revealed by the trel-
lis displays: (1) linear inI; (2) a continuous piecewise linear
spline inT andM consisting of two half planes that join along
a line in theT andM space that, in Figure 17, is close to the
center points and the points in the lower left and upper right;
(3) the half plane covering the upper left in Figure 17 has zero
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Figure 17: Measurements ofM andT . The line is the esti-
mated join line of the spline surface.
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Figure 18: Partial residual plot graphsVi − γ̂Ii againstMi −
α̂ −βTi.

slope. Thus the model is

Vi = µ + γIi +δ (Mi −α −βTi)
−+ εi

wherex− is x if x < 0 and is 0 otherwise. The join line is

M−α −βT = 0.

We will begin with an assumption that theεi are independent
and normally distributed with mean 0 and constant variance
σ2. Thus the parameters will be estimated by nonlinear least-
squares. The residual sum of squares is 4.8 V2, andσ̂ = 0.55
V, better than the quadratic models. Residual plots suggest
there is no significant lack of fit and that the above assump-
tions about the error termsεi are reasonable.

The line drawn in Figure 17 is the estimated join line,

M− α̂ − β̂T = 0.

Figure 18 is a partial residual plot that shows the spline fit.
Vi − γ̂Ii is graphed againstMi − α̂ −βTi. The fitted function
tracks the data. The spline fit explains the subtle behavior in
the trellis displays of the data in Figure 16.
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5. DISCUSSION

We investigated the use of the conditioning methods of
trellis display for experimental data with a small number of
runs including highly fractionated designs. Such experiments
arise in settings where each run is very expensive, or as in
some computer experiments, each run takes a long time. The
investigations, which covered a large number of data sets over
time, have led to several conclusions.

Trellis display is almost always quite useful for modeling
data from these experiments, and commonly produces major
changes in the analysis, modeling, and results due to the dis-
covery of patterns in the data not suspected before the data
were collected. The finding is true even for highly fractionated
experiments. The pattern discovery is a result of the scope of
the trellis conditioning methods. They are applicable not just
to fitted models, but also to the raw data. This allows incisive
assessments of patterns in the data that can lead to substantial
improvements to models initially entertained, or to a conclu-
sion that an experiment failed. Both were demonstrated in the
examples described here.

We also found that ANOVA, used pervasively in the anal-
ysis of experimental data, is a powerful tool for answering
specific questions about models for data, but a poor tool for
guiding the overall modeling process.

One might find it remarkable that conditioning methods can
often succeed for highly fractionated experiments. Condition-
ing for such designs often results in just a few points on the
panel of a trellis display, potentially making it hard to assess
dependence because of variability in the error term. However,
we found patterns often did emerge as demonstrated in our
examples. The reason appears to be that for success, highly
fractionated designs require an engineering practice thatkeeps
error variability small. Such designs, by their very nature, can-
not succeed in cases with large error variability that require a
large aggregation of runs to see a signal. The very practices
that make such experiments succeed allow trellis methods to
succeed.
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