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Abstract: Visualizing data by graphing a response against certatorfgcand conditioning on other factors, has arisen indepen
dently in many contexts. One is the interaction plots usetthénanalysis of data from designed experiments; these ghms
conditional dependence based on the output of methods adélsnapplied to the data. Trellis display, a framework fa th
visualization of multivariable data, allows conditionitmbe readily carried out in a general way. It was developéaily in

the context of data sets with a moderate or large number @reations to support the conditioning. This article denti@tes
through examples that trellis display is also a highly ubéBualization framework for designed experiments witmaa#i number

of runs. Trellis allows the visualization of conditionalmindence, not based only on the output of models and metbgidslso
based on the raw data directly, which greatly aids the modidibg process. Trellis can even succeed for highly frawied
designs. The reason appears to be that for success, sughslesjuire an engineering practice that keeps error \iityedmall,
which allows interpretable patterns to emerge on conditpdisplays with a limited number of plotted points.

Keywords: Data visualization, statistics, machine learning, fiawail factorial design, interaction plot, model building.

1. INTRODUCTION investigation of the use of trellis in analyzing data from de
signed experiments that result in small data sets. While the
Trellis display is a framework for the visualization of mul-  sizes of data sets have grown dramatically in many domains,
tivariable data [1, 2, 3, 4]. One capability is a mechanism to controlled experiments with a small number of runs are still
study the dependence of a response variable on predictive fa commonplace in the many settings where a single run is very
tor variables. It does this through a mechanism for visiradiz ~ costly [8]. It is often the case that designed experimenrds ar
the dependence of the response on one set of factors, givehighly fractionated: values of each factor are chosen, limit t
values of other factors. The visual design allows assesdsmenexperiment is run on just a small fraction of the number of
of how the conditional dependence changes with the givenpossible combinations of the values of the factors.
values. This can be done for both the raw data and for the The question in our investigation was whether success us-
numeric and categorical output of mathematical methods anding trellis conditioning methods and visual methods wouéd b
models applied to the data. The former is particularly valu- inhibited by the limited number of runs and fractional exper
able, allowing an understanding of the patterns of depeselen imental design. It seemed quite possible to us that for such
in the data free of assumptions about the patterns. Figwse 1 i data the number of observations in each subset resulting fro
a trellis display that shows the dependence of a response om multiple conditioning would often be too small for pattern
one factor given three others using the raw data. The data ando be seen. Our investigation, over a long period, has cteakis
the display will be described in Section 2. of using trellis in the analysis of data from many experinsent
The success of trellis display in the visualization of multi reported in the literature, some arising in our own work.
variable data has led to implementations in a number of soft- Displaying data by conditioning has surfaced indepen-
ware systems including S-Plus [5], R [6], and Tableau [7]. dently in a number of places and for many different types of
Trellis display was originally developed in the context of data[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. The experimen-
moderate, large, and very large data sets, and has beetywideltal design literature contains a long history of data viiaaal
used in this context. This article reports the results of an tion [20, 21, 22, 23, 24]. Included in this design literatise
a widely used method of visualizing conditional dependence
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cal methods and models. The analysis of variance (ANOVA), 15 \ N -
used pervasively in the analysis of experimental data, is a 104 L
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terms in a model for the data, and thus is a model building
tool. We discuss the relative power of ANOVA and the trellis
visual methods. Height

2  TRELLISDISPLAY OF LEAD CONCENTRATION Figure 1: Trellis display of. againstH givenD, W, andS.

DATA

Lead concentrations at a site next to a major roadway ininto 21 columns and 3 rows. Each panel has a scatter-plot of
Ohio were measured and analyzed in an experiment to de-againsH givenD, W, andS. The strip labels at the top of each
termine their spatial variation [30]. The concentratioreyev  panel indicate the values of the three conditioning vaests
measured at 9 positions on one side of the roadway. Therechanges with the row; for row 1, the bottom rdBis smallest,
were three setback distances from the roadway: 2.8 m, 7.1 mand then increases as we go up the rows. As we go left to right
and 21.4 m. There were three heights: 1.1 m, 6.3 m, and 10.8hrough the columns of each row, we go in order through the
m. The 9 positions, each height combined with each setbackdays. In a similar manner, Figure 2 is a trellis displayLof
distance, form a 3 by 3 vertical spatial grid. Measurements againstSgivenD, W, andH.
were made at the nine positions for 21 consecutive days. Each Figure 1 shows that tends to decrease &$ increases.
measurement is an accumulation of lead over a period of 24The decline as a function &f lessens aSincreases. In other
hours. Thus the data consist of 21 daily lead measurements atvords there is a spatial effect with an interaction betwiden
each of the 9 positions; one observation is missing. For suchandS, which is not surprising.
data we would expect the lead concentrations to be affected Figure 2 shows the spatial effect in a different way. There
by a host of factors: meteorological conditions; traffic,ieth is mixed behavior in the dependence of leadSnFor the
has a day-of-the-week effect; and spatial position. smallest value oH, L decreases witts. But for the mid-

The lead data consist of five variables: (1) lead concentra-dle value ofH, L typically first increases witl$ and then de-
tion, L; (2) setback distanc& (3) height,H; (4) day-of-the- creases. For the largddt lead occasionally has the increase-
week,D; (5) week numbelV. D andW describe time —that  decrease pattern for about 1/3 of the days, most of them days
is, the day — but do so in a way that allows for a day-of-the- with large concentrations, and is relatively stable for the
week effect. There arexd3 x 21— 1 = 188 measurements of maining days. This behavior is consistent with air transpor
each of the five variables. mechanisms. Lead is emitted at ground level from automo-

Figure 1 is a trellis display of againstH given D, W, bile tail pipes. The closest of the 9 monitors, the one with
andS. The display consists of>&1 = 63 panels arranged the smallest values ¢ andS, has the largest concentrations
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Figure 3: Trellis display of. againstH givenS, D, andW.
Figure 2: Trellis display ot againstSgivenD, W, andH. g play 9 9 S

speeds reduce concentrations and low wind speeds increase

because it is close to the pollution source. From the sourceconcentrations; the 9 measurements on a given day are af-
the lead is carried laterally by the wind, spreading upwaritl a fected in the same way by the weather. Weather conditions
moves. This plume-like behavior can cause the concentiatio are correlated through time; fronts move in and persist for
to be relatively small at the higher monitors with the clases a few days. This is visible in the concentrations; the fig-
setback. ure shows that collectively, low or high concentrationssistr

The arrangement of the panels in Figure 1 allows study of across days. By contradd, does not appear to be salient in
3 collections of patterns, one collection for each row. This that there does not appear to be a systematic day of the week
provides a comparison of the patterns of dependenteowf effect in the data whose magnitude is more than minor com-
H asSchanges. Suppose, however, that we want to study thepared with the weather effect. The conclusion is that there i
3 patterns for each day, and then compare the 21 collectfons oa strong time correlation in the concentrations, across,day
daily patterns. This is a more difficult task in Figure 1 bessau  which is not surprising.
the 3 panels for each day are arranged vertically in such a Figure 3 also suggests spatial correlation, likely indumyed
way that we have a reduced ability to visually assemble thethe weather effects interacting with spatial position;ghane
3 patterns. In Figure 3, the panels have been rearranged thas different shapes depending on the meteorological €ondi
facilitate the study of the daily patterns. Now the 3 panefs f tions. For each of the three setbacks on one day, there are two
each day are juxtaposed horizontally, and each row is now thedifferences irL with height: L for H1 minusL for H2, andL
data for one week. The panels in the bottom row are week 1,for H2 minusL for H3. There are 6 such differences for each
the panels in the middle row are week 2, and the panels in theday. The 6 differences appear positively correlated. When on
top row are week 3. difference is larger than average, the others tend to berarg

Figure 3 shows that the within variation of the 9 measure- as well; a similar statement holds for smaller than average.
ments for each day is much smaller than the variation acrossobust estimate of the correlation matrix [31] of the six-dif
days. The cause is changing weather conditions which have derences is shown in Table 1. There are indeed high positive
substantial effect on the concentrations. Rain and higldwin correlations as expected from our observations of Figure 3.
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Table 1: Robust estimates of correlation coefficients dédif el
ences.
S1:1-2  S1:2-3  S21-2  S2:23  S31-2  S3:213 5 121
s11-2 | * 0.61 0.60 0.28 0.75 0.30 B
S1:2-3 | 061 * 0.75 0.51 0.91 0.73 % 11 I
s21-2| 060 075  * 016 089  0.34 S
$223| 028 051 016  * 026 085 2 ol /\ I
S3:1-2 | 0.75 0.91 0.89 0.26 * 0.52 E 2
S3:2-3 | 0.30 0.73 0.34 0.85 0.52 * 094 /_’—’_ |

H3

In the source publication for the lead concentration data e s s

[30], ANOVA was used as a model building tool. The author Setback Distance
states: “ One potential problem is that the lead concenotrati
data may be serially correlated and this could interferd wit
the assumption of independently identically distributedies.

This problem was minimized by introducing the effects of day ﬁﬁg g;f ;§
[day-of-the-week], week, and their interaction to isoltte

variations due to the effects of time and hence serial amrrel 0.0 J/\/\ ////\/AJ\\\\//\/\\//N
tion.” Table 2 is an ANOVA for the same effects fitted by the

author. The missing value has been estimated by maximum 2wz W [z ez vz [z | ez vz [z vz vz vz [z Wz [z ez ez vz
likelihood, but is treated as not missing for the purposes of 155 S S0 5 | S 1 3] S S ST B8] S S s ST SeT 5
carrying out the ANOVA.

Figure 4: Interaction plot fok by spatial location] x S).
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Table 2: Analysis of variance for lead concentration data.
Effect DF SS MS F P

Residual Lead Concentration

s 2 030 0.148 535 0.00 ol [
H 2 297 148 5370 0.00 0.0 /F/J\/\\A\H\/\//«Jv /ﬁ\‘\.\/ﬁ“ﬁ
D 6 16.64 2773 10022  0.00 22 [
w 2 1922 9611 34741 0.00
SxH 4 100 0251 9.06 0.00
WxD 12 3813 3.177 11485 0.00 Height
SxW 4 007 0018 0.65 0.63
Hx W 4 018 0.045 1.63 017 Figure 5: Trellis display of residudl againstH given S, D,
Error 152 421 0.028 andW.

The significant effects shown in Table 2 are S, H, SH, W, D,
and DW, so these effects provide a modeling of the data. Thethe effects in the data as seen by the ANOVA and the resulting
model is quite simple. Letpwsy be the lead concentration model. Note that the interaction effects span a range oftabou

for day of the weelkD, weekW, setbackS, and heightH. 0.5 on the lead concentration scale.
Then the model is The residuals from the modeRowsH = Lowst — f —
Gpw — Bs, are the remaining variation ibpwsy after sub-
LowsH = M+ apw + Bs+ +error tracting the least squares model fit. TRgvgy are the varia-

tion not explained by the model. Figure 5 graphs fags+

7 3 3 3 in the same way that the raw data are graphed in Figure 3. We
DZ \AZ Opw = g ; Bs1 = 0. can see clearly the correlation revealed in Figure 3 andeTabl

=1W=1 1H=1 1. Now however we can judge the magnitude of the correla-
In other words we model time effects with 21 coefficients that tion compared with the model fit. On many of the panels the
sum to 0, and we model spatial variation with 9 coefficients values span 0.5 or more, very significant compared with the
that sum to zero. range of the effect, also 0.5. This means that the change in

Figure 4 is the classical interaction plot discussed in Sec-the spatial effect with the meteorological conditions isteu

tion 1 for theH by Sinteraction, the spatial effect. The values substantial.
plotted are - [i + B4 for S=1to 3 andH = 1 to 3, whergl The trellis plots of the lead concentrations show us that the
andfgq are the least squares estimates. We see a summarizasimple ANOVA model of the data misses an important effect
tion of the effect that was observed from Figure 2. These arewith a large magnitude. Furthermore, the effect is quite-com

where
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plex, an interaction between meteorological conditiond an
the spatial pattern — a changing plume. Unfortunately, the
current data are not sufficient to estimate this effect. Give

Table 3: Analysis of variance for resist data.
Effect DF SS MS F P

the salience of the effect we must conclude that the experi- f 11 15;2::22 1222232 122‘_2? gff;
ment has not succeeded in its goal, which is an understanding L 1 4977.83  4977.83 4618 0.00
of spatial variation. Success would require detailed imi@r D 1 405475 405475  37.62 0.00
tion about the meteorology, or a large enough number of days T2 1 109147 109147 1013 0.0
to provide a representative sample of meteorological eondi L2 1 69.90 69.90 065 043
tions. D? 1 29.37 29.37 0.27 0.61
DxT 1 1004.99 1004.99 9.32 0.01
TxL 1 1455.48 1455.48 13.50 0.00
3. MODELING DATA FROM A RESIST P s
EXPERIMENT SxL 1 554.89 554.89 5.15 0.03
Computer chips are manufactured by creating them on wafers, SETrEr 212 236761'_4313 f:}ilg poz oM
circular or near-circular silicon disks that are coated prad
cessed by hundreds of steps. Then the wafers are cut up to © 125 1 .
produce the individual chips. One manufacturing processis 2 | | |
etching: coating a wafer with a resist solution, exposirg th 3 15 | |
resist to light to create the chip features, and then plattiag E
wafer in a developer solution to remove the exposed areas of "~ - T - T - !
the resist. Rank
In an experiment run to improve the resolution of the fea-
tures, processing of the wafers involved the following step 3.2+ r
[32]: (1) coat a wafer with a resist solution containing a new 7 207 r
photoacid generator, whose amountiaad, was varied in the S 289 o i
experiment; (2) use one of twsnlventsin the resist solution; 267 r
(3) expose the coated wafer to 248 nm light shone through a 0 10 20 20
photo mask; (4) bake the wafer atemperature that was var- Rank
ied and for aduration that was varied; (5) develop the wafer
for 60 seconds in a developer solution. The response in the . 22 I
experiment is the clearing dosg, measured in mJ/cfn This % 70 -
is the light energy per unit of area required to remove thistres 3 01 e r
in a cross-shaped region 1@0n by 150um. This is deter- 1 I

mined by applying a series of light energies to determine the 0 10 20 30
smallest amount that removes the resist. The followinghae t Rank
factors in the experiment: (1), temperature of bake cyclé (
C); (2)L, load of the photoacid generator (% wt); (3) dura-
tion of bake cycle (sec); (4, solvent, with value 1 for solvent
1 and value 2 for solvent 2. not sufficient to estimate the effects. If we are to reliatsy e
The experimental design consisted of 36 runs with valuestimate the effects we need more insight into the data than tha
of the factors in the design space chosen to optimize estimayiven by the ANOVA. We need some good luck in the form of
tion of a conjectured model for the response surfac€foa 3 simple model explaining the data, and we need methods that
full quadratic inT, L, andD; for S, a main effect and interac-  ajlow us to perceive the simpler structure if it exists.
tions with the linear terms of the other variables.

Figure 6: Conditioning intervals fdp, L, andT.

3.2. TrellisDisplay of the Raw Data

3.1. Analysisof Variance
y We will use trellis display of the raw data to search for iig

Table 3 shows an ANOVA for the conjectured model. The into the dependence of the response on the factors. Figure 6
F-values and probabilities are those for adding each term toshows intervals that will be used for conditioning on thesthr

a model with all other terms. The quadratic term Tforis numeric variablesr, D, andL. Each set of 3 conditioning
significant but not for the other two numeric variables. The intervals consists of low, medium, and high values. Low val-
interaction ofSwith the numeric variables is significant only ues are a constant and high values are a constant in each case.
for L. The results are unintuitive. It is possible the design is Conditioning onSis simple; there are two conditioning cate-
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Figure 8:C againstD givenL, T, andS.

gories, solvent 1 (1) and solvent 2 (2).

Figure 7 is a trellis display ¢ againsftTl givenD, L, andS.
Each panel shows the values@andT for those runs wittb
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Figure 9:C against givenD, T, andS.

in one of its intervals and in one of its intervals, and on the
panelSis encoded by the symbol color and plotting symbol;
solvent 1 is cyant, and solvent 2 is magenta To avoid
exact overlap of some data points, a small amount of random
uniform noise has been added to the valueE.ofhe intervals

of D are the same for all panels in the same column; as we go
from left to right through the columns, the intervals inc@ea
The intervals oL are the same for all panels in the same row;
as we go from bottom to top through the rows, the intervals
increase. The strip label for each panel contains a graphica
portrayal of the conditioning interval. The strip has a scal
but there are no tick marks to indicate the numeric values of
the interval; the scale value at the left endpoint of a sahel

is the minimum value of the measurements of the conditioning
variable, the scale value at the right endpoint is the maximu
and the darkened bar shows the interval. Figure 8 is a trellis
display ofC againstD givenL, T andS. Figure 9 is a trellis
display ofC against. givenD, T, andS.

3.3. Exploiting An Observed Regularity

The three trellis displays show patterns that suggest aljjess
route to a simple model. On each display the panels have a
nearly linear pattern with a negative slope, but as the divera
level ofC decreases, the absolute value of the slope decreases.
In addition, wherC is large overall, solvent 1 (cyan;) has
somewhat larger values than those for solvent 2 (magehta,

but for smaller values o overall, the two are quite close.
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This diminishing of the effects of the factors as the overall

levels of the response decrease would occur if a power trans-

formation of the response surfacé(S L, T,D) was linear in
the four factors. In this case we have

C(SL,T,D) = (U+aS+PL+yT+3D)* .

The derivative ofC with respect to any one of the numeric
variables, say, is

dc
dL

BAY(u+aS+BL+yT +8DA 1

= BAlc(SLT.DA L

It is easy to see that an analogous result holdsSfogo the
derivatives change with the level 6fS L, T, D). If the above
linearity occurs for a power transformation@fif A < 0, and

if a,B,y, andd are all positive, then the behavior would be
like that in Figures 7 to 9.

The idea of using visual displays to spot removable non-
additivity is not new and has been explored extensively én th
past. Seminal work is that of Tukey [33, 34, 35]. What we
suggest here is that trellis display is an effective visazion
mechanism for carrying this out. An important point is that i
is not simply the existence of interactions that suggeatsstr
formation, but rather the form they take, specifically the de
pendence on the level &f.

There are, in fact, other indications of the need for tramsfo
mation ofC. When we fit the terms in Table 3 with< 0.03,
the residuals are skewed and their variance increaseshwith t
level of the fitted values. Both of these can, when the stractu
is of a certain form, also be removed by transformation.

We used the Box-Cox method [36] to investigate power
transformation, including the logarithm. The transforioat

family is
c® = {

The model is
CM = u+aS+BLi+yTi+ 5D +¢,

c’-1
log(C)

ifA#£0
if A =0.

where theg; are independent (0, 02).

The maximum likelihood for fixedd occurs at the least
squares estimates 6f(A) fitted to the values of the factors.
Let Z(A) be the residual sum of squares of this fit, then the
maximized likelihood af is

n n/2 n

(zt) Qe

Let ¢(A) be this maximized likelihood divided by its maxi-
mum across\ .

Figure 10 graphg(A ) for values ofA from —2to 1 in steps
of 0.001. The maximum of(A) occurs at = —0.405. How-

o I o o |
N IS =) ® o
! L I ! !

Normalized Maximized Likelihood

o
o
!

T T T T T T T
-20 -15 -10 -05 00 0.5 1.0

A

Figure 10: Normalized, maximized likelihood function for
Box-Cox transformation.

ever,/(—0.5) is not far from the value at the maximum, so we
take the transformation to be the inverse square rgetCL
The units ofC are mJ/crA, so the units of 1,/C are cmi/mJ.
Figures 11 to 13 are trellis displays of \{C against each
of the three factorg, L, andD with the same format as Fig-
ures 7 to 9. The plots suggests that the dependencg\dt 1
on the factors is linear and additive, that is, no interactiare
present.
Table 4 shows an analysis of variance for 10, carried
out in the same manner as in Table 3. The new table also sug-
gests an absence of non-linearity and interaction. Natase h
been exceedingly good to us. A simple power transformation
of C has resulted in a very simple model.

Table 4: Analysis of variance for 1¢Q/C; fitted toT;, L;, D,
andS.

Effect DF SS MS F P
S 1 41.70 41.70 28.46  0.00
T 1 35789 357.89 24421 0.00
L 1 57.88 57.88 39.50 0.00
D 1 88.58 88.58 60.45  0.00
T? 1 0.05 0.05 0.03 0.86
L2 1 0.28 0.28 0.19 0.67
D? 1 0.05 0.05 0.03 0.85
DxT 1 3.70 3.70 252 013
TxL 1 0.37 0.37 0.25 0.62
DxL 1 4.33 4.33 296 0.10
SxT 1 0.38 0.38 0.26 0.61
SxL 1 1.50 1.50 1.02 0.32
SxD 1 0.10 0.10 0.07 0.79

Error 22 32.24 1.47
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Figure 11: ¥+/C againsfT givenD, L, andS.
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Figure 14: Residual //C againsfT givenD, L, andS.
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Trellis displays of the residuals on the transformed scale 4. MODELING LIQUID CRYSTAL DATA
suggest our additive model has no appreciable lack of fit. One
such residual display is shown in Figure 14, a trellis graph o 4.1. Polymer-Dispersed Liquid Crystal Displays
the residuals againdt givenD, L, andS. A normal quantile

plot of the residuals shows that their distribution is weil a : : X -
proximated by the normal. A spread-location, or s-, plij[1 erate without back lights reduce weight and power require

. . . ments. Polymer dispersed liquid crystals (PDLCs) are pgomi
shows that the variance does not change with the fitted value;ing materials for these reflective displays. Under normalco

The estimate of the standard gewatlon using thel resideals i ditions, the droplets of a liquid crystal are randomly otéh
0'0121_’ avery small ”“”.“ber since the rang'e/qf/@s close and the material is white because light is scattered. Butvahe
to 0.30; the model explains much of the variation in the data. voltage is applied to a section of the liquid crystal, thedets
align, scattering is reduced, and the section becomegans
ent. If the background behind the material is black, apglyin
a voltage makes the section go from white to black.

Reflective displays that are visible in ambient lighting aped

3.4. TrellisDisplay of the Fitted Response Surface:
Higher Order Interaction Plots

Our goal in modeling is to find a parsimonious model that 4.2. TheExperiment
uses as few degrees of freedom as possible to estimate param-

eters. Overall, this makes the process of experimentafjdesi
even more efficient. Doing this can involve, as in this case, a
transformation of the response. This can take us to a scale o
measurement for the response for which there is less iotuiti

The switching voltage is the voltage necessary to align the
droplets. One series of experiments [37] studied the depen-
flence of switching voltag#/, on three factors:

e the amountM, of liquid crystal in the mixture, measured

However, this need not interfere with interpretation beeau in wt %:

we can transform back to the original scale in viewing result

This is done next. e the intensity|, of the light used in the processing, mea-
Trellis display is also very effective for studying modets fi sured in mW/cr?;

ted to data from designed experiments, providing a connénie . ) .

and effective expansion of the interaction plot to higheteor o the temperatureT, of the mixture during processing,

interactions. This is illustrated in the three trellis désgs of measured ifC.

Figure 15. The simple model for/3/C just fitted has been
transformed back to the original scale by the inverse square
allowing study on the scale of mJ/érto appeal to engineer-
ing intuition about clearing dose. There is one trellis tigp
for each numeric factor.

For example, in the left display of Figure 16,is graphed
againstT givenD, L, andS. There are 16 panels on the dis-
play. There are 4 equally spaced valuedDoénd 4 equally
spaced values df, each ranging from the minimum to the
maximum value in the dataC is valued for all 16 combina- Table 5 shows an ANOVA for an overall model that is
tions of these two factors at 50 valuesTofor each of the two  quadratic in the variables. If we drop the terms that are in-

values ofS. This results in two curves on each panel, one for sjgnificant, the residual sum of squares, 6.22 Yemains
solvent 1 (cyan) and one for solvent 2 (magenta). The othernearly the same and = 0.74 V. But if in this reduced model
two displays have similar evaluations. we dropT2 and replace it wittM2, the residual sum of squares
Figure 15 shows the non-linearity and the strong interac- glso remains nearly the same. Thus this ANOVA does not
tions among all factors revealed in our initial trellis [Haif yield an unambiguous model specification. We should not
the data, albeit far more incisively here. For example, & th take this to mean that there is an irresolvable ambiguitién t
left trellis display of Figure 15, we see clearly thatas the-c  data because, our ANOVA rests on the unsubstantiated hy-

dltlonlng value ofD increases for fixed, or as the condition- pothesis that the overall quadratic model adequa’[e]y thescr
ing value ofL increases for fixed, the magnitudes of the the structure in the data.

three quantities —C, dC/dT, d°C/dT? — all decrease. We
can also see that solvent 1 (cyan) results in a la@énan
solvent 2 (magenta). From this display we are able to assess
the complex properties, which possess complex interaction We will use trellis display to search for insight into the

of the factors. This shows why modeling on the original scale dependence of the response on the factors. Each factor in the
of C, mJ/cn?, is so challenging. experiment —, M, andT — has low values, medium values,

We will describe here the modeling of the data from the
pilot experiment that began the series. In the pilot, eapletr
of values of the three factors was close to one of nine design
locations — the corners and center of a cube whose edges are
parallel to the factor axes. Eight of the design locationd ha
two runs and one had three, so there were 19 runs in all.

4.3. Analysisof Variance

4.4. TrellisDisplaysof the Raw Data
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Figure 15: Left: FittedC againstT givenD, L, andS, Middle: FittedC againstD givenL, T, andS, Right: FittedC againstL
givenD, T, andS
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Figure 16: Left:V againstM givenT andl; Middle: V againsfT givenM andl; Right: V against givenM andT.

and high values. We will condition on each factor using three through the rows. For the highest level Df there is a large

intervals that divide its values into low, medium, and high. decrease iV with M; for the lowest level, there is a small

The number of combinations of the three sets of three interva decrease. Furthermore, for the middle levellofthe values

is 27. However, the design only covers 9 of them, so we canof V are close to what they are for the lowest levellofBut

expect to see gaps in the trellis displays. the changes i with M do not appear to depend on the level
The left trellis display of Figure 16 graphs againstM of I. Thus there appears to be a strong interaction betWeen

givenT andl. The values of go from low to medium to high  andM, but no interaction betwedrnandM.

as we go from left to right through the columns. The values of = The middle trellis display of Figure 16 grapWsagainstT

I go from low to medium to high as we go from bottom to top givenM andI. There is more information about tHeandM
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Table 5: Analysis of variance for liquid crystal data. 821
Effect DF  SS MS F P
o1 6.49 649 940 001 81
M 1 21923 21923 317.38 0.00 £
T 1 12643 12643 183.04 0.00 .
2 1 023 023 034 058 °
M2 1 0.64 0.64 093 0.36 5
T2 1 1449 1449 2098  0.00 S 791
MxT 1 12639 12639 18297 0.00 ®
IxT 1 002 002 003 087 8 @
IxM 1 003 003 004 085 o o
Error 9 6.22 0.69 24 26 28 30 32 34 36 38

Jittered Temperature

Figure 17: Measurements M andT. The line is the esti-

interaction. FoiM at the lowest levely increases by a large o .
v y 9 mated join line of the spline surface.

amount withT. But for M at the highest level, there does not
appear to be an effect dueTo And for M at the middle level,
V has values close to what they are Fbrat the highest level.
Finally, there appears to be no appreciable interactiondsst

| andT. 181
The right trellis display of Figure 16 graphé againstl o 161

givenM andT. As| increasesy decreases. The sizes of the g,

decreases vary but there is no consistent pattern to thé- va s

tion and the magnitude of the variation is not large compared
with the variation of the replicated points, so there appéar 10 0
be little or no interaction betwedrand the other two factors. N 8

I\;I2—80.1—0?22(T—31)2
4.5. Modeling the Data
) ) ) Figure 18: Partial residual plot grapkis— yl; againstM; —
The ANOVA carried out earlier was predicated on a a—pT.

guadratic dependence 9fon the factors:M, T, andl. But
the structure of the data revealed by the trellis displayls ca _
into question the appropriateness of a quadratic model. Theslope. Thus the model is
reason is the radical change in slope. As a functioMand _
T,V is large forM at the lowest level and@l at the highestV Vi=pA i+ o(Mi—a —BTi)" +4

is much smaller and nearly flat elsewhere. ~ wherex isxif x< 0 and is 0 otherwise. The join line is
Let us describe the structure we observed in the trellis dis-
plays in terms of Figure 17, a scatter-plot of the measurésnen M—a—-BT=0.

of M and| with a small amount of uniform random noise
added to break up the overlap of plotting symbols. (The line
on the plot will be explained later.) At the points in the lowe
right corner,V is high and much lower everywhere else. In
going from the points in the upper left to the lower left, ther
is a small increase M. In going from the upper left to the up-
per right,V is constant. At the two center pointsjs between
where it is for the upper points (left and right) and whereit i
in the lower left.

A simple model explains the structure revealed by the trel- M—&— [3T -0
lis displays: (1) linear if; (2) a continuous piecewise linear
spline inT andM consisting of two half planes that join along Figure 18 is a partial residual plot that shows the spline fit.
a line in theT andM space that, in Figure 17, is close to the V; — yl; is graphed agains¥lj — & — BT;. The fitted function
center points and the points in the lower left and upper right tracks the data. The spline fit explains the subtle behawior i
(3) the half plane covering the upper left in Figure 17 has zer the trellis displays of the data in Figure 16.

We will begin with an assumption that tlsgare independent
and normally distributed with mean 0 and constant variance
0. Thus the parameters will be estimated by nonlinear least-
squares. The residual sum of squares is £.8avidd = 0.55
V, better than the quadratic models. Residual plots suggest
there is no significant lack of fit and that the above assump-
tions about the error terns are reasonable.

The line drawn in Figure 17 is the estimated join line,
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5. DISCUSSION

We investigated the use of the conditioning methods of
trellis display for experimental data with a small number of
runs including highly fractionated designs. Such expenitne
arise in settings where each run is very expensive, or as in
some computer experiments, each run takes a long time. The
investigations, which covered a large number of data sets ov

time, have led to several conclusions.

Trellis display is almost always quite useful for modeling

12

[3] J. C Pinheiro and D. M. Batedlixed Effects Modelsin

[4]

Sand S-Plus. Springer-Verlag, New York, NY, 2000.

D. Sarkar.Lattice: Multivariate Data Visualization with
R. Springer, New York, NY, 2008.

[5] A. Krause and M. Olson.The Basics of Sand S-Plus.

Springer, New York, 2000.

[6] J. M. ChambersSoftware for Data Analysis: Program-

data from these experiments, and commonly produces major
changes in the analysis, modeling, and results due to the dis [7] S. McDaniel. Rapid Graphs with Tableau Software:
covery of patterns in the data not suspected before the data

were collected. The finding is true even for highly fractitath
experiments. The pattern discovery is a result of the scébpe o
the trellis conditioning methods. They are applicable nst |

to fitted models, but also to the raw data. This allows ineisiv
assessments of patterns in the data that can lead to sudlstant
improvements to models initially entertained, or to a cancl
sion that an experiment failed. Both were demonstrateddn th

examples described here.

We also found that ANOVA, used pervasively in the anal-
ysis of experimental data, is a powerful tool for answering
specific questions about models for data, but a poor tool for

guiding the overall modeling process.

One might find it remarkable that conditioning methods can

often succeed for highly fractionated experiments. Caoatit

(8]

[9]

(10]

ming with R. Springer, New York, 2008.

Create Intuitive, Actionable Insights in Just 15 Days.
CreateSpace, United States, 2009.

G. E. P. Box, J. S. Hunter, and W. G. Hunt&atistics
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Wiley, Chichester, U. K., 2005.

R. A. Becker and W. S. Cleveland. Brushing scatter-
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Cleveland and M. E. McGill, Chapman and Hall, New
York, 1988.

W. S. Cleveland. Visualizing Data. Hobart Press,

Chicago, 1993.

ing for such designs often results in just a few points on the [11] O. L. Davies. The Design and Analyisis of Industrial

panel of a trellis display, potentially making it hard to ess
dependence because of variability in the error term. Howeve _
we found patterns often did emerge as demonstrated in ouf12] S. Feiner and C. Beshers.

examples. The reason appears to be that for success, highly

fractionated designs require an engineering practicektegis
error variability small. Such designs, by their very najasn-
not succeed in cases with large error variability that negai

large aggregation of runs to see a signal. The very practice413]
that make such experiments succeed allow trellis methods to

succeed.
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