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Abstract We discuss recent work based on multiscale geometric analysis for the
study of large data sets that lie in high-dimensional spacesbut have low-dimensional
structure. We present three applications: the first one to the estimation of intrinsic
dimension of sampled manifolds, the second one to the construction of multiscale
dictionaries, called geometric wavelets, for the analysisof point clouds, and the third
one to the inference of point clouds modeled as unions of multiple planes of varying
dimension.

1 Introduction

Data sets that arise in a variety of settings - from images andmovies to web pages,
customer transaction records, gene microarrays, etc... - are being collected at ever
increasing speeds and level of detail. The increase in the amount of data has not
always been matched by our understanding of how to efficiently extract informa-
tion, and to search, organize, and derive useful predictions from such data sets. The
analysis of such data sets, modeled as point clouds in high-dimensional spaces, is
an emerging and challenging area in applied mathematics, atthe boundary with
other disciplines such as computer science, engineering, signal processing, biology,
and more. There are many applications, including organization of large libraries of
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documents, face recognition [52], semi–supervised learning [5, 73, 83], nonlinear
image denoising and segmentation [80, 83], clustering [72,3], machine learning
[5, 73, 83, 68, 67, 84], processing of articulated images [44], cataloguing of galax-
ies [45], pattern analysis of brain potentials [66], the study of brain tumors [21],
document classication and web searching, hyperspectral imaging, and many others.
The analysis and estimation of geometric (intended in the widest sense) properties
of the data include problems such as dimension estimation (e.g. [31, 15, 13, 14]
and references therein), nonlinear dimension reduction [10, 86, 43, 76, 4, 6, 60, 29,
44, 78, 79, 90, 87, 88] and metric space embeddings [12, 10, 59]. Oftentimes one
is interested in studying functions on the data, for the purpose of denoising, fitting,
and prediction. These questions can be studied through approximation theory (e.g.
[8, 9] and references therein), machine learning [4], and signal processing [70, 34],
at least in low-dimensional Euclidean spaces. The combination of the study of ge-
ometric properties with the study of functions defined on thedata is quite a recent
and promising trend [83, 4, 6, 92, 60, 30, 29].

We will for the moment restrict our attention to data sets represented as discrete
sets inRD. A feature common to many data sets is their high-dimensionD, which
may range from 10 to 106. This implies that classical statistics, by which we mean
the analysis in the case where the dimensionD is fixed and the number of pointsn
goes to infinity (or, at leastn>> 2D), is not applicable. Typical situations that we
consider haven of the same order asD, and oftentimesn< D. In this regime, more
appropriate asymptotics are those withn fixed andD going to infinity.

A key observation is that in several situations the data seems to be concentrated
along low-dimensional sets inRD (e.g. [10, 86, 43, 76, 4, 6, 60, 29, 44, 78, 79,
90, 87, 88]). In this case it is natural to ask what geometric properties these low-
dimensional sets have, and how to exploit this phenomenon inorder to better model
and learn from data.

The interplay between geometry of sets, function spaces on sets, and operators
on sets is if course classical in Harmonic Analysis.

This paper gives an overview of very recent work in the geometric analysis of
high-dimensional point clouds and tries to briefly summarize the papers [65, 2, 24].
Material related to this paper is available at http://www.math.duke.edu/˜mauro.

2 Multiscale SVD

The quantitative study of geometric properties of sets, such as rectifiability and har-
monic analysis, is classical [56, 37, 39, 40, 38, 35, 41, 36].The applications of ideas
from geometric measure theory to the analysis of point clouds are emerging, and
here we would like to review a small number of very recent ones.

One of the basic tools in the analysis of data set in statistics is Principal Compo-
nent Analysis (PCA), which is based on the Singular Value Decomposition (SVD).
Any n×D matrix X may be decomposed asX = UΣVT , whereU ∈ Rn×n and
V ∈ RD×D are orthonormal andΣ ∈ Rn×D is diagonal and positive semidefinite.
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The diagonal entries{λi} of Σ , called singular values (S.V.’s), are ordered in de-
creasing order:λ1 ≥ λ2 ≥ ·· · ≥ λn∧D ≥ 0. This is called the SVD ofX. It is use-
ful to notice that the firstd columns ofV span a linear subspace that minimizes
∑n

i=1 ||xi −PΠ (xi)||2RD over all choice ofd-dimensional linear subspacesΠ (herePΠ
denotes the orthogonal projection ontoΠ ). We say that the firstd columns ofV pro-
duce thed-dimensional least squares fit toX. If the rows{xi}n

i=1 of X representn
data points inRD, Principal Component Analysis consists in computing the empiri-
cal meanm(X) = 1

n ∑n
i=1xi , considering the new matrixX whose rows arexi −m(X),

and computing the SVD ofX. The columns ofV are called the principal vectors. An
alternative interpretation is the following: if we let

cov(X) =
1
n

n

∑
i=1

(xi −m(X))⊗ (xi −m(X))

=
1
n

n

∑
i=1

(xi −m(X))T(xi −m(X)) (1)

be the empirical covariance matrix ofX, then fromX = UΣVT we immediately
deduce that

cov(X) =VΣTΣVT (2)

so thatλ 2
i are the eigenvalues of the covariance matrix. Of course in this setting

one thinks of having a random variableX taking values inRD, and the mean and
covariance are its first and second order statistics. It is clear how to generalize PCA
and SVD to the case of infinitely many points.

If the data points{xi} lie, say, uniformly on a bounded domain in ad-dimensional
linear subspace, then forn large enough (in fact,n& d logd is enough [77]1), X will
be of rank exactlyd. The firstd empirical singular values will have the same order
as the true ones (i.e. the ones obtained asn → ∞) and the remaining ones will be
exactly 0, and the firstd columns ofV will span the linear subspace. Because of
the least squares fit property, we expect that if we add “small” noise to the points
xi , the smallest singular values should be perturbed by a smallamount and would
still be much smaller than the topd singular values, indicating the existence of a
d-dimensional linear subspace where the (noiseless) data lies.

We are interested in the case where the data points lie on ad-dimensional non-
linear manifoldM embedded in a high-dimensional spaceRD and are corrupted by
high-dimensional noise. This model has gained popularity in the machine learning
community in recent years [10, 86, 43, 76, 4, 6, 60, 29, 44, 78,79, 90, 87, 88]. While
only in particular cases may one expect this model to be correct for real data, it is
a step beyond linear models. More general models may also be considered, such
as unions of manifold, possibly intersecting each other, and possibly of different
dimensions. Understanding these more general models seemsto require the under-
standing of the simpler model with one manifold only. A particular choice of this
general model is that of a union of planes, possibly of different dimensions [1, 82].

1 These bounds are continuously being refined, in particular in rather general cases the logd term
may be reduced to log logd.
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In order to study these more complicated models, it may seem tempting to dis-
card SVD, which is so well-adapted to linear models. The SVD of a matrixX rep-
resenting data on ad-dimensional manifoldM in RD may not reveald at all. As a
first trivial example, consider a planar circle (d = 1) of radiusr embedded inRD:
cov(X) has exactly 2 nonzero eigenvalues equal tor√

2
. More generally, it is easy

to construct a one-dimensional manifold (d = 1) such that cov(X) has full rank
(w.h.p.): it is enough to pick a curve that spirals out in moreand more dimensions.
A simple construction (sometimes called Y. Meyer’s staircase) is the following: pick
theD points 0,1, . . . ,D−1 on the real line, and letχ[0,2)(x) = 1 if x ∈ [0,2) and 0
otherwise. Then the set

{xt := χ[0,2)(·− t)}t∈R ⊂ L1(R) (3)

is a one-dimensional manifold, which is not contained in anysubspace of dimension
less thanD. This may be discretized by evaluating the functionsxt on the discrete set
{0,1, . . . ,D−1}. Notice thatxt1 andxt2 are orthogonal whenever|t1− t2|> 2, so this
curve spirals into larger and larger subspaces ast increases. Similar considerations
would hold after discretization of the space and restriction of t to a bounded interval.

However, one may still make good use of PCA if one performs it locally at mul-
tiple scales: for everyr > 0 and everyz∈ M consider

Xz,r := M ∩Bz(r) (4)

i.e. the intersection ofM with a Euclidean ball (in the ambient spaceRD) centered at
zof radiusr. Perform PCA onXz,r , and let{λi,z,r}D

i=1 be the corresponding singular
values. Also, let

∆i(Xz,r) = λ 2
i,z,r −λ 2

i+1,z,r for 1≤ i ≤ D−1 (5)

and∆D(Xz,r) = λ 2
D,z,r ; these are the gaps of the squared singular values ofXz,r . For

a fixedz, how do these singular values behave? We expect that for small r the top
d singular valuesλ1,z,r , . . . ,λd,z,r will grow linearly in r and be large compared to
the remaining ones, which are associated with normal directions and grow quadrati-
cally in r. The principal components corresponding to the topd singular values will
approximate the tangent space toM atz. This allows one to estimated. As r grows,
however,M will start curving insideBz(r) and the bottom singular values will start
to grow, eventually (in general) becoming as large as the topd singular values, as
in the examples mentioned above. Therefore the curvature ofM insideRD puts an
upper bound on the set of scales that may be used to detectd via SVD.

This clear picture becomes more complicated if we add two factors crucial in
applications: sampling and noise. We only have a finite number of samplesXn from
M , which will put a lower bound on the values ofr: if r is too small,Xn,z,r := Xn∩
Bz(r) will simply be empty, or may not contain enough points to be able to determine
the intrinsic dimensiond. If high-dimensional noise is added to the samples, so that
our observations are in the formxi +ηi, with xi ∈ M andηi representing noise (e.g.
η ∼ σN (0, ID), with N denoting the Gaussian distribution), then another lower
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bound onr arises: ifr is small compared to the “size” of the noiseη , even if we
have enough samples inXn,z,r , these samples will look high-dimensional because
they are scattered inRD by the noise. It is only at scalesr higher than the “size” of
the noise that there is a chance for the top singular values todetect linear growth (in
r) because the SVD will detect a noisy tangent plane. But once again, at larger scales
curvature will take over. Of course, in the range of scales above that of the noise and
below that dictated by curvature,Xn,z,r must have enough samples so that the SVD
may be computed reliably. We discuss this problem in some detail in Section 3,
which is a short summary of the work in [65] (see also [64, 63]).

In Section 4 we discuss the problem of efficiently representing data on nonlinear
d-dimensional manifoldsM embedded inRD, with d≪D, by constructing geomet-
ric dictionaries. IfM were linear, then we could perform SVD, usedD numbers to
encode thed-dimensional subspaceM lies on (e.g. by the firstd columns of the
matrix V), and then every point onM would require onlyd coefficients, instead
of D. WhenM is not linear nor contained in a low-dimensional subspace ofRD,
it is not clear how to generalize such a construction in orderto efficiently store the
data. We briefly discuss recent work based on so-called geometric wavelets [2, 25],
which aim at efficiently encoding the multiscale family of SVD’s discussed above
by encoding the difference between approximate tangent planes at different scales.
This encoding not only reduces the cost of encoding these planes, but yields a mul-
tiscale decomposition of every point ofM , and therefore ofM itself, and fast but
nonlinear algorithms for computing a fast geometric wavelet transform and its in-
verse for every point. This may be thought of as a geometric version of wavelets.
Much needs to be explored in these directions. In any case, this yields multiscale
matrix decompositions, that allow one to efficiently encodethe data and that reveal
structures in data. Section 4 is a short summary of the work in[2] (see also [25]).

Finally, we discuss the problem of estimating the family of planes when data is
modeled as lying on multiple planes, of possibly different dimensions, and possibly
intersecting. This is the topic of Section 5, which is a shortsummary of the work
[24].

3 Intrinsic dimension estimation

The problem of estimating the intrinsic dimension of a pointcloud is of inter-
est in a wide variety of situations, such as estimating the number of variables
in a linear model in statistics, the number of degrees of freedom in a dynami-
cal system, the intrinsic dimension of a data set modeled by aprobability dis-
tribution highly concentrated around a low-dimensional manifold. Many appli-
cations and algorithms crucially rely on the estimation of the number of com-
ponents in the data, for example spectrometry, signal processing, genomics and
economics, to name only a few. Moreover, many manifold learning algorithms
[10, 86, 43, 76, 4, 6, 60, 29, 44, 78, 79, 90, 87, 88] assume thatthe intrinsic di-
mension is given.
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When the data lies on a plane - as for example when it is generated by a multi-
variate linear model - principal component analysis allowsone to recover the plane.
This case is well understood as the number of samples grows toinfinity and also
when noise is present (see e.g., out of many works, [54], [74], [81] and references
therein).

The finite sample situation is less well understood. Even in this case of points on
a plane we derive new results using a new approach; however the situation we are
really interested in is that of data having a geometric structure more complicated
than linear, such as when the data lies on a low-dimensional manifold. Several al-
gorithms have been proposed to estimate intrinsic dimension in this setting; for lack
of space we cite only [61, 50, 18, 16, 32, 14, 75, 58, 11, 71, 49,85, 53, 47].

3.1 Multiscale Dimension Estimation

We start by describing a stochastic geometric model generating the point clouds we
will study. Let (M ,g) be a compact smoothd-dimensional Riemannian manifold,
isometrically embedded inRD. Let η beRD-valued with e[η ] = 0, Var[η ] = 1 (the
“noise”), for exampleη ∼ N (0, ID). Let X = {xi}n

i=1 be a set of uniform (with re-
spect to the natural volume measure onM ) independent random samples onM .
Our observations̃X are noisy samples:̃X = {xi +σηi}n

i=1, whereηi are i.i.d. sam-
ples fromη and whereσ > 0. These points may also be thought of as being sampled
from a probability distributionM̃ supported inRD and concentrated aroundM .
Here and in what follows we represent a set ofn points inRD by ann×D matrix,
whose(i, j) entry is thej-th coordinate of thei-th point. In particularX andX̃ are
used to denote both the point cloud and the associatedn×D matrices, andN is the
noise matrix of theηi ’s.

The problem we concern ourselves with is toestimate d = dimM , given X̃. We
shall use multiscale SVD, as described above, and start withan example.

3.1.1 Example: d-dimensional sphere in RD, with noise

Let Sd = {x ∈ Rd+1 : ||x||2 = 1} be the unit sphere inRd+1, so dim(Sd) = d. We
embedSd in RD via the natural embedding ofRd+1 in RD via the firstd+1 co-
ordinates. We obtainX by samplingn points uniformly at random fromSd, andX̃
is obtained by addingD-dimensional white Gaussian noise of varianceσ in every
direction. We call this data setSd(D,n,σ).

In Figure 2 we consider the multiscale S.V.’s ofS9(100,1000,0.1), as a function
of r. Several observations are in order. First of all, notice that Rd+1 is divided into
2d+1 sectors, and therefore by sampling 1000 points onS9 we obtain about 1 point
per sector (!). Secondly, observe that the noise size, if measured by||xi − x̃i ||22, i.e. by
how much each point is displaced, would be order e[σ2χ2

D]∼ 1, which is comparable
with the radius of the sphere itself (!). Therefore this dataset may be described as
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Fig. 1 S9(100,1000,0.01). Left: plot of Ez[λi,z,r ], and corresponding standard deviation bands
(dotted), as a function ofr. The top 9 S.V.’s dominate and correspond to the intrinsic dimensions;
the 10-th S.V. corresponds to curvature, and slowly increases with scale (note that at large scales
∆10 > ∆9); the remaining S.V.’s correspond to noise in the remaining90 dimensions, and converge
to the one-dimensional noise sizeσ . Right: plot of the multiscale gaps: on thex-axis we have the
index i of the gap, and on the vertical axis the scaler. The entry(i, r) is the average (overz) gap
Ez[∆i(Xz,r )] := Ez[λi(Xz,r )− λi+1(Xz,r )]. At small scales the noise creates the gaps at the bottom
left of the figure; at larger scales we see a large gap ati = 9, and at even larger scales that gap is
surpassed by the gap corresponding toi = 10. This plane is a sort of geometric scale-“frequency”
plane, where “frequency” is the index of the singular values.
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Fig. 2 Same as above, but forS9(100,1000,0.1), i.e. 10 times larger noise

randomly sampling one point per sector at distance 1 from theorigin in the first
D+ 1 coordinates, then moved by 1 in a random direction inR100. The situation
may seem hopeless.

In fact, we can detect reliably the intrinsic dimension ofM . At very small scales,
Bz(r) is empty or contains less thanO(d) points, and the rank of cov(Xz,r) is even
less thand. At small scales, no gap among theλi,z,r is visible: Bz(r) contains too
few points, scattered in all directions by the noise, and newincreasing S.V.’s keep
arising for several scales. At larger scales, the topd = 9 S.V.’s start to separate from
the others: at these scales the noisy tangent space is detected. At even larger scales,
the curvature starts affecting the covariance, as indicated by the slowly growing 10th
S.V., while the remaining smaller S.V.’s tend approximately to theone-dimensional
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Fig. 3 Left: The S-manifoldS (100,1000,0.01) corrupted by noise. Right: its average multiscale
singular values. The green bands are the set of good scales returned by the algorithm.

Fig. 4 The average multiscale singular values of the Meyer staircaseZ 20(500,1000,0.05/
√

1000)
corrupted by noise. Thek-th point in this Meyer staircase is a 1000-dimensional vector whose
entries fromk+1 to k+20 are equal to 1, and all other entries are 0. The green bands are the set
of good scales returned by the algorithm.

noise variance: this is the size of the noise relevant in our procedure, rather than
the much larger expected displacement measured in the fullRD, which was of size
O(1).

Motivated by applications to large data sets in high-dimensional spaces that are
assumed to be intrinsically low-dimensional, we are interested in the regime where
D is large,d << D, and will ask how largen needs to be in order to estimated
correctly with high probability (w.h.p.). In a classical statistical framework one may
rather be interested in the regime whereD,d are fixed andn tends to infinity, but in
that case one would conduct the analysis asr → 0 and this would lead essentially
to the problem of consistency of PCA, and noise would be a relatively minor com-
plication. In many applicationsD is large andn cannot be taken much larger than
D itself: we will therefore be interested in the regime whenD andn are large but
n
D = O(1).
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3.2 Results

In the setting above, we are interested in non-asymptotic results that hold for finite
n,d, andD, since they will imply finite sample inequalities w.h.p.

We fix a centerz for our computations. LetTz andNz be the tangent and normal
planes toM atz. Their dimension is of coursed andD−d. Let Xz,r

|| andN|| be the
projections ofXz,r andN ontoTz, and letXz,r

⊥ andN⊥ be the projections ontoNz,
so thatXz,r = Xz,r

||+Xz,r
⊥ andN = σ||N

||+σ⊥N⊥. We assume that for each fixed
z, there exist parametersRmax,Rmin,λmax,λmin,κ , andvmin (which in general will
depend onz) such that for everyr ∈ [Rmin,Rmax]:

λ (cov(Xz,r
||)) ⊆ d−1r2[λ 2

min,λ
2
max]

||cov(Xz,r
⊥)||F ≤ κ2r4 (6)

vol(Xz,r) ≥ vminµRd(Bd)rd,

whereλ (cov(Xz,r
||)) denotes the set of eigenvalues of cov(Xz,r

||) andBd is the Eu-
clidean unit ball inRd.

We would like to detect the unknown intrinsic dimensiond by estimating a range
of “good” scales where thed-th gap is the largest gap. We define

Λ̃z,r := {r > 0 : ∆d(X̃z,r) = max
i=1,...,D

∆i(X̃z,r)} (7)

Observe that̃Λz,r is a random set, and we are interested in finding an interval which
is contained inΛz,r with high probability givenn noisy samples as above.

Proposition 1 (n → ∞). Assumeλmax = λmin = λ , r > σ||
√

d+σ⊥
√

D, r < λmax
κ
√

d
.

Then for n large enough, a sufficient condition for r∈ [Rmin,Rmax] being inΛ̃z,r is
that:

λ 2r2

d
︸ ︷︷ ︸

tangent term

+ σ||
2

︸︷︷︸

tangent noise

≥ 2κ2r4+
λ κr3
√

d
︸ ︷︷ ︸

curvature term

+ σ⊥
2

︸︷︷︸

normal noise

+O(n−
1
2 ) (8)

Asσ||,σ⊥ → 0, this is implied by r≤ λ
2κ

√
d
.

Proposition 2 (n,D → ∞, n
D → γ). Assumeλmax = λmin = λ , r > σ||

√
d+σ⊥

√
D,

r < λmax
κ
√

d
. Then for n,d large enough, andγ = n

d , a sufficient condition for r∈
[Rmin,Rmax] being inΛ̃z,r is that:

(σ||
√

d+σ⊥
√

D)
︸ ︷︷ ︸

noise

. r .
λ

κ
√

d
︸ ︷︷ ︸

curvature

(9)
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Proposition 3 (D → ∞,σ⊥ = σ√
D

). A sufficient condition for r∈ [Rmin,Rmax] being

in Λ̃z,r is that:

(σ||
√

d+σ)
︸ ︷︷ ︸

noise

∨
(

d log(d)
n

vol(M )

λ vminµRd(Bd)

) 1
d

︸ ︷︷ ︸

sampling

. r .
λ

κ
√

d
︸ ︷︷ ︸

curvature

(10)

In fact, in all of the above results, the conditions are sufficient not only in the
limit, but with high probability for finite values ofn, D. These results are more
technical and the interested reader is referred to [65]. They essentially imply, in this
context, that as soon asnr := |Xz,r | &κ ,σ||,σ⊥,vmin d logd for r < Rmax, thenΛ̃z,r is

non-empty with high-probability. An efficient algorithm for finding r ’s in Λ̃z,r is
also developed in [65], and tested against the leading competitors (see the following
section). Finally, the setting in [65] is much more general than the one presented
above; in particular no manifold assumption is made. Instead, the existence of a set
of scales is assumed, at which the data set looksd-dimensional plus smaller detail
structure and noise.

In the special case ofSd, if we have no noise andn→ ∞ one can show that:

λ 2
i,z,r =

1
d+2

r2+O(r4) for 1≤ i ≤ d

λ 2
d+1,z,r =

d
(d+2)2(d+4)

r4+O(r6)

λ 2
i,z,r = 0 for i > d+1

So here,λmax= λmin =
d

d+2 ∼ 1 andκ ∼ 1
d . Although on first glance it appears that

Prop 1 gives us that∆d is the largest gap whenr .
√

d, this is in fact not the case
sinceRmax (the upper bound on the region where the curvature S.V.λd+1,z,r grows
quadratically with respect to the tangent S.V.’s) is actually small: Rmax= O(1).

In all of these results a “curse of intrinsic dimension” is visible. By “curse of
dimensionality” one usually means the large number of samples needed for esti-
mating functions of many parameters. For example, if one tries to approximate a
continuous function on thed-dimensional unit cubeQd up to precisionε, one needs
in general one sample in every littled-dimensional cube of sideε contained inQd:
the number of such cubes isε−d, which is large as soon asε is not large andd is
not small (for example: ifε = 10−3 andd = d, one would need 103d samples to
approximate the function up to only 3 digits). From the geometric perspective, the
curse of dimensionality may manifest itself in terms of concentration of measure
phenomena. In our particular situation, for example, covariance matrices of intrin-
sically high-dimensional objects tend to be small, and therefore easily corrupted
by noise. For example, the covariance matrix of thed−1-dimensional unit sphere
Sd−1 is 1

d Id (and notId as one may have expected). In particular, if Gaussian noise
σN (0, Id) is added to points sampled onSd−1, then the covariance “signal to noise
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ratio” is d− 1
2/σ , which goes to 0 asd →+∞. In the last two Propositions one sees

this curse in the upper bound on the right hand side, which contains the factord− 1
2 .

However, notice that ifκ ∼ d− 1
2 , such bounds become independent ofd. In other

words, the curse of intrinsic dimensionality, in this context, is not only rather mild,
but disappears by decreasing the curvatureκ as the intrinsic dimension increases.
This is a analogue of sort to assuming smoothness dependent on d to break the
curse in approximating functions in high-dimensions, an interesting approach taken
in functional analysis, approximation theory and statistics.

3.3 Algorithm

[d̂, R̂min, R̂max] = EstDimMSVD (X̃n,K)

// Input:
// X̃n : ann×D set of noisy samples
// K : upper bound on the intrinsic dimensionk

// Output:
// d̂ : estimated intrinsic dimension
// (R̂min, R̂max) : estimated interval of good scales

Nets = MultiscaleNets(̃Xn,K)
λK+1,z,r = FindLargestNoiseSingularValue(X̃n ,Nets)
R̂min = Smallest scale for whichλK+1,z,r is decreasing and|Bz(R̂min)| & K logK
R̂max = Largest scale for whichλ1,z,r is nonincreasing
k̂ = Largesti such that:

· for r ∈ (R̂min, R̂max), λi,z,r is linear andλi+1,z,r is quadratic inr, and

· ∆ (z,r)
i is largest gap forr in a large fraction of(R̂min, R̂max)

(R̂min, R̂max) = Largest interval in which∆ (z,r)

d̂
is the largest gap

Fig. 5 Pseudo-code for the Intrinsic Dimension Estimator based onmultiscale SVD.

The results above suggest the following algorithm: for eachz∈ M , r > 0, i =
1, . . . ,D, we computeλi,z,r . Whenr is large, ifM is contained in a linear subspace
of dimensionK (K ≥ d) we will observeK large eigenvalues andD−K smaller
noise eigenvalues, in the regime for the values ofK,D,σ ,n suggested by our results.
Clearly,d ≤ K. Moreover,{λi,z,r}i=K+1,...,D will be highly concentrated and we use
them to estimateσ , which is useful per se. By viewing{λi,z,r}i=K+1,...,D, we identify
an interval inr where the noise is almost flat, i.e. we remove the small scaleswhere
the distortion due to noise dominates.

We look at the first{λi,z,r}i=1,...,K , and the goal is to decide how many of them
are due to the extrinsic curvature ofM . But the curvature S.V.’s grow quadratically
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w.r.t. the “tangential” (non-curvature) S.V.’s: a best least-square linear and quadratic
fit to λi,z,r , as a function ofr, is enough to tell the curvature S.V.’s from the tangential
S.V.’s.

MATLAB code and a User Interface for navigating the multiscale S.V.’s are avail-
able at www.math.duke.edu/˜mauro.

3.4 Examples
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Fig. 6 Benchmark data sets: cube. The horizonal axis isσ , the one-dimensional standard deviation
of the noise, the vertical axis is the estimated dimension. Black dots mark the correct intrinsic
dimension.

We test our algorithm on several data sets obtained by sampling manifolds, and
compare it with existing algorithms. The test is conducted as follows. We fix the am-
bient space dimension toD = 100. We letQd, Sd, S , Z d be, respectively, the unit
d-dimensional cube, thed-dimensional sphere of unit radius, a manifold product
of anS-shaped curve of roughly unit diameter and a unit interval, and the Meyer’s
staircase{χ0,d(·− l)}l=0,...,D. Each of these manifolds is embedded isometrically in
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Fig. 7 Benchmark data sets: sphere. The horizonal axis isσ , the one-dimensional standard devia-
tion of the noise, the vertical axis is the estimated dimension. Black dots mark the correct intrinsic
dimension.

RK , whereK = d for Qd, K = d+1 forSd, K = 3 forS andK =D for Z d, andRK

is embedded naturally inRD. Finally, a random rotation is applied (this is irrelevant
since all the algorithms considered are invariant under isometries). We drawn sam-
ples uniformly (with respect to the volume measure) at random from each manifold,
and add noiseη ∼ σ√

D
N (0, ID). We incorporate these parameters in the notation by

usingQd(n,σ) to denote the set ofn samples obtained as described above, where
the manifold is thed dimensional unit cube and the noise has varianceσ . We also
consider a variation of these sets, where we dilateRK (after embedding the manifold
but before any other operation) by a diagonal dilation with factors drawn at random
from the multiset{1,1,1,1,0.9,0.9,0.9,0.8,0.8}.

We consider hered = 6,12,24,48 for Qd andSd, d = 10,20,50 for Z d. The
samples size is set asn = 250,500,1000,2000. We let the noise parameterσ =
0,0.1,0.25,0.5,1,1.5,2. For each combination of these parameters we generate 5 re-
alizations of the data set and report the most frequent (integral) dimension returned
by the set of algorithms specified below, as well as the standard deviation of the
estimated dimension. We test the following algorithms: “Debiasing” [16], “Smooth-
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Fig. 8 Benchmark data sets: S-shaped manifoldS and Meyer’s staircaseZ . The results forZ 20

are consistently better than those forZ 10, once the number of points and the level of noise is fixed.
This is consistent with the fact thatZ 20 has a smaller effective curvature thanZ 10.

ing” [18], RPMM in [51], “MLE” [62], “DeBias” [17], “kNN” [33 ], “SmoothKNN”
[19], as well as the classical Correlation Dimension and Taken estimator [85, 46].
The “MFA” label in table 1 refers to one of the state-of-art Bayesian approaches to
dimension estimation [26]. For MFA, the authors of [26] ran the code, given only
the information that no data set would have intrinsic dimension larger than 100 (this
is essentially the only parameter in our algorithm, and it isused only for speeding
up computations); in all the other cases we ran the code ourselves, after finding a
reasonable range of the parameters that worked on toy examples. There is a large
disparity in the number of parameters in these algorithms, ranging from 1 to 7. We
will make the data sets publicly available at www.math.duke.edu/˜mauro so that
other researchers may try their algorithms (present and future) on a common set of
examples.

Finally, in 9 we consider a data set with different dimensionality in different
regions, and run the algorithm pointwise. We show both the pointwise estimated
dimensionality, and the maximal value ofr the algorithm returns as a good scale.



Some recent advances in multiscale geometric analysis of point clouds 15

Table 1 This table contains the dimension estimates for a quite benign regime with 1000 samples
and no noise. Even in this straightforward setting the estimation of dimension is challenging for
most methods.

RTPMM RPMM MLE IDE CorrDim TakEst DeBias kNN SmoothkNN MFA MSVD

Q6 5 5 5 6 5 6 6 6 4 2 6
Q12 7 9 9 10 10 10 10 12 7 4 12
Q24 9 16 16 17 17 17 17 20 11 1 24
Q48 11 26 25 29 28 28 27 32 19 2 48
Q6 5 5 5 6 6 6 6 6 5 1 6
Q12 7 9 9 10 10 10 10 12 7 2 12
Q24 9 16 15 17 17 17 17 20 11 3 24
Q48 11 26 25 28 27 28 27 31 17 2 48
S5 4 5 5 5 5 5 5 5 4 2 5
S11 7 9 9 10 10 10 10 10 8 1 11
S23 10 16 16 18 18 18 18 18 14 2 24
S47 11 27 26 31 30 31 29 29 21 3 48
S5 5 5 5 5 5 5 5 5 4 2 5
S11 7 9 9 10 10 10 10 10 8 1 11
S23 9 16 16 18 18 18 18 18 13 1 23
S47 11 27 26 31 30 30 29 29 21 3 48
S 2 2 2 2 2 2 2 2 2 1 2
S 2 2 2 2 2 2 2 3 2 2 2
Z 1 NaN NaN 3 340 0 29 3 87 7 4 2
Z 1 NaN NaN 2 93 0 14 2 67 3 2 1
Z 1 NaN NaN 3 14 12 14 3 3 2 2 1
Z 1 NaN NaN 2 13 13 13 2 5 2 2 1
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Fig. 9 This data set is a union of two manifolds of different dimensions: a 2-dimensional sphere
and a 1 dimensional segment. Left: the estimated pointwise dimensionality. Right: the largest
“good” scale returned by the algorithm, for every point. Note how the largest good scale is large
for points far from the intersection of the sphere and the segment and decreases as we approach the
intersection.
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4 Geometric Wavelets

Recent work, both in machine learning, signal processing, image analysis, and har-
monic analysis, has focused on either the construction of carefully hand-crafted
dictionaries for large classes of data sets (wavelet for 1-Dsignals, curvelets for
certain classes of images, chirplets, etc.), or on dictionaries that are tuned to spe-
cific data sets [1, 82, 91] (and references therein). The latter approach typically is
formulated by requesting to find a dictionaryΦ with I elements, such that every
element in the data set may be represented, up to a certain precisionε, by at most
melements of the dictionary. This sparsity requirement of the representation is very
natural in statistics, signal processing, and interpretation of the representation. Of
course, the smallerI andm are, for a givenε, the better. Current constructions of
such dictionaries, such as K-SVD [1], k-flats [82], and Bayesian methods [91], cast
these requirements as an optimization problem and rely on black-box optimization
to find solutions. Typically no guarantees are provided about the size ofI andm
(as functions ofε), the computational costs, and the uniqueness of the solution (in
practice, it is observed that these algorithms depend heavily on the initial guess). On
the other hand, when these algorithms do give solutions thata practitioner considers
“good”, the use of these data-dependent dictionaries can yield very impressive re-
sults in such diverse problems as data modeling, classification, image compression
and impainting, and more (e.g. [69] and references therein). Another drawback of
existing constructions of data-dependent dictionaries isthat the output dictionary
is in general highly overcomplete and completely unstructured (even if, at least in
the case of images, one may empirically observe certain structures, symmetries and
regularities in the dictionary elements). As a consequence, in general there is no fast
algorithm for computing the coefficients of the representation of a data point in the
dictionary (nor, but less importantly, to sum a long linear combination of dictionary
elements), which requires appropriate sparsity-seeking algorithms.

In [24], the authors construct data-dependent dictionaries using a multiscale geo-
metric analysis of the data, based on the geometric analysisin the work [55]. These
dictionaries are structured in a multiscale fashion and canbe computed efficiently;
the expansion of a data point on the dictionary elements is guaranteed to have a cer-
tain degree of sparsitymand can be computed by a fast algorithm; the growth of the
number of dictionary elementsI (as a function ofε) is controlled theoretically and
easy to estimate in practice. The elements of these dictionaries are calledgeometric
wavelets[24], since in some respects they generalize wavelets from vectors that an-
alyze functions to affine vectors that analyze point clouds.The multiscale analysis
associated with geometric wavelets shares some similarities with that of standard
wavelets (e.g. fast transforms, a version of two-scale relations, etc.), but is in fact
quite different in many crucial respects. It is highly nonlinear, as it adapts to arbi-
trary nonlinear manifolds, albeit every scale-to-scale step is linear (which is key to
efficient computation and fast algorithms); translations or dilations do not play any
role here, while they are often considered crucial in classical wavelet constructions.
Geometric wavelets may allow the design of new algorithms for manipulating point
clouds similar to those used for wavelets to manipulate functions. Dictionaries of
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basis functions have a large number of applications in mathematics and engineering
[70, 34, 42, 89, 20, 28, 7, 27].

4.1 Construction of Geometric Wavelets

Let (M ,g) be ad-dimensional compact Riemannian manifold isometrically em-
bedded inRD. We are interested in the regimed ≪ D. Assume we haven samples
drawn i.i.d. fromM , according to the natural volume measuredvol on M 2. We
construct a multiscale decomposition of the manifoldM as follows.

We start by decomposingM into multiscale nested partitionsP j . For j ≤ J,
let P j = {Cj ,k}k∈Γj be a disjoint cover ofM , eachCj ,k contains a ball of radius
∼ 2− j , has diameter∼ 2− j and piecewise smooth boundary. Moreover, we assume
that everyCj ,k = ∪k′∈children( j ,k)Cj+1,k′ ; this also defines children( j,k). There is a
natural tree structureT associated with this family of partitions. Forx ∈ M , we
let Cj ,x be the unique element ofP j that containsx. We also note in advance that
we will adopt similar notation (Pj ,x,Φ j ,x,Ψj ,x, etc.) for objects associated withCj ,x.
In practice, we use METIS [57] on a nearest-neighbor weighted graph in order to
compute the multiscale partitionsP j .

For everyCj ,k we may compute the topd eigenvalues and eigenvectors of the
covariance matrix covj ,k of the data inCj ,k, as we did before for the matrix of the
data in a ball of radiusr centered around a pointz. Let Φ j ,k be theD×d orthogonal
matrix of the topd eigenvectors ofCj ,k andλ1 ≥ ·· · ≥ λd ≥ 0 the corresponding
eigenvalues. We think of the span of the columns ofΦ j ,k as an approximate tangent
space toM at scalej and location marked byCj ,k. Let Pj ,k be the associated affine
projection

Pj ,k(x) = Φ j ,kΦ∗
j ,k(x− cj ,k)+ cj ,k . (11)

wherecj ,k is avg(Cj ,k). We let, for∀x∈ M and j ≤ J,

x j ;J ≡ PM j;J(x) := Pj ,x◦Pj+1,x◦ · · · ◦PJ,x(x) (12)

and define the approximationM j ;J to M at scalej as the set

M j ;J := ∪k∈Γj PM j;J(Cj ,k). (13)

AlthoughM j ;J andx j ;J depend on the finest scaleJ, we will from now on drop the
J subscript for simplicity of notation.M j is a coarse approximation ofM at scale
j, analogous to what the projection of a function onto a scaling function subspace is
in wavelet theory. Under suitable assumptions,M j →M in the Hausdorff distance,
asJ →+∞.

2 More general hypotheses on the sampling procedure or on the measureµ are possible but we do
not consider them here.
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The setPj ,k(Cj ,k) of pieces of affine planes centered atc j ,k and spanned byΦ j ,k

is an approximation of the manifoldM at scalej. Just as a scaling function ap-
proximation to a function is a coarse version of the function, so this set of pieces of
planes is an approximation ofM .

We can now construct wavelet planes that span the space needed to completeΦ j ,k

into the span of{Φ j+1,k′}k′∈children( j ,k). We leave the description of the construction
to [2]. In its simplest form, this construction yields, for every( j +1,k′), aD×d′

j+1,k′

orthogonal matrixΨj+1,k′ spanning the subspace(I −Φ j ,kΦ∗
j ,k)〈Φ j+1,k′〉. LetQ j+1,k′

be the corresponding affine projection: we have the fundamental two-scale relation

PM j+1(x) = PM j (x)+Q j+1,x(PM j+1(x)) (14)

for everyx ∈ Cj+1,k′ . By iterating, we obtain a wavelet sum representation of any
pointx∈ M .

The geometric scaling and wavelet coefficients{p j ,x},{q j ,x} of a pointx ∈ M

are defined by the equations

x j = Φ j ,xp j ,x+ cj ,x; (15)

Q j+1,x(x j+1) =Ψj+1,xq j+1,x+wj+1,x, (16)

wherex j = Pj ,x(x). The computation of the coefficients (and translations), from fine
to coarse, is simple and fast. For anyx∈ MJ and j0 < J, the set of coefficients

x̂=
(
qJ,x,qJ−1,x, . . . ,q j0+1,x, p j0,x

)
∈ R

d+∑J
j= j0+1 d j,x (17)

is called the discrete geometric wavelet transform ofx. Sinced j ,x≤ d, d+∑ j> j0 d j ,x≤
(J− j0+1)d.

Observe that we may immediately extend this transform to points not onM , but
within the so called reach(M ), which is the set of points in the ambient space which
have a unique closest point inM . This set of points may be thought of as a maximal
tube, of variable radius, aroundM , which does not “self-intersect”.

Finally, one may show that the algorithm for constructing the Φ j ,k’s andΨj ,k’s
only costsO(Dn(log(n)+d2+ k)) [2].

4.2 Examples

We conduct numerical experiments in this section to demonstrate the performance
of the algorithm.
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Fig. 10 Geometric wavelet transform of anS-shaped manifold, from which 3000 points are ran-
domly sampled. Left: the reconstructed manifoldM4 at scale 4. Right: the reconstructed manifold
M8 at scale 8.

4.2.1 Low-dimensional smooth manifolds

We first consider a simple data set of a 2-dimensionalS-shaped manifold inR3

and apply the algorithm to obtain the geometric wavelet transform of the sampled
data (3000 points) in Figure 10-11. The resulting wavelet coefficients matrix is very
sparse (with about 63% of the coefficients below 1 percent of the maximal magni-
tude). The reconstructed manifolds also approximate the original manifold well.
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Fig. 11 Left: Geometric wavelet representation of the data. Thex-axis indexes the points, and the
y axis indexes the wavelet coefficients as in (17), with the coarsest scale at the top and the finest
scale at the bottom. The wavelet subspaces have dimension atmost 2, and in fact numerically their
dimension is, up to two digits of accuracy, 1. This “matrix” is sparse, with about 37% entries above
10−2. Observe that this “matrix” representation is not an actualmatrix, since the set of rows is not
in one-to-one correspondence with the dictionary elements, since each cell in the tree has its own
local dictionary. Right: Average error in approximating a point on the manifold, as a function of
scale (smaller scales on the right).
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4.2.2 A data set

We next consider a data set of images from the MNIST data set3. We consider the
handwritten digit 7. Each image has size 28×28. We randomly sample 5000 such
images from the database and then project the samples into the first 120 dimensions
by SVD. We apply the algorithm to construct the geometric wavelets and show the
reconstructions of the data and the wavelet coefficients at all scales in Figure 12. We
observe that the magnitudes of the coefficients stops decaying after a certain scale.
This indicates that the data is not on a smooth manifold. We expect optimization of
the tree and of the dimension of the wavelet in future work to lead to an efficient
representation also in this case.
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Fig. 12 Geometric wavelet representation of the data for the imagesof handwritten 7’s. This matrix
is less sparse than what we would expect for a manifold. This is an artifact of the construction
of geometric wavelets we presented here, in which the dimension of the planes〈Φ j ,k〉 is chosen
independent ofj ,k. This constraint is not necessary and is removed in [2], which allows one to tune
this dimension, as well as the dimension of the wavelet spaces, to the local (in space and scale)
properties of the data.

We then fix two data points (i.e. two images) and show in Figure13 and 14 their
reconstructed approximations at all scales and the corresponding wavelet bases (all
of which are also images). We see that at every scale we have a handwritten digit,
an approximation to the fixed image, and those digits are refined successively to
approximate the original data point. The elements of the dictionary quickly fix the
orientation and the thickness, and then they add other distinguishing features of the
image being approximated.

3 available, together with detailed description and state-of-art results, at
http://yann.lecun.com/exdb/mnist/.
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Fig. 13 An image representation of the reconstructed data point andthe corresponding subset of
the wavelet dictionary. Left: in images 1-10 we plot coarse-to-fine geometric wavelet approxima-
tions of the original data point represented in the last two images (projection and original) on the
bottom. Right: elements of the wavelet dictionary (orderedfrom coarse to fine in 1-10) used in the
expansion above.
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Fig. 14 An image representation of the reconstructed data point andthe corresponding subset of
the wavelet dictionary. Left: in images 1-10 we plot coarse-to-fine geometric wavelet approxima-
tions of the original data point represented in the last two images (projection and original) on the
bottom. Right: elements of the wavelet dictionary (orderedfrom coarse to fine in 1-10) used in the
expansion above.

5 Multiple planes

Recent work in machine learning, imaging and harmonic analysis has focused on
modeling data, or spaces of signals, as a union of linear subspaces (in some cases,
affine). More precisely, assume that the data is generated bysampling (uniformly,
say) from

∪K
i=1ai(Q

di )
︸ ︷︷ ︸

=:πi

(18)

where theai are affine mapsRdi → RD that are invertible on their range. In other
words, the data is sampled from affine images of unit cubes - pieces of planes - of
different dimensions. These pieces may intersect each other. A typical problem is the
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following: givenn samples,K anddi , findai . Current approaches are based on black-
box optimization [1, 82], “higher-order” spectral clustering methods [48, 22, 23] and
references therein, or Monte-Carlo sampling within a Bayesian framework [91].
These cited papers also contain many references to related work. In the first two
approaches,K anddi (or, in some cases, only an upper bound ondi) are needed as
input. In the latter work, experimentation shows that hyper-parameters need to be
set very close to the correct values unless the number of pointsn is very large.

Based on the work on the estimation of intrinsic dimension and determination
of “good scales” described in Section 2 (see [65]), we can attack this problem not
only without having to knowK anddi , but also with guarantees that given a very
small number of samples we are going to determine the correctai ’s. None of the
algorithms described above has this type of guarantee with so little information.

We shall assume that each of theK pieces of planes contains at leastc/K points,
with high probability, wherec is some numerical constant. We shall also assume
that a fraction of each piece of plane is far from the intersection with other pieces of
plane. The algorithm we propose is the following: pick a sample pointx0 at random.
We may assume without loss of generality thatx0 belongs toπ0. We run the intrinsic
dimension estimator of [65] (see Section 2). If the estimator succeeds, it will return
a range of “good scales”, as well as an estimate ofd0, which is correct w.h.p.. If
the estimator fails, the point was too close to an intersection betweenπ0 and some
otherπi . We simply consider another sample point. By assumption w.h.p. afterO(1)
samples we will find a sample, which we call againx0, for which the dimension
estimator succeeds. We have therefore foundd0 (say), and from the ball centered at
x0 of radius equal to the largest “good scale”, we estimateπ0. At this point we assign
to π0 all the points that are no farther thanδ from π0 (we may chooseδ = 0 if there
is no noise). We now repeat the above on the remaining points,till all the points have
been assigned to some plane. After all the points have been assigned, a polishing step
is performed: since we now have all theπi ’s, we recompute the assignment of each
point to the nearestπi . Notice that the algorithm will succeed with high probability,
as soon as eachπi has a fraction of points far enough from the intersection with
otherπ j ’s for which the dimension estimator is going to succeed. Recall that this
estimator only requiresO(di logdi) points in order to assess the dimension. The
only remaining issue is the selection ofδ , which we perform by estimating the
noise variance empirically, as already done in the intrinsic dimension estimator. In
fact, an even more robust procedure may be used, based on denoising and clustering
the matrix of affinities between points and estimated candidates for theπi ’s: such
a procedure determinesK and the assignment of the points to theπi ’s at the same
time: the details may be found in [24]. Finally, assuming pre-computation of any
structure needed to compute nearest neighbors, and assuming that nearest neighbors
may be computed inO(logn), the computational cost of the algorithm to find the
pieces of planes and assign points to them isO(nlognKmaxi d2

i ). If the assignment
of points to planes is not required, and only the pieces of planes are requested, then
randomization allows one to reduce the computational cost to O(K2maxi d2

i ).
We consider a simple example in Figure 15, which in fact uses amore robust,

less greedy version of the algorithm just described [24].
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Fig. 15 Global spectral analysis of local subspaces for modeling and clustering hybrid linear
data [24]. In this example the given data set consists of points sampled around 2 lines and 1 plane in
R3. We first apply the intrinsic dimension estimator to the dataand find a collection of good local
scales with dimension estimates at many locations (see one such location (black plus symbol) in
the top left figure, with region indicated by the red points) by analyzing the local singular values
(see top right, the region between red vertical lines is the range of good scales). We then perform
spectral analysis to integrate the local planes so that we recover the model as well as the underlying
clusters (see bottom left; the misclassification rate is 2.5%). All we need so far, including for find-
ing the intrinsic dimensions of the underlying planes, is the coordinates of the data plus knowledge
of the number of clusters. When the number of clusters is not known, we detect it by looking at
the errors associated with different choices (see bottom right; the red line indicates the model error
which we can estimate by multiscale SVD).
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