Some recent advances in multiscale geometric
analysis of point clouds

Guangliang Chen, Anna V. Little, Mauro Maggioni, and Lorezsasco

Abstract We discuss recent work based on multiscale geometric dadiysthe
study of large data sets that lie in high-dimensional sphaekave low-dimensional
structure. We present three applications: the first oneda#timation of intrinsic
dimension of sampled manifolds, the second one to the aari&in of multiscale
dictionaries, called geometric wavelets, for the analgsmoint clouds, and the third
one to the inference of point clouds modeled as unions ofipheliblanes of varying
dimension.

1 Introduction

Data sets that arise in a variety of settings - from imagesaoves to web pages,
customer transaction records, gene microarrays, etae. being collected at ever
increasing speeds and level of detail. The increase in thmuatof data has not
always been matched by our understanding of how to effigientiract informa-
tion, and to search, organize, and derive useful predistieom such data sets. The
analysis of such data sets, modeled as point clouds in higbfsional spaces, is
an emerging and challenging area in applied mathematideaboundary with
other disciplines such as computer science, engineeigrglgprocessing, biology,
and more. There are many applications, including orgaivizatf large libraries of
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documents, face recognition [52], semi—supervised legrfb, 73, 83], nonlinear
image denoising and segmentation [80, 83], clustering B2machine learning
[5, 73, 83, 68, 67, 84], processing of articulated image$, [d&aloguing of galax-
ies [45], pattern analysis of brain potentials [66], thedgtof brain tumors [21],
document classication and web searching, hyperspectagiimg, and many others.
The analysis and estimation of geometric (intended in thdestisense) properties
of the data include problems such as dimension estimatign [&1, 15, 13, 14]
and references therein), nonlinear dimension reductiong@, 43, 76, 4, 6, 60, 29,
44, 78, 79, 90, 87, 88] and metric space embeddings [12, J0(B&ntimes one
is interested in studying functions on the data, for the psepof denoising, fitting,
and prediction. These questions can be studied througlosippation theory (e.g.
[8, 9] and references therein), machine learning [4], agdadiprocessing [70, 34],
at least in low-dimensional Euclidean spaces. The combimaff the study of ge-
ometric properties with the study of functions defined ondh& is quite a recent
and promising trend [83, 4, 6, 92, 60, 30, 29].

We will for the moment restrict our attention to data setgespnted as discrete
sets inRP. A feature common to many data sets is their high-dimenBiowhich
may range from 10 to £0 This implies that classical statistics, by which we mean
the analysis in the case where the dimenddos fixed and the number of poinis
goes to infinity (or, at leagt >> 2P), is not applicable. Typical situations that we
consider have of the same order d3, and oftentimes < D. In this regime, more
appropriate asymptotics are those witfixed andD going to infinity.

A key observation is that in several situations the data sderbe concentrated
along low-dimensional sets iRP (e.g. [10, 86, 43, 76, 4, 6, 60, 29, 44, 78, 79,
90, 87, 88]). In this case it is natural to ask what geometropprties these low-
dimensional sets have, and how to exploit this phenomenordier to better model
and learn from data.

The interplay between geometry of sets, function space®ts) and operators
on sets is if course classical in Harmonic Analysis.

This paper gives an overview of very recent work in the geoimenalysis of
high-dimensional point clouds and tries to briefly summeatie papers [65, 2, 24].
Material related to this paper is available at http://wwatinduke.edu/"mauro.

2 Multiscale SVD

The quantitative study of geometric properties of setsh siscrectifiability and har-
monic analysis, is classical [56, 37, 39, 40, 38, 35, 41, B¢ applications of ideas
from geometric measure theory to the analysis of point doar@ emerging, and
here we would like to review a small number of very recent ones

One of the basic tools in the analysis of data set in staii®rincipal Compo-
nent Analysis (PCA), which is based on the Singular Valuedbggosition (SVD).
Any n x D matrix X may be decomposed a= U>VT, whereU € R"™" and
V € RP*P are orthonormal and € R"*P is diagonal and positive semidefinite.
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The diagonal entrie§A;} of X, called singular values (S.V.s), are ordered in de-
creasing orderd; > Ay > --- > Apap > 0. This is called the SVD oX. It is use-

ful to notice that the first columns ofV span a linear subspace that minimizes
Sl —Pr(x)] |§D over all choice ofl-dimensional linear subspacBs(herePy
denotes the orthogonal projection omiy. We say that the first columns oV pro-
duce thed-dimensional least squares fit Xa If the rows{x;}{ ; of X represent
data points irRP, Principal Component Analysis consists in computing th@ieim
cal mearm(X) = % S, %, considering the new matriX whose rows arg —m(X),
and computing the SVD of. The columns o¥/ are called the principal vectors. An
alternative interpretation is the following: if we let

cov(X) = (% —m(X)) @ (xi —m(X))

_ i(’“' (X)) (x — m(X)) ®

be the empirical covariance matrix ¥f, then fromX = UXVT we immediately
deduce that
covX) =vzTsvT (2)

so thatA? are the eigenvalues of the covariance matrix. Of courseigsiting
one thinks of having a random variabtetaking values inR®, and the mean and
covariance are its first and second order statistics. leigrdiow to generalize PCA
and SVD to the case of infinitely many points.

If the data pointgx; } lie, say, uniformly on a bounded domain idalimensional
linear subspace, then falarge enough (in fact) > dlogd is enough [77}), X will
be of rank exactly. The firstd empirical singular values will have the same order
as the true ones (i.e. the ones obtained as «) and the remaining ones will be
exactly 0, and the firsl columns ofV will span the linear subspace. Because of
the least squares fit property, we expect that if we add “Smalke to the points
i, the smallest singular values should be perturbed by a smaunt and would
still be much smaller than the tap singular values, indicating the existence of a
d-dimensional linear subspace where the (noiseless) data i

We are interested in the case where the data points liedddimensional non-
linear manifold.# embedded in a high-dimensional sp&®and are corrupted by
high-dimensional noise. This model has gained populanityyé machine learning
community in recent years [10, 86, 43, 76, 4, 6, 60, 29, 4479890, 87, 88]. While
only in particular cases may one expect this model to be cbfoe real data, it is
a step beyond linear models. More general models may alsoms&dered, such
as unions of manifold, possibly intersecting each othed, possibly of different
dimensions. Understanding these more general models geawrtpuire the under-
standing of the simpler model with one manifold only. A peautar choice of this
general model is that of a union of planes, possibly of défféidimensions [1, 82].

1 These bounds are continuously being refined, in particoleather general cases the thterm
may be reduced to loglal
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In order to study these more complicated models, it may seempting to dis-
card SVD, which is so well-adapted to linear models. The S¥B matrix X rep-
resenting data on é-dimensional manifold# in RP may not reveatl at all. As a
first trivial example, consider a planar circlé £ 1) of radiusr embedded ifRP:
cov(X) has exactly 2 nonzero eigenvalues equalyrgo More generally, it is easy

to construct a one-dimensional manifold -€ 1) such that cofX) has full rank
(w.h.p.): it is enough to pick a curve that spirals out in manel more dimensions.
A simple construction (sometimes called Y. Meyer’s stagas the following: pick
the D points Q1,...,D — 1 on the real line, and lep)(x) = 1 if x € [0,2) and O
otherwise. Then the set

{x = Xjo2)(- —t) }ter C L'(R) 3)

is a one-dimensional manifold, which is not contained in sulyspace of dimension
less tharD. This may be discretized by evaluating the functignsn the discrete set
{0,1,...,D—1}. Notice thatx, andx, are orthogonal whenevg —t,| > 2, so this
curve spirals into larger and larger subspacesiasreases. Similar considerations
would hold after discretization of the space and restnictitt to a bounded interval.

However, one may still make good use of PCA if one performaaally at mul-
tiple scales: for every > 0 and every € .# consider

Xor 1= M NBy(r) (4)

i.e. the intersection o with a Euclidean ball (in the ambient spak®) centered at
zof radiusr. Perform PCA orX,, and Iet{/\i’zvr}iD:1 be the corresponding singular
values. Also, let

B (Xer) =A% —Af1,,  forl<i<D-1 (5)

andAp (Xzr) = /\I%,z‘r; these are the gaps of the squared singular valusofFor
a fixedz, how do these singular values behave? We expect that fot srtie top
d singular values\y z;,...,Aq 2, Will grow linearly inr and be large compared to
the remaining ones, which are associated with normal diregtand grow quadrati-
cally inr. The principal components corresponding to thedgingular values will
approximate the tangent space#0 atz This allows one to estimate Asr grows,
however,# will start curving insideB,(r) and the bottom singular values will start
to grow, eventually (in general) becoming as large as thedtejmgular values, as
in the examples mentioned above. Therefore the curvatur afsideRP puts an
upper bound on the set of scales that may be used to dkwiSVD.

This clear picture becomes more complicated if we add twinfaccrucial in
applications: sampling and noise. We only have a finite nurabgamplesX;, from
 , which will put a lower bound on the values wofif r is too small Xy zr 1= Xn N
B,(r) will simply be empty, or may not contain enough points to ble &bdetermine
the intrinsic dimensiod. If high-dimensional noise is added to the samples, so that
our observations are in the fox n;, with X, € .# andn; representing noise (e.g.
n ~ o4(0,lp), with .4 denoting the Gaussian distribution), then another lower
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bound onr arises: ifr is small compared to the “size” of the noige even if we
have enough samples X, these samples will look high-dimensional because
they are scattered iRP by the noise. It is only at scaleshigher than the “size” of
the noise that there is a chance for the top singular valugstert linear growth (in

r) because the SVD will detect a noisy tangent plane. But ogamaat larger scales
curvature will take over. Of course, in the range of scalewalthat of the noise and
below that dictated by curvatur¥, . must have enough samples so that the SVD
may be computed reliably. We discuss this problem in somaildet Section 3,
which is a short summary of the work in [65] (see also [64, 63])

In Section 4 we discuss the problem of efficiently represgntiata on nonlinear
d-dimensional manifolds# embedded iiRP, with d < D, by constructing geomet-
ric dictionaries. If.# were linear, then we could perform SVD, u$B numbers to
encode thal-dimensional subspace” lies on (e.g. by the firstl columns of the
matrix V), and then every point oo would require onlyd coefficients, instead
of D. When.# is not linear nor contained in a low-dimensional subspacRRf
it is not clear how to generalize such a construction in otdefficiently store the
data. We briefly discuss recent work based on so-called geicmavelets [2, 25],
which aim at efficiently encoding the multiscale family of B¥ discussed above
by encoding the difference between approximate tangeneplat different scales.
This encoding not only reduces the cost of encoding thesep)dut yields a mul-
tiscale decomposition of every point o, and therefore of# itself, and fast but
nonlinear algorithms for computing a fast geometric waveknsform and its in-
verse for every point. This may be thought of as a geometrisioe of wavelets.
Much needs to be explored in these directions. In any caseyigdds multiscale
matrix decompositions, that allow one to efficiently enctitiedata and that reveal
structures in data. Section 4 is a short summary of the woj&]ifsee also [25]).

Finally, we discuss the problem of estimating the family an@s when data is
modeled as lying on multiple planes, of possibly differemehsions, and possibly
intersecting. This is the topic of Section 5, which is a stsornmary of the work
[24].

3 Intrinsic dimension estimation

The problem of estimating the intrinsic dimension of a pailtud is of inter-

est in a wide variety of situations, such as estimating thebmr of variables
in a linear model in statistics, the number of degrees ofdoe® in a dynami-

cal system, the intrinsic dimension of a data set modeled Ipyohability dis-

tribution highly concentrated around a low-dimensionalnifdd. Many appli-

cations and algorithms crucially rely on the estimation loé humber of com-
ponents in the data, for example spectrometry, signal gsicg, genomics and
economics, to name only a few. Moreover, many manifold learralgorithms

[10, 86, 43, 76, 4, 6, 60, 29, 44, 78, 79, 90, 87, 88] assumetligaintrinsic di-

mension is given.
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When the data lies on a plane - as for example when it is gexteat a multi-
variate linear model - principal component analysis allows to recover the plane.
This case is well understood as the number of samples growdindy and also
when noise is present (see e.g., out of many works, [54], [84] and references
therein).

The finite sample situation is less well understood. Evehismdase of points on
a plane we derive new results using a new approach; howevesitthation we are
really interested in is that of data having a geometric stinecmore complicated
than linear, such as when the data lies on a low-dimensionalfoid. Several al-
gorithms have been proposed to estimate intrinsic dimarisithis setting; for lack
of space we cite only [61, 50, 18, 16, 32, 14, 75, 58, 11, 7188953, 47].

3.1 Multiscale Dimension Estimation

We start by describing a stochastic geometric model geingréte point clouds we
will study. Let (.#,g) be a compact smooti-dimensional Riemannian manifold,
isometrically embedded iRP. Let n be RP-valued with én] = 0, Varin] = 1 (the
“noise”), for examplen ~ .47(0,1p). Let X = {x;}'_ ; be a set of uniform (with re-
spect to the natural volume measure.a@f) independent random samples .ofi.
Our observationX are noisy sampleX = {x; + on i, wheren) are i.i.d. sam-
ples fromn and whereo > 0. These points may also be thought of as being sampled
from a probability distribution# supported inRP and concentrated around .
Here and in what follows we represent a sehgfoints inRP by ann x D matrix,
whose(i, j) entry is thej-th coordinate of thé-th point. In particulaiX andX are
used to denote both the point cloud and the assocrated matrices, andN is the
noise matrix of they;’s.

The problem we concern ourselves with issttimated = dim.#, given X. We
shall use multiscale SVD, as described above, and startanittxample.

3.1.1 Example: d-dimensional spherein RP, with noise

Let SY = {x e R%*1: ||x||, = 1} be the unit sphere iR, so din(S) = d. We
embedS? in RP via the natural embedding &1 in RP via the firstd + 1 co-
ordinates. We obtaiX by samplingn points uniformly at random fror¢, andX
is obtained by addin®-dimensional white Gaussian noise of variamcen every
direction. We call this data s&f (D, n, g).

In Figure 2 we consider the multiscale S.V.'s${100,10000.1), as a function
of r. Several observations are in order. First of all, notice Rf4* is divided into
20+1 sectors, and therefore by sampling 1000 point§®we obtain about 1 point
per sector (!). Secondly, observe that the noise size, isomea by |x — |3, i.e. by
how much each pointis displaced, would be orderg3] ~ 1, which is comparable
with the radius of the sphere itself (). Therefore this degamay be described as
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Multiscale Gaps
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°(1000,100,0.01): multiscale average smoothed singular values and their standard deviations
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Fig. 1 S°(100,10000.01). Left: plot of E,[A; -], and corresponding standard deviation bands
(dotted), as a function af. The top 9 S.V.’s dominate and correspond to the intringicettisions;

the 10-th S.V. corresponds to curvature, and slowly ine@gagth scale (note that at large scales
A1p > Ag); the remaining S.V.’s correspond to noise in the remaididglimensions, and converge

to the one-dimensional noise size Right: plot of the multiscale gaps: on theaxis we have the
indexi of the gap, and on the vertical axis the scal@he entry(i,r) is the average (oves) gap
E[Ai (Xzr)] = Ez[Ai(Xzr) — Air1(Xzr)]- At small scales the noise creates the gaps at the bottom
left of the figure; at larger scales we see a large gap=a9, and at even larger scales that gap is
surpassed by the gap corresponding£010. This plane is a sort of geometric scale-“frequency”
plane, where “frequency” is the index of the singular values

$%(100,1000,0.1): multiscale singular values and standard deviation Multiscale Gaps
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Fig. 2 Same as above, but f67(100,100Q0.1), i.e. 10 times larger noise

randomly sampling one point per sector at distance 1 fronotigen in the first
D + 1 coordinates, then moved by 1 in a random directio®°. The situation
may seem hopeless.

In fact, we can detect reliably the intrinsic dimension#f. At very small scales,
B.(r) is empty or contains less th&1d) points, and the rank of c@;) is even
less thard. At small scales, no gap among thg,, is visible: B,(r) contains too
few points, scattered in all directions by the noise, and m@reasing S.V.'s keep
arising for several scales. At larger scales, thedep9 S.V.'s start to separate from
the others: at these scales the noisy tangent space isatktdteven larger scales,
the curvature starts affecting the covariance, as indidayehe slowly growing 10th
S.V., while the remaining smaller S.V.’s tend approximateltheone-dimensional
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Fig. 3 Left: The S-manifold#(100,100Q0.01) corrupted by noise. Right: its average multiscale
singular values. The green bands are the set of good scalese® by the algorithm.

0005 T —

Fig.4 The average multiscale singular values of the Meyer sté@2°(500, 1000 0.05/1/1000)
corrupted by noise. Thi-th point in this Meyer staircase is a 1000-dimensional aeethose
entries fromk+ 1 tok+ 20 are equal to 1, and all other entries are 0. The green baadbeaset
of good scales returned by the algorithm.

noise variance: this is the size of the noise relevant in esacgdure, rather than
the much larger expected displacement measured in th&®ylwhich was of size
0O(1).

Motivated by applications to large data sets in high-din@re spaces that are
assumed to be intrinsically low-dimensional, we are irgeze in the regime where
D is large,d << D, and will ask how largen needs to be in order to estimade
correctly with high probability (w.h.p.). In a classicaasstical framework one may
rather be interested in the regime whe&rgal are fixed andh tends to infinity, but in
that case one would conduct the analysis as 0 and this would lead essentially
to the problem of consistency of PCA, and noise would be divelsg minor com-
plication. In many applicationB is large anch cannot be taken much larger than
D itself: we will therefore be interested in the regime whHamndn are large but
5 =0(1).
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3.2 Reaults

In the setting above, we are interested in non-asymptddidtethat hold for finite
n,d, andD, since they will imply finite sample inequalities w.h.p.

We fix a center for our computations. LeL, andN; be the tangent and normal
planes to# atz Their dimension is of courséandD — d. Let X/l andN/! be the
projections ofX;; andN ontoT,, and letX;, andN+ be the projections onti,,
so thatX,, = Xz,rH +Xz,rl andN = O'HNH + o, Nt. We assume that for each fixed
z, there exist parameteRmax, Rmin, Amax, Amin, K, andvmin (Which in general will
depend orz) such that for every € [Rmin, Rmax:

Afcov(Xe, ) Cd 2020224

leov(Xer“)lle < Kk2r® (6)

V0|(Xz,r) 2 VminHgd (Bd)rda

whereA (cov(X;, ') denotes the set of eigenvalues of ¢! andB is the Eu-
clidean unit ball inRY.

We would like to detect the unknown intrinsic dimensibhy estimating a range
of “good” scales where the-th gap is the largest gap. We define

max_4;i(Xzr)} (7)

/’.\‘z’r = {I‘ > 0 Ad()zzr) - i1 D

Observe tha;t’N\z,r is a random set, and we are interested in finding an interveadhwh
is contained imM, with high probability givem noisy samples as above.

Proposition 1 (N — ). AssumeAmax = Amin = A, r > 0)v/d+ 0, VD, r < f(‘"\“—}g.

Then for n large enough, a sufficient condition fo£ fRmin, Rmax being inAz; is
that:

A2r2 Akr3
— + 0f zxf'+—+ 0° +o(n"z) (8
tangent term tangentnoise . anfre erm NOMMa NOISE

o R
Asg),0, — 0, this is implied by < ool

Proposition 2 (n,D — o, & — ). ASSUM&\max = Amin = A, T > 0\\\/a+ o,vD,
r< ﬁng- Then for nd large enough, ang = 1, a sufficient condition for &
[Rmin, Rmax being inA is that:

A
—_— —————
noise P

curvature
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Proposition 3 (D — »,0, = %). A sufficient condition for £ [Rmin, Rmax being
in A, is that:

d
(a\/a+a)v<d|09(d) vol(.Z) ! ) <r< A (10)
. ’ N A Viintlgd (BY) Kvd
noise ; N
sampling curvature

In fact, in all of the above results, the conditions are sigfitnot only in the
limit, but with high probability for finite values of, D. These results are more
technical and the interested reader is referred to [65]y Eissentially imply, in this
context, that as soon as := |Xz| qu‘,%vmm dlogd for r < Rmax then/~\z,r is
non-empty with high-probability. An efficient algorithmrfdinding r’s in ﬂz,r is
also developed in [65], and tested against the leading ctitorse(see the following
section). Finally, the setting in [65] is much more genehalrt the one presented
above; in particular no manifold assumption is made. Irtstdee existence of a set
of scales is assumed, at which the data set lab#snensional plus smaller detail
structure and noise.

In the special case &€, if we have no noise ana— « one can show that:

A% = W12r2+0(r4) fori<i<d
22 Y e
d+1,zr (d+2)2(d+4)r + (r )

A% =0 fori>d+1

So hereAmax= Amin = d%z ~1andk ~ %. Although on first glance it appears that

Prop 1 gives us thalq is the largest gap when< v/d, this is in fact not the case
sinceRmax (the upper bound on the region where the curvature &\ ;, grows
quadratically with respect to the tangent S.V.'s) is adjusthall: Rymax= O(1).

In all of these results a “curse of intrinsic dimension” isile. By “curse of
dimensionality” one usually means the large number of sampkeded for esti-
mating functions of many parameters. For example, if oresttd approximate a
continuous function on the-dimensional unit cub&9 up to precisiorg, one needs
in general one sample in every litedimensional cube of side contained inQ¢:
the number of such cubesésd, which is large as soon asis not large andl is
not small (for example: i€ = 102 andd = d, one would need ¥ samples to
approximate the function up to only 3 digits). From the getiio@erspective, the
curse of dimensionality may manifest itself in terms of camication of measure
phenomena. In our particular situation, for example, cevere matrices of intrin-
sically high-dimensional objects tend to be small, andefoe easily corrupted
by noise. For example, the covariance matrix of dhe 1-dimensional unit sphere
sd-1is %Id (and notly as one may have expected). In particular, if Gaussian noise
0./ (0,1q) is added to points sampled 81, then the covariance “signal to noise
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ratio” is d*%/a, which goes to 0 ad — 4. In the last two Propositions one sees
this curse in the upper bound on the right hand side, whictatasthe factod 2.
However, notice that ik ~ d*%, such bounds become independentiofn other
words, the curse of intrinsic dimensionality, in this cotités not only rather mild,
but disappears by decreasing the curvatuies the intrinsic dimension increases.
This is a analogue of sort to assuming smoothness dependeht® break the
curse in approximating functions in high-dimensions, aaresting approach taken
in functional analysis, approximation theory and statssti

3.3 Algorithm

[d\zﬁminyﬁmax] = Est Di mvBVD (X,,K)

I nput:
Il X : ann x D set of noisy samples
/I K : upper bound on the intrinsic dimensikn

/I Output:
/1d : estimated intrinsic dimension
I (Rmin, Rmax) : estimated interval of good scales

Nets = MultiscaleNets{,, K)

Ak+12r = FindLargestNoiseSingularValué(,Nets)

Rumin = Smallest scale for which 1 . is decreasing an(B,(Ryin)| = KlogK
Rmax = Largest scale for which, . is nonincreasing

k = Largest such that:

for r € (Rmin, Rmax), Ai zr is linear and\i. 1 ;, is quadratic irr, and
Ai(m is largest gap for in a large fraction of Ryin, Rmax)

(Rmin, Rnax) = Largest interval in whicmé?’” is the largest gap

Fig. 5 Pseudo-code for the Intrinsic Dimension Estimator basecholtiscale SVD.

The results above suggest the following algorithm: for eaeh.z, r > 0,i =
1,...,D, we compute\i ;,. Whenr is large, if.# is contained in a linear subspace
of dimensionK (K > d) we will observeK large eigenvalues and — K smaller
noise eigenvalues, in the regime for the valuek dd, g, n suggested by our results.
Clearly,d < K. Moreover{A; 2 }i—k+1,...p Will be highly concentrated and we use
them to estimate, which is useful per se. By viewing; zr }i—k +1....p, we identify
an interval inr where the noise is almost flat, i.e. we remove the small sediese
the distortion due to noise dominates.

We look at the firs{A; 2y }i—1,._k, and the goal is to decide how many of them
are due to the extrinsic curvature.@f . But the curvature S.V.'s grow quadratically
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w.r.t. the “tangential” (non-curvature) S.V.’s: a bestdeaquare linear and quadratic
fitto Ai r, as a function of, is enough to tell the curvature S.V.’s from the tangential
S.Vs.

MATLAB code and a User Interface for navigating the multlsca.V.'s are avail-
able at www.math.duke.edu/"mauro.

3.4 Examples
@6(250,0) 0*2(2500)
—— MSVD —— MSVD
son RTPMM 1 ——— RTPMM
RPMM 40 ——— RPMM 7
251 MLE 4 MLE
—— IDE — IDE

CorrDim i CorrDim
H - - - Takest *

~ — ~ DeBias
— — —kNN

SmoothkNN

[ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 01
08(10000) ©12(1000 0)

ConDim
— — - TakEst
~ — - DeBias

— kNN
SmoothkNN

i L R L L i n T T i 1 L L L L L L
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Fig. 6 Benchmark data sets: cube. The horizonal axds ithe one-dimensional standard deviation
of the noise, the vertical axis is the estimated dimensidaciBdots mark the correct intrinsic
dimension.

We test our algorithm on several data sets obtained by sagwpianifolds, and
compare it with existing algorithms. The test is conductefbdows. We fix the am-
bient space dimension @ = 100. We letQ9, SY, .7, 279 be, respectively, the unit
d-dimensional cube, thd-dimensional sphere of unit radius, a manifold product
of an S-shaped curve of roughly unit diameter and a unit intervad, gne Meyer’s
staircasg Xo.d(- — ) }1=0....p- Each of these manifolds is embedded isometrically in
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s6(1000 0) s12(1000 o)

: : T T T T T T T T : :
—— MSVD 120 —— MsvD
RTPMM RTPMM
RPMM 4 RPMM
MLE MLE
—— IDE ——IDE
CorrDim 1001 CorrDim
— — —TakEst — — — TakEst
50 — — - DeBias 49 ~ — - DeBias

60H

— kNN — kNN
SmoothkNN SmoothkNN

i H i i i | i i i i | i
o 001 002 003 004 005 006 007 008 009 0.1 o 0.01

Fig. 7 Benchmark data sets: sphere. The horizonal axis the one-dimensional standard devia-
tion of the noise, the vertical axis is the estimated dim@msBlack dots mark the correct intrinsic
dimension.

RX, whereK = d for Q9, K = d+1 forS9, K = 3 for.# andK = D for 2’9, andRK

is embedded naturally iRP. Finally, a random rotation is applied (this is irrelevant
since all the algorithms considered are invariant undenetaes). We drawm sam-
ples uniformly (with respect to the volume measure) at raméfom each manifold,

and add noisg ~ %JV(O, Ip). We incorporate these parameters in the notation by

usingQ9(n, o) to denote the set af samples obtained as described above, where
the manifold is thed dimensional unit cube and the noise has variamc®/e also
consider a variation of these sets, where we difitéafter embedding the manifold
but before any other operation) by a diagonal dilation wétttdérs drawn at random
from the multisef1,1,1,1,0.9,0.9,0.9,0.8,0.8}.

We consider here = 6,12,24,48 for Q9 andSY, d = 10,20,50 for 9. The
samples size is set as= 250,500,10002000. We let the noise parameter=
0,0.1,0.25,0.5,1,1.5,2. For each combination of these parameters we generate 5 re-
alizations of the data set and report the most frequentgiiatedimension returned
by the set of algorithms specified below, as well as the stahdaviation of the
estimated dimension. We test the following algorithms:Bi2sing” [16], “Smooth-
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— RTPMM 140H RTPMM
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— IDE — IDE
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- - - TakEst — - - Takest
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21020500, 0 102001000 0)
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RTPMM 1
RPMM 1207
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8o : .
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Fig. 8 Benchmark data sets: S-shaped manifgidand Meyer’s staircasé” . The results forz*?0
are consistently better than those 1, once the number of points and the level of noise is fixed.
This is consistent with the fact thatr2® has a smaller effective curvature th&ftC.

ing” [18], RPMM in [51], “MLE" [62], “DeBias” [17], “kNN" [33 ], “SmoothKNN”"
[19], as well as the classical Correlation Dimension andefagstimator [85, 46].
The “MFA’ label in table 1 refers to one of the state-of-artyBaian approaches to
dimension estimation [26]. For MFA, the authors of [26] ra&e tode, given only
the information that no data set would have intrinsic din@m&arger than 100 (this
is essentially the only parameter in our algorithm, and iised only for speeding
up computations); in all the other cases we ran the code lvassafter finding a
reasonable range of the parameters that worked on toy eramithere is a large
disparity in the number of parameters in these algorithargging from 1 to 7. We
will make the data sets publicly available at www.math.dele/"mauro so that
other researchers may try their algorithms (present anodybn a common set of
examples.

Finally, in 9 we consider a data set with different dimensidy in different
regions, and run the algorithm pointwise. We show both thiatpdse estimated
dimensionality, and the maximal valuemthe algorithm returns as a good scale.
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Table 1 This table contains the dimension estimates for a quitegner@gime with 1000 samples
and no noise. Even in this straightforward setting the estion of dimension is challenging for
most methods.

RTPMM RPMM MLE IDE CorrDim TakEst DeBias kNN SmoothkNN MFA M®

QS 5 5 5 6 5 6 6 6 4 2 6
QZ 7 9 9 10 10 10 10 12 7 4 12
Q% 9 6 16 17 17 17 17 20 11 1 24
Q® 1 26 25 29 28 28 27 32 19 2 48
QF 5 5 5 6 6 6 6 6 5 1 6
Q7 7 9 9 10 10 10 10 12 7 2 12
Q¥ 9 16 15 17 17 17 17 20 11 3 24
Q® 1 26 25 28 27 28 27 31 17 2 48
52 4 5 5 5 5 5 5 5 4 2 5
st 7 9 9 10 10 10 10 10 8 1 11
SB 10 16 16 18 18 18 18 18 14 2 24
s o1 27 26 31 30 31 29 29 21 3 48
S® 5 5 5 5 5 5 5 5 4 2 5
S 9 9 10 10 10 10 10 8 1 11
SB 9 16 16 18 18 18 18 18 13 1 23
S 11 27 26 31 30 30 29 29 21 3 48
7 2 2 2 2 2 2 2 2 2 1 2
RZ 2 2 2 2 2 2 2 3 2 2 2
ZT NaN NaN 3 340 0O 29 3 87 7 4 2
2T NaN NaN 2 93 0 14 2 67 3 2 1
ZT NaN NaN 3 14 12 14 3 3 2 2 1
#T NaN NaN 2 13 13 13 2 5 2 2 1

Pointwise integral dimension estimate Maximal good local scale

3 1
28 09
26 . 08
R
24 ‘2 . 07
gt o 02,0 A
22 8 Te ool s Foy e 06
' (3 SR ege
2 .
- - -2.¥e
2 b . & 05
S B
18 . . ..,: . 04
16 2, it ey - 03
14 02
1
12 ~ 01
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Fig. 9 This data set is a union of two manifolds of different dimensi a 2-dimensional sphere
and a 1 dimensional segment. Left: the estimated pointwilsermsionality. Right: the largest
“good” scale returned by the algorithm, for every point. &lbbw the largest good scale is large
for points far from the intersection of the sphere and thessd and decreases as we approach the
intersection.
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4 Geometric Wavelets

Recent work, both in machine learning, signal processinggie analysis, and har-
monic analysis, has focused on either the construction afelly hand-crafted
dictionaries for large classes of data sets (wavelet for dighals, curvelets for
certain classes of images, chirplets, etc.), or on dictiesahat are tuned to spe-
cific data sets [1, 82, 91] (and references therein). Therlagpproach typically is
formulated by requesting to find a dictiona@®y with | elements, such that every
element in the data set may be represented, up to a certaisipres, by at most
m elements of the dictionary. This sparsity requirement efrépresentation is very
natural in statistics, signal processing, and interpictadf the representation. Of
course, the smalldrandm are, for a givere, the better. Current constructions of
such dictionaries, such as K-SVD [1], k-flats [82], and Bagesnethods [91], cast
these requirements as an optimization problem and rely ackdbox optimization
to find solutions. Typically no guarantees are provided alioe size ofl andm
(as functions oE), the computational costs, and the uniqueness of the snl(iti
practice, it is observed that these algorithms depend lygavihe initial guess). On
the other hand, when these algorithms do give solutionstpedctitioner considers
“good”, the use of these data-dependent dictionaries cald yery impressive re-
sults in such diverse problems as data modeling, clasificainage compression
and impainting, and more (e.g. [69] and references therémjther drawback of
existing constructions of data-dependent dictionarigbas the output dictionary
is in general highly overcomplete and completely unstnectueven if, at least in
the case of images, one may empirically observe certaintsties, symmetries and
regularities in the dictionary elements). As a consequgangeneral there is no fast
algorithm for computing the coefficients of the represeotanf a data point in the
dictionary (nor, but less importantly, to sum a long lineambination of dictionary
elements), which requires appropriate sparsity-seekgayithms.

In [24], the authors construct data-dependent dictiosarging a multiscale geo-
metric analysis of the data, based on the geometric anatyie work [55]. These
dictionaries are structured in a multiscale fashion andbsaoomputed efficiently;
the expansion of a data point on the dictionary elementsasagueed to have a cer-
tain degree of sparsitmand can be computed by a fast algorithm; the growth of the
number of dictionary elementg(as a function o) is controlled theoretically and
easy to estimate in practice. The elements of these dictemare callegjeometric
waveletd24], since in some respects they generalize wavelets frextoys that an-
alyze functions to affine vectors that analyze point clodd® multiscale analysis
associated with geometric wavelets shares some singlanitith that of standard
wavelets (e.g. fast transforms, a version of two-scaldioglg, etc.), but is in fact
quite different in many crucial respects. It is highly nowlar, as it adapts to arbi-
trary nonlinear manifolds, albeit every scale-to-scadg $¢ linear (which is key to
efficient computation and fast algorithms); translationditations do not play any
role here, while they are often considered crucial in ctadsivavelet constructions.
Geometric wavelets may allow the design of new algorithmsfanipulating point
clouds similar to those used for wavelets to manipulatetfans. Dictionaries of
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basis functions have a large number of applications in nmastties and engineering
[70, 34, 42, 89, 20, 28, 7, 27].

4.1 Construction of Geometric Wavelets

Let (.#,g) be ad-dimensional compact Riemannian manifold isometricaity- e
bedded inRP. We are interested in the regirde< D. Assume we have samples
drawn i.i.d. from.#, according to the natural volume measdse| on.# 2. We
construct a multiscale decomposition of the manifetdas follows.

We start by decomposing? into multiscale nested partitiong’j. For j < J,
let 2} = {Cjk}ker; be a disjoint cover of#, eachCjx contains a ball of radius
~ 271, has diameter 2-1 and piecewise smooth boundary. Moreover, we assume
that everyCj x = Uy cchildren(j k/Cj+1k this also defines childréin k). There is a
natural tree structure’ associated with this family of partitions. Faere .#, we
let Cj x be the unique element @¥; that containx. We also note in advance that
we will adopt similar notationR; x, ®@; x, ¥ x, etc.) for objects associated witlj .

In practice, we use METIS [57] on a nearest-neighbor weijlgi@ph in order to
compute the multiscale partition®;.

For everyC; x we may compute the tog eigenvalues and eigenvectors of the
covariance matrix cqy of the data irC; \, as we did before for the matrix of the
data in a ball of radius centered around a poiatLet ®; , be theD x d orthogonal
matrix of the topd eigenvectors o€, x andAy > --- > Ag > 0 the corresponding
eigenvalues. We think of the span of the columngypf as an approximate tangent
space to/ at scalej and location marked bg; k. Let P; x be the associated affine
projection

Pik(X) = @ k@] (X—Tjk) +Tjk- (12)

wheret; c is avgCj k). We let, forvx e .2 andj < J,
Xj:3 =Py (X) =Py xoPjr1x0- -0 Pix(X) (12)
and define the approximatio#|;; to .# at scalej as the set
M3 = Ukeri P.a5 (Cjx)- (13)

Although.#|;; andx;;; depend on the finest scalewe will from now on drop the
J subscript for simplicity of notation«| is a coarse approximation o# at scale
j, analogous to what the projection of a function onto a sgdlimction subspace is
in wavelet theory. Under suitable assumptions, — .# in the Hausdorff distance,
asJ — oo,

2 More general hypotheses on the sampling procedure or on¢hsurgu are possible but we do
not consider them here.
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The setP; «(Cj k) of pieces of affine planes centereccak and spanned bg; i
is an approximation of the manifoldZ at scalej. Just as a scaling function ap-
proximation to a function is a coarse version of the functgmthis set of pieces of
planes is an approximation o'

We can now construct wavelet planes that span the spacedeectempleted;
into the span of @1 k }iechildrerj k- We leave the description of the construction
to [2]. Inits simplest form, this construction yields, faregy (j + 1,k'), aD x de‘k,
orthogonal matri¥, ;1 ¢ spanning the subspage- @; @' )(®Pj 1 x)- LetQjH;k/
be the corresponding affine projection: we have the fund&mhemo-scale relation

P ;1) =P (%) 4+ Qjr1x(Py;, (X)) (14)

for everyx € Cj 1. By iterating, we obtain a wavelet sum representation of any
pointx € .Z .

The geometric scaling and wavelet coefficiefig x}, {0 x} of a pointx € .#
are defined by the equations

Xj = ®jxPjx+Tjx; (15)
Qj+1x(Xj+1) = ¥i+1x0j+1.x+Wjt1x (16)

wherex; = Pj x(x). The computation of the coefficients (and translations)nffine
to coarse, is simple and fast. For anyg .#; andjo < J, the set of coefficients
J .
X= (qJ,X7QJ—1,x, <5 Ajo+1x pjo,x) € R(sz:joﬂdj’x 7)
is called the discrete geometric wavelet transform &incedj x < d,d+3 -, djx <
(J—Jo+1)d.

Observe that we may immediately extend this transform tatsaiot on#, but
within the so called rea¢h# ), which is the set of points in the ambient space which
have a unique closest point.i#’. This set of points may be thought of as a maximal
tube, of variable radius, around’, which does not “self-intersect”.

Finally, one may show that the algorithm for constructing # \’s and ¥} i’s
only costst(Dn(log(n) + d?+k)) [2].

4.2 Examples

We conduct numerical experiments in this section to dematesthe performance
of the algorithm.
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reconstructed manifold at scale 4, error = 0.095541

reconstructed manifold at scale 8, error = 0.018989

B "
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Fig. 10 Geometric wavelet transform of éshaped manifold, from which 3000 points are ran-
domly sampled. Left: the reconstructed manifold, at scale 4. Right: the reconstructed manifold
Mg at scale 8.

4.2.1 Low-dimensional smooth manifolds

We first consider a simple data set of a 2-dimensidghshaped manifold irR3
and apply the algorithm to obtain the geometric waveletdfemm of the sampled
data (3000 points) in Figure 10-11. The resulting waveleffacients matrix is very
sparse (with about 63% of the coefficients below 1 percerfi@htaximal magni-
tude). The reconstructed manifolds also approximate tigenal manifold well.

coeficients agains scale (log-log plo)

wavelet coefficients

] y - oo
2l ] s T

scales
"
5
)
coefficient
/
/

500 1000 1500 2000 2500 3000

points T8 07 05 05 -04 -03 02 01 0 o1
scae

cal

Fig. 11 Left: Geometric wavelet representation of the data. ¥aeis indexes the points, and the
y axis indexes the wavelet coefficients as in (17), with thesest scale at the top and the finest
scale at the bottom. The wavelet subspaces have dimensioosa®, and in fact numerically their
dimension is, up to two digits of accuracy, 1. This “matrig’sparse, with about 37% entries above
10-2. Observe that this “matrix” representation is not an actoairix, since the set of rows is not
in one-to-one correspondence with the dictionary elemaitise each cell in the tree has its own
local dictionary. Right: Average error in approximating @ on the manifold, as a function of
scale (smaller scales on the right).
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4.2.2 A data set

We next consider a data set of images from the MNIST dat&. && consider the
handwritten digit 7. Each image has sizex288. We randomly sample 5000 such
images from the database and then project the samples sfiosh120 dimensions
by SVD. We apply the algorithm to construct the geometricelets and show the
reconstructions of the data and the wavelet coefficienté sd¢ales in Figure 12. We
observe that the magnitudes of the coefficients stops degafier a certain scale.
This indicates that the data is not on a smooth manifold. Vigeexoptimization of
the tree and of the dimension of the wavelet in future workegudl to an efficient
representation also in this case.

wavelet coefficients

F {=zo000
5[ 1 F HJa1s00

r 41000
10 1

r 4500

15 |- 1 L Jo

r 1 —500
20 i

r 1 —1000

25 Hl

r 41 —1500

—2000

30k i
1000 2000 3000 4000 5000

Fig. 12 Geometric wavelet representation of the data for the imafjeandwritten 7’s. This matrix
is less sparse than what we would expect for a manifold. Ehamniartifact of the construction
of geometric wavelets we presented here, in which the diroeref the planes ®; k) is chosen
independent of, k. This constraint is not necessary and is removed in [2], whilows one to tune
this dimension, as well as the dimension of the wavelet spdoethe local (in space and scale)
properties of the data.

We then fix two data points (i.e. two images) and show in Figuand 14 their
reconstructed approximations at all scales and the canekpg wavelet bases (all
of which are also images). We see that at every scale we haaedwhitten digit,
an approximation to the fixed image, and those digits areaéfsuccessively to
approximate the original data point. The elements of th&éatiary quickly fix the
orientation and the thickness, and then they add othendisghing features of the
image being approximated.

3 available, together with detailed description and st&arp results, at
http://yann.lecun.com/exdb/mnist/.
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Fig. 13 An image representation of the reconstructed data pointledorresponding subset of
the wavelet dictionary. Left: in images 1-10 we plot coaséine geometric wavelet approxima-
tions of the original data point represented in the last twages (projection and original) on the
bottom. Right: elements of the wavelet dictionary (orderedh coarse to fine in 1-10) used in the
expansion above.
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Fig. 14 An image representation of the reconstructed data pointledorresponding subset of
the wavelet dictionary. Left: in images 1-10 we plot coaséine geometric wavelet approxima-
tions of the original data point represented in the last twages (projection and original) on the
bottom. Right: elements of the wavelet dictionary (orderedh coarse to fine in 1-10) used in the
expansion above.

5 Multiple planes

Recent work in machine learning, imaging and harmonic aislyas focused on
modeling data, or spaces of signals, as a union of lineapsuies (in some cases,
affine). More precisely, assume that the data is generateaopling (uniformly,
say) from
UK & (Q%) (18)
e

where theg; are affine map®% — RP that are invertible on their range. In other
words, the data is sampled from affine images of unit cubescegi of planes - of
different dimensions. These pieces may intersect each étlypical problem is the
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following: givenn samplesK andd;, finda. Current approaches are based on black-
box optimization [1, 82], “higher-order” spectral clustey methods [48, 22, 23] and
references therein, or Monte-Carlo sampling within a Bareframework [91].
These cited papers also contain many references to relaigd im the first two
approache« andd; (or, in some cases, only an upper bounddgrare needed as
input. In the latter work, experimentation shows that hyp&rameters need to be
set very close to the correct values unless the number ofgioia very large.

Based on the work on the estimation of intrinsic dimensiod datermination
of “good scales” described in Section 2 (see [65]), we caachtthis problem not
only without having to knowK anddi;, but also with guarantees that given a very
small number of samples we are going to determine the coarsctNone of the
algorithms described above has this type of guarantee wilittle information.

We shall assume that each of tiepieces of planes contains at leagK points,
with high probability, wherec is some numerical constant. We shall also assume
that a fraction of each piece of plane is far from the inteisaavith other pieces of
plane. The algorithm we propose is the following: pick a seEnppintxg at random.
We may assume without loss of generality thabelongs tag. We run the intrinsic
dimension estimator of [65] (see Section 2). If the estimatwceeds, it will return
a range of “good scales”, as well as an estimatdyfwhich is correct w.h.p.. If
the estimator fails, the point was too close to an intersadiietweenp and some
otherr. We simply consider another sample point. By assumptiormpuweiterO(1)
samples we will find a sample, which we call agay for which the dimension
estimator succeeds. We have therefore fodgsay), and from the ball centered at
Xp of radius equal to the largest “good scale”, we estinmgté\t this point we assign
to 1 all the points that are no farther tharfrom p (we may choosé = 0 if there
is no noise). We now repeat the above on the remaining pdilh#sl the points have
been assigned to some plane. After all the points have be@gmnasl, a polishing step
is performed: since we now have all thgs, we recompute the assignment of each
point to the nearegt. Notice that the algorithm will succeed with high probatijli
as soon as eacit has a fraction of points far enough from the intersectiorhwit
otherm’s for which the dimension estimator is going to succeed.aRebat this
estimator only requireg’(d;logd;) points in order to assess the dimension. The
only remaining issue is the selection &f which we perform by estimating the
noise variance empirically, as already done in the intciginension estimator. In
fact, an even more robust procedure may be used, based osidgramd clustering
the matrix of affinities between points and estimated caatdilfor therg’s: such
a procedure determinds and the assignment of the points to thj&s at the same
time: the details may be found in [24]. Finally, assuming-poenputation of any
structure needed to compute nearest neighbors, and agstivatmearest neighbors
may be computed i®(logn), the computational cost of the algorithm to find the
pieces of planes and assign points to thew? (alognK max d?). If the assignment
of points to planes is not required, and only the pieces afgdare requested, then
randomization allows one to reduce the computational cogt(K2max d?).

We consider a simple example in Figure 15, which in fact usesee robust,
less greedy version of the algorithm just described [24].
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Fig. 15 Global spectral analysis of local subspaces for modelird) dustering hybrid linear
data [24]. In this example the given data set consists otpsampled around 2 lines and 1 plane in
R3. We first apply the intrinsic dimension estimator to the daid find a collection of good local
scales with dimension estimates at many locations (seeuatelscation (black plus symbol) in
the top left figure, with region indicated by the red pointg)amalyzing the local singular values
(see top right, the region between red vertical lines is #mge of good scales). We then perform
spectral analysis to integrate the local planes so that eevee the model as well as the underlying
clusters (see bottom left; the misclassification rate i%@.3\l we need so far, including for find-
ing the intrinsic dimensions of the underlying planes, es¢hordinates of the data plus knowledge
of the number of clusters. When the number of clusters is notvk, we detect it by looking at

the errors associated with different choices (see bottght;rthe red line indicates the model error
which we can estimate by multiscale SVD).

References

1. M. Aharon, M. Elad, and A. Bruckstein. K-SVD: Design of tiimaries for sparse represen-
tation. INPROCEEDINGS OF SPARS 0pages 9-12, 2005.

2. WK. Allard, G. Chen, and M. Maggioni.
Geometric waveletsn preparation 2010.

3. M. Belkin and P. Niyogi. Laplacian eigenmaps and speté&ethniques for embedding and
clustering. InAdvances in Neural Information Processing Systems 14 (RIA) pages
585-591. MIT Press, Cambridge, 2001.

4. M. Belkin and P. Niyogi. Using manifold structure for pafty labelled classification.Ad-
vances in NIPS15, 2003.

5. M. Belkin and P. Niyogi. Semi-supervised learning on Raaman manifolds. Ma-
chine Learning 56(Invited Special Issue on Clustering):209-239, 200R-2D01-30, Univ.
Chicago, CS Dept., 2001.

6. M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regulzaition: A geometric framework
for learning from labeled and unlabeled examplésurnal of Machine Learning Research

Multiscale geometmethods for data sets Il



24

10.
11.
12.
13.
14.
15.
16.

17.

18.

19.

20.

21.

22.
23.
24.
25.
26.
27.
28.

. R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler,Warner, and S. W. Zucker.

30.

Guangliang Chen, Anna V. Little, Mauro Maggioni, and Liime Rosasco

(7):2399-2434, Nov. 2006.

. J.J. Benedetto and M.W. Frazier ed¥avelets, Mathematics and ApplicatiorSRC Press,

1993.

. P. Binev, A. Cohen, W. Dahmen, R.A. DeVore, and V. Temlyakdniversal algorithms for

learning theory part i: piecewise constant functiahsviach. Learn. Res6:1297-1321, 2005.

. P. Binev, A. Cohen, W. Dahmen, R.A. DeVore, and V. Temlyakdniversal algorithms for

learning theory part ii: piecewise polynomial functio@onstr. Approx.26(2):127-152, 2007.
I. Borg and P. Groenen.Modern Multidimensional Scaling : Theory and Applications
Springer, 1996.

S. Borovkova, R. Burton, and H. Dehling. ConsistencyhefTakens estimator for the corre-
lation dimensionAnn. Appl. Probah.9(2):376—-390, 1999.

J. Bourgain. On Lipschitz embedding of finite metric gsamto Hilbert spacelsr. Journ.
Math, pages 46-52, 1985.

F. Camastra and A. Vinciarelli. Intrinsic dimensionimsttion of data: An approach based on
grassberger-procaccia’s algorithideural Processing Letterd4(1):27-34, 2001.

F. Camastra and A. Vinciarelli. Estimating the intrsndimension of data with a fractal-based
method.|[EEE P.A.M.I, 24(10):1404-10, 2002.

Wenbo Cao and Robert Haralick. Nonlinear manifold €lisg by dimensionality.icpr,
1:920-924, 2006.

K. Carter, A. O. Hero, and R. Raich. De-biasing for irgitndimension estimatiorStatistical
Signal Processing, 2007. SSP '07. IEEE/SP 14th Workshppages 601-605, Aug. 2007.
Kevin M. Carter, Alfred O. Hero, and Raviv Raich. De-lmgsfor intrinsic dimension es-
timation. Statistical Signal Processing, 2007. SSP '07. IEEE/SP Wbhkshop onpages
601-605, Aug. 2007.

K.M. Carter and A.O. Hero. Variance reduction with néigthood smoothing for local in-
trinsic dimension estimationAcoustics, Speech and Signal Processing, 2008. ICASSP 2008
IEEE International Conference opages 3917-3920, 31 2008-April 4 2008.

K.M. Carter and A.O. Hero. Variance reduction with néigthood smoothing for local in-
trinsic dimension estimatiorAcoustics, Speech and Signal Processing, 2008. ICASSP 2008
IEEE International Conference ppages 3917-3920, 31 2008-April 4 2008.

Tony F. Chan and Jianhong Shehmage processing and analysisSociety for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 2005.rigonal, PDE, wavelet, and
stochastic methods.

M. Chaplain, M. Ganesh, and I.Graham. Spatio-tempa#ém formation on spherical sur-
faces: numerical simulation and application to solid tugrawth. J. Math. Biology 42:387—
423, 2001.

G. Chen and G. Lerman. Foundations of a multi-way spledtrstering framework for hybrid
linear modelingFound. Comput. Math9:517-558, 2009. DOI 10.1007/s10208-009-9043-7.
G. Chen and G. Lerman. Spectral curvature clusterir@.(st. J. Comput. Vis.81:317-330,
2009. DOI 10.1007/s11263-008-0178-9.

G. Chen and M. Maggioni. Multiscale geometric methodsl&da sets I1l: multiple plane#n
preparation 2010.

G. Chen and M.Maggioni. Multiscale geometric waveletstlie analysis of point cloudso
appear in Proc. CISS 201@010.

M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and kinCa&Compressive sensing on
manifolds using a nonparametric mixture of factor analyzédgorithm and performance
bounds.|EEE Trans. Signal Processing010. submitted.

Scott Shaobing Chen, David L. Donoho, and Michael A. 8ars1 Atomic decomposition by
basis pursuitSIAM Journal on Scientific Computing0(1):33-61, 1998.

C.K. Chui.An introduction to waveletsAcademic Press, San Diego, 1992.

Geometric diffusions as a tool for harmonic analysis andatstire definition of data: Diffusion
maps.PNAS 102(21):7426-7431, 2005.
R.R. Coifman and S. Lafon. Diffusion mapsppl. Comp. Harm. Anal21(1):5-30, 2006.



Some recent advances in multiscale geometric analysisiof glouds 25

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

J. Costa and A.O. Hero. Learning intrinsic dimension iatdnsic entropy of high dimen-
sional datasets. IRroc. of EUSIPCQVienna, 2004.

J.A. Costa and A.O. Hero. Geodesic entropic graphs foedsion and entropy estimation in
manifold learning.Signal Processing, IEEE Transactions, &2(8):2210-2221, Aug. 2004.
J.A. Costa and A.O. Hero. Geodesic entropic graphs foedsion and entropy estimation in
manifold learning.Signal Processing, IEEE Transactions, &2(8):2210-2221, Aug. 2004.

| Daubechies.Ten lectures on waveletsSociety for Industrial and Applied Mathematics,
1992.

G. David and S. Semmeédniform Rectifiability and Quasiminimizing Sets of Arbrr&odi-
mension AMS.

G. David and S. Semmes. Singular integrals and rectfisés inR": Au-dela des graphes
lipschitziens.Astérisque(193):152, 1991.

Guy David.ht t p: / / www. mat h. u- psud. fr/ ~gdavi d/ Not es- Parkci ty. dvi .
Guy David. Morceaux de graphes lipschitziens et itlegrsingulieres sur une surfadeev.
Mat. Iberoamericana4(1):73-114, 1988.

Guy David.Wavelets and singular integrals on curves and surfaeekime 1465 ot ecture
Notes in MathematicsSpringer-Verlag, Berlin, 1991.

Guy David.Wavelets and Singular Integrals on Curves and Surfagsinger-Verlag, 1991.
Guy David and Stephen Semme&nalysis of and on uniformly rectifiable set®lume 38
of Mathematical Surveys and Monographsmerican Mathematical Society, Providence, RI,
1993.

D. L Donoho and Ana G Flesia. Can recent innovations imbaic analysis ‘explain’ key
findings in natural image statisticd®etwork: Comput. Neural Sys.2:371-393, 2001.

D. L. Donoho and C. Grimes. When does isomap recover algtarameterization of fam-
ilies of articulated images? Technical Report Tech. Rep2287, Department of Statistics,
Stanford University, August 2002.

D. L Donoho and Carrie Grimes. Hessian eigenmaps: nemllyolinear embedding tech-
niques for high-dimensional datRroc. Nat. Acad. Sciencegsages 5591-5596, March 2003.
also tech. report, Statistics Dept., Stanford University.

D. L. Donoho, O. Levi, J.-L. Starck, and V. J. Martinez. INacale geometric analysis for 3-d
catalogues. Technical report, Stanford Univ., 2002.

A. M. Farahmand and C. Szepesv?and J.-Y. Audibert. Miahi#daptive dimension estima-
tion. Proc. I.C.M.L, 2007.

A. M. Farahmand, Cs. Szepesvari, and J.-Y. Audibertnifdli-adaptive dimension estima-
tion. In Proceedings of the 24th international conference on Maeléarning page 265272,
2007.

S. Atev G. Chen and G. Lerman. Kernel spectral curvatustering (kscc). Imrhe 4th ICCV
International Workshop on Dynamical Visidkyoto, Japan, 2009.

Peter Grassberger and Itamar Procaccia. Measuringamgsness of strange attractdriys.
D, 9(1-2):189-208, 1983.

G. Haro, G. Randall, and G. Sapiro. Translated poissatunei model for stratification learn-
ing. Int. J. Comput. Vision80(3):358-374, 2008.

Gloria Haro, Gregory Randall, and Guillermo Sapiro. nBtated poisson mixture model for
stratification learningint. J. Comput. Vision80(3):358-374, 2008.

X. He, S.Yan, Y. Hu, P. Niyogi, and H.-J. Zhang. Face redamn using laplacianfacesEEE
Trans. pattern analysis and machine intelligen2é(3):328-340, 2005.

M. Hein and Y. Audibert. Intrinsic dimensionality esttion of submanifolds in euclidean
space. In S. Wrobel De Raedt, L., edit@ML Bonn pages 289 — 296, 2005.

lain M. Johnstone. On the distribution of the largeseriglue in principal components
analysis.Ann. Stat.29(2):295-327, April 2001.

Peter W. Jones. Rectifiable sets and the traveling sateprnoblem.Invent. Math, 102(1):1—
15, 1990.

P.W. Jones. Rectifiable sets and the traveling salesnoatem. Inventiones Mathematicae
102:1-15, 1990.



26

57.
58.
59.

60.
. E. Levina and P. Bickel. Maximum likelihood estimatidnrdrinsic dimension.In Advances

62.

63.

64.

65.
66.
67.

68.

69.

70.
71.

72.
. P. Niyogi, I. Matveeva, and M. Belkin. Regression anditagzation on large graphs. Tech-

74.
75.
76.
77.
78.
79.

80.
81.

82.

83.

Guangliang Chen, Anna V. Little, Mauro Maggioni, and Liime Rosasco

G. Karypis and V. Kumar. A fast and high quality multileseheme for partitioning irregular
graphs.SIAM Journal on Scientific Computing0(1):359—-392, 1999.

V. I. Koltchinskii. Empirical geometry of multivariatéata: a deconvolution approacAnn.
Stat, 28(2):591-629, 2000.

R. Krauthgamer, J. Lee, M. Mendel, and A. Naor. Measursteht: A new embedding
method for finite metrics, 2004.

S Lafon.Diffusion maps and geometric harmoniézhD thesis, Yale University, 2004.

in NIPS 17,Vancouver, Canad2005.

Elizaveta Levina and Peter J. Bickel. Maximum likelidasstimation of intrinsic dimension.
In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editérdyances in Neural Information
Processing Systems Jyages 777-784. MIT Press, Cambridge, MA, 2005.

A.V. Little, Y.-M. Jung, and M. Maggioni. Multiscale @station of intrinsic dimensionality
of data sets. IfProc. A.A.A.l, 2009.

A.V. Little, J. Lee, Y.-M. Jung, and M. Maggioni. Estinat of intrinsic dimensionality of
samples from noisy low-dimensional manifolds in high disiens with multiscal&SV D In
Proc. S.S.P.2009.

A.V. Little, M. Maggioni, and L. Rosasco. Multiscale geetric methods for data sets I:
Estimation of intrinsic dimensionn preparation 2010.

P-C. Lo. Three dimensional filtering approach to braiteptal mapping. IEEE Tran. on
biomedical engineeringt6(5):574-583, 1999.

S. Mahadevan, K. Ferguson, S. Osentoski, and M. Magg®imultaneous learning of repre-
sentation and control in continuous domainsAKAI. AAAI Press, 2006.

S. Mahadevan and M. Maggioni. Value function approxiomatvith diffusion wavelets and
laplacian eigenfunctions. Ibdniversity of Massachusetts, Department of Computer 8eien
Technical Report TR-2005-38; Proc. NIPS 2026805.

Julien Mairal, Francis Bach, Jean Ponce, and Guillerapr8. Online dictionary learning
for sparse coding. IfCML, page 87, 2009.

S.G. MallatA wavelet tour in signal processing\cademic Press, 1998.

Benoit B. Mandelbrot and Richard L. Hudsofhe (mis)behavior of market8asic Books,
New York, 2004. A fractal view of risk, ruin, and reward.

A. Ng, M. Jordan, and Y. Weiss. On spectral clusteringalsis and an algorithm, 2001.

nical report, University of Chicago, Nov. 2003.

Debashis Paul. Asymptotics of sample eigenstructure farge dimensional spiked covari-
ance modelStatistica Sinical7:1617-1642, 2007.

M. Raginsky and S. Lazebnik. Estimation of intrinsic dimsionality using high-rate vector
guantization.Proc. NIPS pages 1105-1112, 2005.

ST Roweis and LK Saul. Nonlinear dimensionality recarectby locally linear embedding.
Science290:2323-2326, 2000.

M. Rudelson. Random vectors in the isotropic positibrof Functional Analysisl64(1):60—
72, 1999.

L.K. Saul, K.Q. Weinberger, F.H. Ham, F. Sha, and D.D..L8pectral methods for dimen-
sionality reduction chapter Semisupervised Learning. MIT Press, 2006.

F. Sha and L.K. Saul. Analysis and extension of spectethaus for nonlinear dimensionality
reduction.Proc. ICML, pages 785-792, 2005.

J. Shiand J. Malik. Normalized cuts and image segmentd&EE PAM|, 22:888-905, 2000.
Jack Silverstein.  On the empirical distribution of eiggues of large dimensional
information-plus-noise type matrice3ournal of Multivariate Analysis98:678—694, 2007.

A. Szlam and G. Sapiro. Discriminatikemetrics. InProceedings of the 26th Annual Inter-
national Conference on Machine Learnjmqzages 1009-1016, 2009.

A.D. Szlam, M. Maggioni, and R.R. Coifman. Regulariaaton graphs with function-adapted
diffusion processesIMLR, (9):1711-1739, Aug 2008.



Some recent advances in multiscale geometric analysisiof glouds 27

84. A.D. Szlam, M. Maggioni, R.R. Coifman, and J.C. Bremer Diffusion-driven multiscale

85.

86.

87.

88.

89.

90.

91.

92.

analysis on manifolds and graphs: top-down and bottom-ugstoactions. volume 5914-1,
page 59141D. SPIE, 2005.

Floris Takens. On the numerical determination of theedision of an attractor. IBynamical
systems and bifurcations (Groningen, 1984)lume 1125 of_ecture Notes in Mathpages
99-106. Springer, Berlin, 1985.

J.B. Tenenbaum, V. de Silva, and J.C. Langford. A globahgetric framework for nonlinear
dimensionality reductionScience290:2319-2323, 2000.

M. B. Wakin, D. L. Donoho, H. Choi, and R. G. Baraniuk. Thaltiscale structure of non-
differentiable image manifolds. IBPIE Wavelets XiSan Diego, July 2005.

K.Q. Weinberger, F. Sha, and L.K. Saul. Leaning a kerratimfor nonlinear dimensionality
reduction.Proc. ICML, pages 839-846, 2004.

Mladen Victor WickerhauseAdapted Wavelet Analysis from Theory to Softwé& Peters
Ltd., Wellesley, MA, 1994. With a separately available catgp disk (IBM-PC or Macintosh).
Z. Zhang and H. Zha. Principal manifolds and nonlinearatision reduction via local tan-
gent space alignement. Technical Report CSE-02-019, Bepat of computer science and
engineering, Pennsylvania State University, 2002.

M. Zhou, H. Chen, J. Paisley, L. Ren, G. Sapiro, and L.rCaion-parametric Bayesian
dictionary learning for sparse image representationdNdaral and Information Processing
Systems (NIPS2009.

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Senpervised learning using gaussian
fields and harmonic functions. I€ML, pages 912-919, 2003.



