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Fig. 1. Comparison of aspect ratio selection algorithms. On the left, only AWO and our new arc length-based method are invariant
(produce the same aspect ratio) under changes to the parameterization of a curve. On the right, only our arc-length method preserves
the natural symmetry of the curve y = 1/x.

Abstract—The aspect ratio of a plot has a dramatic impact on our ability to perceive trends and patterns in the data. Previous
approaches for automatically selecting the aspect ratio have been based on adjusting the orientations or angles of the line segments
in the plot. In contrast, we recommend a simple, effective method for selecting the aspect ratio: minimize the arc length of the data
curve while keeping the area of the plot constant. The approach is parameterization invariant, robust to a wide range of inputs,
preserves visual symmetries in the data, and is a compromise between previously proposed techniques. Further, we demonstrate
that it can be effectively used to select the aspect ratio of contour plots. We believe arc length should become the default aspect ratio
selection method.

Index Terms—Aspect ratio selection, Banking to 45 degrees, Orientation resolution.

1 INTRODUCTION

Our ability to perceive trends and patterns in a given visual display
of data is heavily influenced by the aspect ratio. It affects densities,
relative distances, and orientations within the plot—all important per-
ceptual features that impact plot interpretation.

For data visualization tools, an important practical question is how
to automatically select the aspect ratio for a given plot. Cleveland et
al. proposed two methods, median slope (MS) [4] and length weighted
average orientation (AWO) [3], both based on centering the orien-
tations of a line plot’s constituent segments around 45 degrees, an
approach that they call banking to 45°. More recently, Heer and
Agrawala [7] proposed two alternative methods, global orientation
resolution (GOR) and local orientation resolution (LOR), based on
maximizing the orthogonality of pairs of line segments.

All four proposed methods have shortcomings. Three are not pa-
rameterization invariant, meaning that the semantically unimportant
way a curve is approximated by line segments can dramatically change
the selected aspect ratio (Figure 1a). None preserve semantically im-
portant symmetric shapes (Figure 1b). Most can produce extreme as-
pect ratios on relatively simple inputs (Figure 3). And all have been
designed to work with curves that are functions of x, limiting their
broader use.

To address these problems, we recommend a simple and robust op-
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timization criterion for choosing the aspect ratio: minimize the arc
length of the plotted curve while keeping the area of the plot con-
stant. This approach is parameterization invariant, preserves symme-
tries, and produces reasonable aspect ratios on a wide range of inputs,
while being fast to evaluate. Furthermore, it can easily be used with
general curves in 2D, which we demonstrate by selecting good aspect
ratios for contour plots. We believe that the properties of the arc length
approach are a qualitative improvement over the previous approaches
and that it should become the default aspect ratio selection method.

The remainder of the paper is divided into four sections. In Sec-
tion 2, we review the previous work in aspect ratio selection. Next,
we describe the new arc length method and discuss its connections to
previous methods. In Section 4, we validate the arc length approach
by demonstrating that it selects better aspect ratios on both a range of
simple algebraic curves and on time series data sets; by showing that it
can generalize by selecting aspect ratios for 2D contour plots; and by
showing that it is computationally feasible. Finally, we conclude with
discussion of the algorithm and the need for a concrete theory tying
aspect ratio selection to perceptual principles.

2 PREVIOUS WORK

The aspect ratio question was first treated rigorously by Cleveland,
McGill, and McGill [4]. Noting that changing the aspect ratio of a plot
changes the perceived slopes of lines in a plot, they hypothesized that
aspect ratios which maximized the orientation resolution, the angle
between the line segments, would minimize error in the estimation of
the ratio of the slopes of those line segments. A designed experiment
displaying pairs of line segments supported this hypothesis.

They went on to show that in the case of two line segments in the
first quadrant, the angle between them can be maximized (and thus
slope ratio error minimized) by selecting the aspect ratio that centers
the two line segments around 45°. This led them to suggest that the
aspect ratio of plots with more than two segments could be chosen by



placing the median segment slope at 1, an approach they called median
absolute slope (MS).

Cleveland later suggested an alternative method, length-weighted
average orientation (AWO), that sets the length-weighted average of
the absolute segment orientations (the angle made with the horizon-
tal) at 45° [3]. The switch from slope to orientation was motivated by
the fact that our perceptual processes are sensitive to orientation, not
slope. The length-weighting ensures that subdividing line segments
will not change the resulting aspect ratio, providing some measure of
robustness to changes in the input representation. Across a wide range
of inputs, AWO results in flatter aspect ratios than MS; Cleveland as-
serts that these are more visually pleasing aspect ratios [2].

Later, Heer and Agrawala [7] proposed selecting the aspect ratio
by maximizing the sum of squares of the angles between all pairs of
segments in the plot. They called this the global orientation resolu-
tion (GOR) method and, unlike the previous methods, it has the nice
property of being derived from Cleveland’s hypothesized perceptual
justification. In practice, this approach gives very similar results to an
unweighted average orientation approach at the cost of a very expen-
sive optimization function. A computationally cheaper approach is to
only consider the orientation resolution between adjacent pairs of seg-
ments. Heer and Agrawala called this approach the local orientation
resolution (LOR). Both approaches have trouble dealing with perfectly
horizontal and vertical segments, so they must be removed first. “For
completeness,” Heer and Agrawala also suggest a third method, set-
ting the average slope (AS) to be 1, an approach closely related to our
arc length method.

Guha and Cleveland [5] recently suggested the resultant vector
method which has a simple, tractable algebraic form that they employ
to study theoretical properties of aspect ratio selection. Geometrically,
the plot’s line segments are treated as vectors and positioned in the
first quadrant by reflection around the x and y axes. The sum of these
is the plot’s “resultant vector”. The transformation which banks it to
45 degrees determines the plot’s aspect ratio. Mathematically, this
simplifies to computing the ratio of the segments’ total variation in the
y and x directions. With this formulation, Guha and Cleveland have
been able to derive geometric properties for the aspect ratios of select
families of curves and demonstrate the statistical convergence of the
aspect ratio as random noise is added to the data.

Our arc length method arises from an independent analysis and geo-
metric interpretation of the aspect ratio selection problem. But we can
show that the arc length method can be interpreted as a generalization
of the resultant vector method. Because of this, many of the arc length
method’s empirical advantages demonstrated in this paper are shared
by the resultant vector method as well.

Visualization systems have long supported interactive aspect ratio
changes (at least since Buja’s Data Viewer [1]), a powerful and un-
derutilized analytic tool. Automatic aspect ratio selection methods are
complementary to such interaction, providing reasonable defaults, en-
abling automated plot generation, and helping to develop insight into
the relationship between aspect ratio and human perception.

Finally, Heer and Agrawala [7], in the second part of their paper,
suggest using frequency space analysis to decompose a time series
into multiple components each of which can be banked independently.
Since the decomposition problem is independent of the aspect ratio
selection problem, in this paper we assume that, if necessary, the in-
put has already been processed using Heer and Agrawala’s method or
another statistical decomposition technique.

3 ARC LENGTH-BASED ASPECT RATIO SELECTION

In this section we propose a new aspect ratio selection method: mini-
mize the arc length of the plotted curve while keeping the area of the
plot constant. We first briefly describe desirable properties we would
like the algorithm to have. We then describe the arc length method in
more detail. Finally, we compare it to previous algorithms and show
how it can be derived from the optimization of orientation resolution
by following reasoning similar to Heer and Agrawala’s GOR and LOR
methods.

3.1 Criteria

In developing a new aspect ratio selection algorithm, we were guided
by the following design criteria suggested by our experience with the
methods in the previous work.

• Scale invariant. Changes to the input scale of one or both axes
should not change the resulting aspect ratio.

• Parameterization invariant. The displayed curve is naturally
approximated by a set of line segments. Changes to this approx-
imation that do not drastically alter the visual form of the curve
should not impact the aspect ratio. In particular, the method
should not assume that the values are equally spaced on the x
axis.

• Robust. Corner cases, such as horizontal, vertical, or collinear
segments, should not require special handling. The addition of a
small amount of noise to the curve should not change the aspect
ratio.

• Symmetric. The most reasonable aspect ratio for a curve sym-
metric around y = x is one that preserves that symmetry (e.g.
Figure 1b). (This is the weakest of our criteria. However, in the
absence of any perceptual results to the contrary, a symmetric
banking is the most parsimonious result.)

• Fast to compute. To be useful in interactive visualization tools,
the method must be relatively fast. We would like the computa-
tion cost to be at most O(n) in the number of line segments in
the plot.

3.2 Algorithm

The input to our algorithm is the set of line segments for which we
want to compute an aspect ratio for display. The arc length method
consists of simply minimizing the total length of the line segments
under the constraint that the area of the plot is preserved.1

We enforce the area-preserving constraint by not looking for an as-
pect ratio directly. Instead, we search for a transformation that adjusts
the plot’s aspect ratio while preserving area. Such transformations are
called hyperbolic rotations or squeeze mappings and can be written in
matrix form as:

(

1/
√

a 0
0

√
a

)

(This definition follows Cleveland, who defined aspect ratio as
height/width. Heer and Agrawala use the, perhaps more common,
width/height definition.) We can confirm that these transformations
preserve area since the determinant of the matrix is always

√
a√
a
−0 = 1

Given a, we can multiply the coordinates of the input line segments by
the corresponding squeeze mapping to produce line segments appro-
priate for display.

We select a such that the total length of the line segments is mini-
mized. To do this we solve the optimization problem,

min
a∈(0,∞)

N

∑
i=1

||∆xi√
a
,
√

a∆yi|| (1)

where ∆xi and ∆yi are the lengths of the ith line segments in the x and y
directions and ||x|| is the Euclidean length. Note that the lengths of the
line segments will be scaled by the area-preserving aspect ratio trans-
formation. Due to the square root in the Euclidean length measure, this
optimization problem does not have a closed form solution; however,

1Constraining the area simplifies the algorithm, but isn’t strictly necessary.

Arc length scales linearly with the square root of the plot area, so we could also

minimize the arc length divided by the square root of the area.



Fig. 2. For a straight line, the minimum length is achieved at 45 degrees.
For an ellipse, the minimum arc-length is achieved when banked to a
circle.

it has a unique minimum and can be easily and quickly solved using
a variety of methods. In practice, we parameterize the optimization
search with log(a), rather than with a directly. This makes the cost
function smooth and symmetrical around the minimum and removes
the need to deal with the lower bound on a.

We can gain some insight into the behavior of our proposed method
by considering simple cases (Figure 2). If we stretch or squish a rect-
angle bounding a diagonal line while keeping the contained area the
same, the line will reach a minimal length when the rectangle is square.
Thus, a single diagonal line will always be banked to 45 degrees. Sim-
ilarly, consider a collection of line segments approximating an ellipse.
Our method will bank this to a circle since the ellipse with minimal
circumference enclosing a fixed area is a circle.

3.3 Connection to Orientation Resolution

The arc length metric is closely connected to Cleveland et al.’s orienta-
tion resolution perception hypothesis which assumes that, to make the
ratios of segment slopes easily visible, the angle between the segments
should be made as large as possible.

Heer and Agrawala’s GOR method [7] attempts to directly maxi-
mize the orientation resolution by finding the aspect ratio, a, that max-
imizes the sum of the squares of the larger angles between all pairs of
line segments:

max
a

∑
i

∑
j

θi j(a)
2

Following similar reasoning, we propose an alternate criterion for
maximizing orientation resolution:

max
a

∑i ∑ j |sin(θi j(a))| li(a)l j(a)

∑i ∑ j li(a)l j(a)
(2)

where θi j(a) is the angle made between the two line segments i and
j, and li and l j are the lengths of the ith and jth line segments, all of
which vary as functions of a.

In comparison to Heer and Agrawala’s approach, our formulation
has two primary differences. First, our formulation includes weighting
by the lengths of the line segments. This makes the measure invariant
to parameterization changes, addressing a shortcoming of GOR. Sec-
ond, we use |sin(θi j)| instead of θ 2

i j . Both functions reach a maximum

when lines are at right angles to each other; but our choice is the same
for both the larger and smaller angles made between line segments i
and j; so, unlike GOR, we do not need to specify which is selected.

The behavior of this criterion is easy to describe. It will be 0 if all
the lines are parallel and reaches a maximum at 1 if all the lines are at
right angles to each other. The latter case is, in practice, impossible,
since we include the terms for each line segment paired with itself and
this pairing obviously cannot be at right angles. However, the intuition
holds that the closer this number is to 1, the more line segments are
orthogonal.

Now we show that Equation (2) can be simplified to the arc length
criteria. First, the numerator can be restated as a cross product since

|sin(θi j(a))| li(a)l j(a) = |vi(a)× v j(a)|

where vi is the ith line segment represented as a vector. Next, within
the family of area-preserving aspect ratio changes, the cross product is
not a function of a and can be ignored in the optimization:

vi(a)× v j(a) =

√
a√
a

xiy j −
√

a√
a

x jyi = xiy j − x jyi

Finally, the denominator can be easily turned into the square of the
total arc length.

∑
i

∑
j

li(a)l j(a) = ∑
i

li(a)∑
j

l j(a) = (∑
i

li(a))
2

Thus, orientation resolution (as expressed by Equation (2)) can be
maximized by minimizing the total arc length.

3.4 Connection to Resultant Vector and Average Slope

We have presented the arc length method using the Euclidean metric to
measure length. A potentially useful property of the Euclidean metric
is that it is rotationally invariant. However, there may be reasons to
prefer other metrics. For example, if we replace the Euclidean metric
with the Manhattan metric, we can get a closed form solution for a:

min
a∈(0,∞)

N

∑
i=1

|∆xi√
a
|+ |

√
a∆yi| ⇒ a =

∑
N
i=1 |∆yi|

∑
N
i=1 |∆xi|

(3)

This is exactly equivalent to the resultant vector method proposed by
Guha and Cleveland [5]. Thus, another geometric interpretation of the
resultant vector method is that it minimizes the Manhattan length of
the curve. Further, in the special case of a time series with equally
spaced data points, this Manhattan metric approach is also equivalent
to Heer and Agrawala’s AS method.

4 RESULTS

To demonstrate the effectiveness of the arc length method, we first
compare the methods on a set of simple algebraic curves and then on
a variety of time series data sets. The former serves to emphasize the
robustness and symmetry of the arc length method. The latter shows
that arc length is a consistent compromise method, producing aspect
ratios that fall within the range of previous methods. Next, we show
that the arc length method is also effective at selecting aspect ratios for
general 2D curves. Finally, we discuss the performance of the method.

4.1 Method Comparison

Algebraic Curves. In Figure 3, we compare arc length to the four
methods recommended in the previous work on a variety of simple
algebraic curves. The curves were sampled evenly along the x-axis
to make the comparison to the non-length-weighted methods as fair
as possible. For the GOR and LOR methods, we discarded horizontal
and vertical segments as recommended by Heer and Agrawala.

AWO is the most similar to arc length, though arc length’s aspect
ratios are slightly taller with higher orientation resolution. This is
promising since Cleveland found AWO to generally produce superior
aspect ratios. The quarter circle example, in the fifth row, demon-
strates that arc length can preserve symmetry, whereas AWO produces
a segment of an ellipse. As the scale parameter of the gamma (Γ)
distribution increases, arc length maintains roughly the same aspect
ratio. In contrast, AWO gets flatter, biased by the large nearly flat re-
gion. The last two rows show where the results of arc length and AWO
diverge most noticeably. AWO, GOR, and LOR all scale down the nar-
row triangle case to maintain 45° lines. Heer and Agrawala argue that
this behavior is preferred, since it maintains ideal slopes. However, in
the limit, as the triangle’s width approaches 0, this behavior will se-
lect a completely flat aspect ratio, obscuring the presence of the spike
entirely. Arc length’s behavior is different; it selects nearly the same
aspect ratio regardless of the triangle’s width. While this deviates from
Cleveland’s 45° recommendation, it ensures that the spike will remain
visible regardless of how narrow it is.

MS and GOR are susceptible to producing abnormally tall aspect
ratios when there are nearly flat regions of the curve. In the gamma
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Fig. 3. Comparison of aspect ratios produced by recommended banking
methods for a selection of simple algebraic curves evenly sampled along
the x-axis. Arc length and AWO are similar, but arc length selects a
more pleasing symmetric aspect ratio for the quarter circle. MS and
GOR work well in many cases, but have degeneracies when dealing
with nearly horizontal or vertical segments. LOR performs poorly across
the board.

distribution cases, both methods degenerate to a 0-width aspect ratio
as the shape parameter increases. Additionally, note the degenerate
result of GOR on the y = x plot due to the colinearity of all the seg-
ments. Finally, the behavior of LOR is quite idiosyncratic. We cannot
recommend its use for robust aspect ratio selection.

It may be possible to improve the behavior of GOR or LOR by
culling not just horizontal and vertical segments, but also line seg-
ments that are within some threshold of vertical and horizontal. How-
ever, it’s not obvious if this threshold can be made scale invariant.
With a naı̈ve thresholding approach, changes to the input scale of an
axis will lead to changes in the input slope and, thus, to changes in the
set of lines falling within the culling threshold, making the resulting
algorithm not scale invariant.

Time Series. Figure 4 shows the log of the aspect ratio chosen
by the banking heuristics for a large set of artificial and natural time
series [11]. Like Heer and Agrawala, we find that the length-weighted
AWO method (circle) consistently produces flatter aspect ratios than
the median slope method (triangle). GOR (square) is often quite simi-
lar to median slope, while LOR (diamond) is more variable.
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Fig. 4. Comparison of aspect ratios produced by previous methods rel-
ative to arc length for select time series data sets: AWO (circle), arc
length (cross), GOR (square), MS (triangle), and LOR (diamond). The
arc length method selects compromise aspect ratios between AWO and
the other methods.

The arc length heuristic (cross) consistently picks an aspect ratio
that falls within the range of the previous methods. This is encourag-
ing since the previous techniques are known to produce bankings that
effectively highlight trends in time series data. Further, the arc length
aspect ratio often falls near the center of the range. On a log scale,
the midpoint between two aspect ratios corresponds to their geometric
mean, a natural compromise aspect ratio.

Figure 5 shows a selection of the time series summarized in Fig-
ure 4. As with the algebraic curves, arc length produces somewhat
taller aspect ratios than AWO. The other methods generally produce
much taller aspect ratios. In some cases, as in 9-13 and jcars the result
is obviously too tall. In others, such as dole and fancy, the result of the
taller aspect ratio is to highlight a lower frequency trend in the data,
obscuring the higher frequency cycles of interest.

4.2 Curves in 2D

In previous work, banking has been only applied to plots where the
curve is a function of x. However, banking heuristics can also be ap-
plied to general curves in 2D. The arc length approach has two ad-
vantages in this task. First, the arc length method’s parametric invari-
ance means that arc length does not require even sampling of the curve
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Fig. 5. Select time series from Figure 4 which show some of the largest differences in selected aspect ratios across the recommended methods. As
with the algebraic curves, arc length is similar to AWO, but produces generally taller aspect ratios. The other methods continue to produce overly
tall aspect ratios in some cases (9-13 and jcars). In the dole and fancy time series, MS, GOR, and LOR select tall aspect ratios that emphasize
the low frequency trend in the data, but obscure the details of the higher frequency patterns. Arc length and AWO do a better job of compromising
between the low and high frequency patterns.

along the x-axis, an inconvenient parameterization for 2D curves. Sec-
ond, since it makes curves symmetric around y = x if possible, circles
will be banked to circles.

Contour Plots. While a number of plot types arise in data visu-
alization featuring general curves in 2D, perhaps the most common is
the contour plot. We can use the arc length method to select an aspect
ratio for contour plots by simply using the line segments that make up
the contours as input to the method.

Figure 6 demonstrates this approach on a number of real data sets.
We use R’s kde2d [16] grid-based kernel density estimation routine
to fit a nonparametric model of the density and then we extract contour
lines. This process results in line segments of nearly equal length,
again making the comparison to the non-length-weighted methods as
fair as possible.

Unlike the simple curve case, where arc length was similar to AWO,
in these contour plots, arc length behaves essentially the same as MS.
Both methods bank circles to circles producing what we think are the
most visually pleasing aspect ratios. AWO is very similar, but pro-
duces ellipses even for very simple cases such as the bivariate gaus-
sian. GOR’s behavior is mixed, sometimes producing results similar
to AWO, and sometimes producing extremely flat aspect ratios. For
space reasons, we have not shown LOR which produces consistently
poor aspect ratios on these data sets.

To see how banking contour plots differs from banking curves, Fig-
ure 7 shows a real data set of the education level and fertility rate of
the French-speaking provinces of Switzerland in about 1888 [12]. In
the top plot, we have assumed that y is a function of x and fit a LOESS
curve to the data. Using the arc length method on the LOESS curve

results in an aspect ratio that emphasizes the negative relationship be-
tween fertility and education, and reduces the impact of the outliers.
For comparison, in the bottom plot, we assume that the x and y vari-
ables are independent, and thus, we are interested in seeing their joint
density. Using the arc length method on the contour lines of the den-
sity estimate, we select an aspect ratio that highlights the roughly bi-
variate normal distribution of the main cluster of points and visually
emphasizes the outliers.

Other transformations. If the plotted curve is a function of x,
then aspect ratio changes are the only transformation that generally
makes sense. But for general curves in 2D other transformations such
as rotations or skews might be useful. This may happen when the axes
are not inherently meaningful, as when some form of dimensionality
reduction has created arbitrary axes.

Again, this can easily be done using the arc length measure. For
example, we can expand the set of transformations we consider in the
optimization to include rotations (which are also area preserving) by
modifying the optimization criterion:

min
a,θ

N

∑
i=1

||R(∆xi,θ)√
a

,
√

aR(∆yi,θ)||

where R(xi,θ) and R(yi,θ) are the x and y components of the ith line
segment after rotation by θ . Thus, the optimization will be over both
a, the aspect ratio, and, θ , the rotation angle, finding the best rotated
squeeze mapping transformation.



g
a
u
s
s
ia

n
h
e
ig

h
t

s
w

is
s

c
a
th

o
lic

o
ld

 f
a
it
h
fu

l
ir

is
ro

c
k

Arc length

tr
e
e
s

AWO MS GOR

Fig. 6. Banking contour plots using arc length and three of the pre-
viously proposed methods. Arc length and MS are roughly the same,
nicely banking circles to circles. AWO is similar, but its preference for
flatter angles results in ellipses. GOR’s problems with near horizontal or
vertical segments cause, in some cases, extremely flat aspect ratios.

4.3 Performance

The proposed methods all have relatively simple performance charac-
teristics. MS, AS, and Manhattan arc length (resultant vector) have
closed form solutions, which can be computed in O(n) time, where
n is the number of line segments in the input. AWO, LOR, and arc
length can be efficiently optimized using a criterion that is O(n). GOR

uses an optimization criterion that is O(n2).
We tested the performance of the various banking algorithms using

implementations written in R and R’s built-in optimize function.
We found it impractical to use GOR to bank time series with more
than about 250 segments (doing so took more than 1 second), well
within the realm of what someone would want to plot (especially for
contour data). On the other hand, the O(n) optimization methods were
able to bank 50,000-100,000 segments within 1 second. Arc length
was about twice as fast as AWO and LOR since it does not require
the evaluation of a transcendental function. The closed form solutions
were a further 10-20 times faster.

Given the low performance of an interpreted language such as R,
we hesitate to draw overly broad conclusions about performance. Im-
plementations in a compiled language would likely be orders of mag-
nitude faster. Even so, the relative results should be reliable. Both the
closed form methods and the O(n) optimization methods appear to be
computationally feasible for interactive applications even in demand-
ing conditions. A bit more care should be taken when choosing to use
GOR in order to ensure that it will scale to the desired data size.
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Fig. 7. Banking the same data set with two different dependency as-
sumptions. The top plot is banked using a LOESS curve assuming
Fertility is dependent on Education which emphasizes the negative re-
lationship between the two variables. The bottom plot is banked using
the contour lines of a 2D density estimation assuming Fertility and Ed-
ucation are independent variables. The resulting aspect ratio highlights
the outliers from the main cluster of points.

5 DISCUSSION AND FUTURE WORK

We have presented an arc length-based approach to aspect ratio selec-
tion which has the following properties:

• It can be derived directly from an equation maximizing orienta-
tion resolution, a perceptual criteria for aspect ratio proposed by
Cleveland, and it is a parsimonious formulation—a function of
length alone, without reference to slope or orientation.

• It is scale invariant, does not need special handling for vertical,
horizontal, or colinear segments, and in contrast to GOR, LOR,
and MS, it is invariant to the parameterization of the curve.

• For time series-like curves, it produces compromise aspect ratios
near the geometric mean of previous methods. In cases where
GOR, LOR, and MS fail, arc length and AWO continue to behave
well. For contour plots, it performs similarly to MS, banking
circles to circles. In contrast, AWO produces ellipses and GOR
and LOR can fail.

• It is faster to compute than AWO and substantially more scalable
than GOR.

We think these empirical properties of the arc length method recom-
mend it for use in preference to the previous work.

However, we have not presented any perceptual reasons to prefer
our aspect ratio selection method over others. Developing an appro-
priate perceptual theory that can address the “correctness” of an aspect
ratio selection method remains an open problem. In his work, Cleve-
land has suggested two possible theoretical foundations for aspect ratio



theory, neither of which appears to be completely satisfactory.

The first, orientation resolution [4], was used in this paper (Sec-
tion 3.3) to derive the arc length metric. It was also used by Heer and
Agrawala to justify their GOR and LOR methods. Cleveland’s original
banking study [4] showed that orientation resolution was important in
slope comparisons between pairs of line segments. More recent per-
ceptual results cited by Loffler [10] support the orientation resolution
hypothesis. For example, Heeley and Buchanan-Smith [6] showed that
angle judgments depend principally on the angle size (best near 0, 90,
180, and 270 degrees) and are largely rotationally invariant. However,
experiments by Snippe and Koenderink [15] appear to show that angle
discrimination may depend on orientation. Further, Kennedy, Orbach
and Loffler showed that both angle discrimination [8] and angle es-
timation accuracy [9] are significantly better for angles embedded in
an isosceles rather than scalene triangle. These latter results suggest
that orientation resolution may be insufficient. Perception of angles is
influenced by their embedding within a geometric figure, which is not
accounted for by the orientation resolution hypothesis.

The second theoretical foundation proposed by Cleveland is cur-
vature [3], or the change in orientation of the curve per unit of arc
length. In the perception literature, Whitaker and McGraw [17] have
tied curvature aspect ratio to better visual discrimination across multi-
ple scales. Curvature is also promising due to its wide use in computer-
aided geometric design as a criteria in defining “fair” curves [14].
Cleveland [3] showed that banking to 45° maximizes local curvature.
Similarly, it is easy to show that minimizing the local arc length max-
imizes local curvature because the numerator of the curvature formula
is invariant to changes in aspect ratio and the denominator is a mono-
tonic transformation of arc length. However, in the process of de-
veloping the arc length method, we spent a lot of time attempting to
derive an aspect ratio selection approach directly from curvature with-
out success. Our curvature-based methods tended to select extreme
aspect ratios which resulted in high curvature at a few locations along
the curve and very low curvature everywhere else, similar to the LOR
results presented in this paper. The problem appears to be that cur-
vature is a local property of the curve whereas aspect ratio selection
requires a global view of the entire curve.

While the arc length method does not immediately suggest a better
perceptual foundation for aspect ratio selection, it does provide three
interesting directions for future research. First, and perhaps most sur-
prisingly, it demonstrates that effective aspect ratios can be selected
without explicit reference to either orientation or angle, suggesting
that they may not be strictly necessary elements of a sound aspect ratio
theory. Second, the arc length method reveals, somewhat counterintu-
itively, that good aspect ratios minimize the visual space taken by the
data and maximize white space. This property suggests interesting
perceptual hypotheses that might lead to more insight into aspect ratio
selection. For example, more white space may reduce our perceptual
tendency to filter out high frequencies, thus ensuring that we can see
high frequency patterns of interest. Or it may be true that minimum
length lines lead to quicker, more accurate, graph reading. Finally, the
arc length method emphasizes the importance of symmetry and reg-
ularity in displayed curves, properties known to trigger hyper-acuity
discrimination for shapes [13]. If this acuity applies to curves it could
prove an important asset when the visual analysis task depends on rec-
ognizing regularity or detecting small deviations from it.

Substantial future work remains to be done to close the gap between
perceptual theory and the proposed practical methods for aspect ratio
selection. Understanding how the arc length method extends to other
plot types, such as 3D plots, may provide insight into this problem.
However, well-designed experimental work will likely be necessary to
fully understand the perceptual impact of aspect ratio selection.

ACKNOWLEDGMENTS

The first author thanks Phil Smith; an early conversation with him di-
rectly inspired this work. The first author was supported by FODAVA
grant 0937123.

REFERENCES

[1] A. Buja, C. Hurley, and J. A. Mcdonald. Elements of a viewing pipeline

for data analysis. 1988.

[2] W. S. Cleveland. The Elements of Graphing Data. Hobart Press, Summit,

New Jersey, U.S.A., 1985, 1994.

[3] W. S. Cleveland. A model for studying display methods of statistical

graphics. Journal of Computational and Graphical Statistics, 2(4):323–

343, 1993.

[4] W. S. Cleveland, M. E. McGill, and R. McGill. The shape parameter of

a two-variable graph. Journal of the American Statistical Association,

83(402):289–300, 1988.

[5] S. Guha and W. S. Cleveland. Perceptual, mathematical, and statistical

properties of judging functional dependence on visual displays. Technical

report, Purdue University Department of Statistics, 2011.

[6] D. Heeley and H. Buchanan-Smith. Mechanisms specialized for the per-

ception of image geometry. Vision Research, 36(22):3607–3627, 1996.

[7] J. Heer and M. Agrawala. Multi-scale banking to 45 degrees. IEEE Trans-

actions on Visualization and Computer Graphics, 12:701–708, 2006.

[8] G. J. Kennedy, H. S. Orbach, and G. Loffler. Effects of global shape on

angle discrimination. Vision Research, 46(8-9):1530–1539, 2006.

[9] G. J. Kennedy, H. S. Orbach, and G. Loffler. Global shape versus local

feature: An angle illusion. Vision Research, 48(11):1281–1289, 2008.

[10] G. Loffler. Perception of contours and shapes: Low and intermediate

stage mechanisms. Vision Research, 48(20):2106–2127, 2008. Vision

Research Reviews.

[11] S. G. Makridakis, S. C. Wheelwright, and R. J. Hyndman. Forecasting:

Methods and Applications. Wiley, New Jersey, third edition, 1998. ISBN

978-0-471-53233-0.

[12] F. Mosteller and J. W. Tukey. Data Analysis and Regression: A Second

Course in Statistics. Addison-Wesley, Reading Mass., 1977.

[13] D. Regan and S. Hamstra. Shape discrimination and the judgement of

perfect symmetry: Dissociation of shape from size. Vision Research,

32(10):1845–1864, 1992.

[14] N. S. Sapidis, editor. Designing fair curves and surfaces: shape quality

in geometric modeling and computer-aided design. 1994.

[15] H. P. Snippe and J. J. Koenderink. Discrimination of geometric angle in

the fronto-parallel plane. Spatial Vision, 8(3):309–228, 1994.

[16] W. N. Venables and B. D. Ripley. Modern Applied Statistics with S.

Springer, New York, fourth edition, 2002. ISBN 0-387-95457-0.

[17] D. Whitaker and P. V. McGraw. Geometric representation of the

mechanisms underlying human curvature detection. Vision Research,

38(24):3843–3848, 1998.


