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Abstract
We propose a manifold alignment based approach
for heterogeneous domain adaptation. A key aspect
of this approach is to construct mappings to link
different feature spaces in order to transfer knowl-
edge across domains. The new approach can reuse
labeled data from multiple source domains in a tar-
get domain even in the case when the input domains
do not share any common features or instances.
As a pre-processing step, our approach can also
be combined with existing domain adaptation ap-
proaches to learn a common feature space for all
input domains. This paper extends existing mani-
fold alignment approaches by making use of labels
rather than correspondences to align the manifolds.
This extension significantly broadens the applica-
tion scope of manifold alignment, since the corre-
spondence relationship required by existing align-
ment approaches is hard to obtain in many applica-
tions.

1 Introduction
Classification and ranking methods in machine learning usu-
ally rely on the availability of a large amount of labeled
data to train a model. However, labeled data is often ex-
pensive to obtain. To save labeling effort, in many situa-
tions we want to transfer labeled information from one do-
main to another. This problem arises in a variety of appli-
cations in information retrieval, e-commerce, computer vi-
sion, and many other fields. To address this problem, the
area of transfer learning in general, and domain adaptation
in particular, has recently seen a surge of activity [Blitzer,
McDonald, and Pereira, 2006; Daumé III and Marcu, 2006;
Duan et al., 2009; Mansour, Mohri, and Rostamizadeh, 2009;
Pan and Yang, 2010]. However, one limitation that has not
been fully addressed is that most existing domain adapta-
tion approaches assume that the source and target domains
are defined by the same features, and the difference between
domains primarily arises due to the difference between data
distributions. This assumption is not valid in many scenar-
ios such as cross-lingual retrieval and multimodal datasets in-
volving words and images, where the source and target do-
mains do not share common features.

In a general setting of the problem, we are given K related
input domains: X1, · · · , XK , where K can be larger than 2
and the K input domains do not have to share any common
features or instances. The domain adaptation problem in this
scenario is very challenging, especially when we consider the
fact that the target domain only has very limited labeled in-
formation. This setting is in fact quite common in many real
world applications, and one example is as follows: assume we
have three collections of documents in English, Italian, and
Arabic respectively. In these collections, there are sufficient
labeled English and Italian documents, but few labeled Ara-
bic documents. The task is to label the unlabeled Arabic doc-
uments, leveraging the labels from English and Italian collec-
tions. Most existing domain adaptation approaches [Blitzer,
McDonald, and Pereira, 2006; Daumé III and Marcu, 2006;
Duan et al., 2009] can not be directly applied to this set-
ting, since the input domains are defined in different feature
spaces. Approaches in transfer learning that heavily depend
on labeled information (like [Dai et al., 2008]) might not work
either, since no instance is shared across domains and the
overfitting problem will arise when the amount of labeled in-
formation is very limited.

Recently, a new approach to transfer learning based on
manifold alignment was proposed to address this prob-
lem [Ham, Lee, and Saul, 2005; Wang and Mahadevan,
2009]. The key idea underlying this approach is to map differ-
ent domains to a new latent space, simultaneously matching
the corresponding instances and preserving topology of each
input domain. Manifold alignment makes use of both unla-
beled and labeled data. The ability to exploit unlabeled data is
particularly useful for domain adaptation, where the number
of labeled instances in the target domain is usually limited.
A key difficulty in applying manifold alignment to domain
adaptation is that the alignment method requires specifying
a small amount of cross-domain correspondence relationship
to learn mapping functions, but such information may be dif-
ficult to obtain for most domain adaptation applications. In
this paper, we extend the manifold alignment framework to
domain adaptation by exploring how to use label informa-
tion rather than correspondence to align input domains. This
idea is based on the observation that many source and target
domains defined by different features often share the same la-
bels. Our approach is designed to learn mapping functions to
project the source and target domains to a new latent space,
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Figure 1: Illustration of manifold alignment using labels. Dif-
ferent colors represent different classes.

simultaneously matching the instances with the same labels,
separating the instances with different labels and preserving
the topology of each input domain.

The contributions of this paper are two-fold. From the per-
spective of domain adaptation, our contribution is a new ap-
proach to address the problem of transfer even in the case
when the source and target domains do not share any common
features or instances. It can also process multiple (> 2) input
domains by exploring their common underlying structure. As
a pre-processing step, our approach can be combined with
existing domain adaptation approaches to learn a common
feature space for all input domains. Our paper focuses on
the construction of common latent space rather than studying
which existing domain adaptation approach fits our frame-
work the best. From the perspective of manifold alignment,
our contribution is a new approach that uses labels rather than
correspondences to learn alignment. This significantly broad-
ens the application scope of manifold alignment. In experi-
ments, we present case studies on how the new approach is
applied to information retrieval.

2 Manifold Alignment using Labels
2.1 The Problem
Assuming we are given K input data sets, where the
data instances come from c different classes. Let Xk =
(x1k, · · · , x

mk

k ) represent the kth input data set, where the ith

instance xik is defined by pk features. Xk can be viewed as a
matrix of size pk×mk. The labels for the first lk instances of
Xk are given as Vk = (v1k, · · · , v

lk
k ). When Xk corresponds

to a source domain, lk is usually large; when Xk corresponds
to a target domain, lk is usually small. In this problem formu-
lation, X1, · · · , XK are assumed to be disjoint.

The problem is to construct K mapping functions,
f1, · · · , fK to map the K input sets to a new d dimensional
(latent) space, where (1) the topology of each set is preserved,
(2) the instances from the same class (across the input sets)
are mapped to similar locations and (3) the instances from
different classes are well-separated from each other. An illus-
tration of the problem is given in Figure 1.

2.2 High Level Explanation
We treat each input domain as a manifold. The goal is to con-
struct K mapping functions to project the input domains to

a new latent space preserving the topology of each domain,
matching instances with the same labels and separating in-
stances with different labels. To achieve this goal, we first
create a matrix representation of the joint manifold modeling
the union of all input domains. Each manifold is represented
by a Laplacian matrix constructed from a graph defined by an
“affinity” measure connecting nearby instances. The label in-
formation plays a key role in joining these adjacency graphs,
forcing the instances with the same labels to be neighbors and
separating instances with different labels. The joint manifold
has features from all input domains, so its feature space is
redundant. To remove the redundant features, we project the
joint manifold to a lower dimensional space preserving man-
ifold topology. This is a dimensionality reduction step, and
is solved by a generalized eigenvalue decomposition. The re-
sulting feature space is a common underlying space shared by
all the input domains, and can be directly used for knowledge
transfer across domains.

2.3 Notation

Before defining the cost function being optimized, we need
to define some of the weight matrices used in the problem
formulation. We first define the similarity matrixWs, dissim-
ilarity matrixWd, their row sum matricesDs, Dd and combi-
natorial Laplacian matrices Ls, Ld. Then we define matrices
L and Z to model all the input domains.

� Similarity matrix Ws =

 W 1,1
s · · · W 1,K

s

· · · · · · · · ·
WK,1

s · · · WK,K
s

 is

an (m1 + · · · + mK) × (m1 + · · · + mK) matrix, where
W a,b

s is an ma × mb matrix. W a,b
s (i, j) = 1, if xia and

xjb are from the same class; W a,b
s (i, j) = 0, otherwise (in-

cluding the case when the label information is not available).
The corresponding diagonal row sum matrix is defined as
Ds(i, i) =

∑
j Ws(i, j), and the combinatorial graph Lapla-

cian matrix Ls = Ds −Ws.

� Dissimilarity matrix Wd =

 W 1,1
d · · · W 1,K

d
· · · · · · · · ·
WK,1

d · · · WK,K
d

 is

an (m1 + · · · + mK) × (m1 + · · · + mK) matrix, where
W a,b

d is an ma × mb matrix. W a,b
d (i, j) = 1, if xia and

xjb are from different classes; W a,b
d (i, j) = 0, otherwise

(including the case when the label information is not avail-
able). The corresponding diagonal row sum matrix is defined
as Dd(i, i) =

∑
j Wd(i, j), and the combinatorial Laplacian

matrix Ld = Dd −Wd.

� To represent the topology of each given domain, we de-
fine Wk, Dk and Lk as follows. Let Wk(i, j) represent the
similarity of xik and xjk. This similarity matrix can be com-
puted as e−‖x

i
k−x

j
k‖

2

. We also define the corresponding di-
agonal row sum matrix Dk as Dk(i, i) =

∑
j Wk(i, j) and

combinatorial Laplacian matrix as Lk = Dk −Wk. Matrices



L and Z are defined as follows:

L =

(
L1 0 · · · 0
· · · · · · · · · · · ·
0 · · · 0 LK

)
is an

(m1 + · · ·+mK)× (m1 + · · ·+mK) matrix.

Z =

(
X1 0 · · · 0
· · · · · · · · · · · ·
0 · · · 0 XK

)
is a

(p1 + · · ·+ pK)× (m1 + · · ·+mK) matrix.

2.4 The Cost Function
We then define A, B and C: three scalars to be used in the
cost function.

A = 0.5

K∑
a=1

K∑
b=1

ma∑
i=1

mb∑
j=1

‖fTa xia − fTb x
j
b‖

2W a,b
s (i, j),

If xia and xjb are from the same class, but their embeddings are
far away from each other, thenA will be large. MinimizingA
encourages the instances from the same class to be projected
to similar locations in the new space.

B = 0.5

K∑
a=1

K∑
b=1

ma∑
i=1

mb∑
j=1

‖fTa xia − fTb x
j
b‖

2W a,b
d (i, j),

If xia and xjb are from different classes but their embeddings
are close to each other in the new space, thenB will be small.
So maximizing B encourages the instances from different
classes to be separated in the new space.

C = 0.5µ

K∑
k=1

mk∑
i=1

mk∑
j=1

‖fTk xik − fTk x
j
k‖

2Wk(i, j).

If xik and xjk are similar in their domain, then the correspond-
ing Wk(i, j) will be large. When the embeddings fTk x

i
k and

fTk x
j
k are well-separated from each other in the new space, C

becomes large. So minimizing C is to preserve topology of
each given domain. µ is a weight parameter.

We want our algorithm to simultaneously achieve three
goals in the new space: matching instances with the same
labels, separating instances with different labels, and preserv-
ing topology of each given domain. So the overall cost func-
tion C(f1, · · · , fK) to be minimized is:

C(f1, · · · , fK) = (A+ C)/B.

We divide B rather than subtract B to save one parameter.

2.5 Theoretical Analysis
Let γ = (fT1 , · · · , fTK)T be a (p1+ · · ·+pK)×dmatrix (rep-
resenting K mapping functions) that we want to construct.
The solution that minimizes the cost function is given in the
following theorem.
Theorem 1. The embedding that minimizes the cost function
C(f1, · · · , fK) is given by the eigenvectors corresponding to
the smallest non-zero eigenvalues of the generalized eigen-
value decomposition Z(µL+ Ls)Z

Tx = λZLdZ
Tx.

Proof. Given the input and the cost function, the problem is
formalized as:

{f1, · · · , fK} = argminf1,··· ,fK (C(f1, · · · , fK))

= argminf1,··· ,fK (
A+ C

B
)

When d = 1, we can verify the following results hold:

A = γTZLsZ
T γ, B = γTZLdZ

T γ, C = γTZµLZT γ.

argminf1,··· ,fKC(f1, · · · , fK) =

argminf1,··· ,fK
γTZ(Ls + µL)ZT γ

γTZLdZT γ
.

It follows directly from the Lagrange multiplier method
that the optimal solution that minimizes the loss function
C(f1, · · · , fK) is given by the eigenvector corresponding to
the minimum non-zero eigenvalue solution to the generalized
eigenvalue problem:

Z(µL+ Ls)Z
Tx = λZLdZ

Tx.

When d > 1,

A = Tr(γTZLsZ
T γ), B = Tr(γTZLdZ

T γ),

C = Tr(γTZµLZT γ).

argminf1,··· ,fKC(f1, · · · , fK)

= argminf1,··· ,fK
Tr(γTZ(Ls + µL)ZT γ)

Tr(γTZLdZT γ)
.

Standard approaches [Wilks, 1963] show that the solution to
γ1 · · · γd that minimizes C(f1, · · · , fK) is provided by the
eigenvectors corresponding to the d lowest eigenvalues of the
generalized eigenvalue decomposition equation:

Z(µL+ Ls)Z
Tx = λZLdZ

Tx.

The mapping functions f1, · · · , fK are linear. In some sce-
narios, linear functions are not be sufficient, and we might
want the mapping functions to be nonlinear. Then, instead of
constructingK linear mapping functions, f1, · · · , fK , we can
directly compute the embedding result of each given instance.
In this situation, the “latent” mapping functions can be non-
linear. This problem is technically less challenging, and the
corresponding cost function and algorithm can be given in a
similar manner as the linear case discussed in this paper.

3 Domain Adaptation
3.1 The Algorithm
Assuming all but one of the input data sets correspond to the
source domains, and one input data set corresponds to the
target domain, the algorithm to construct f1, · · · , fK by min-
imizing C(f1, · · · , fK) is given in Figure 2.

Most existing domain adaptation approaches assume that
the input domains are defined by the same features and the



1. Construct matrices Z, L, Ls and Ld as defined in Sec-
tion 2.3.

2. Compute the mapping functions (f1, · · · , fK ) to align
the input data sets: f1

· · ·
fK

 = (γ1, · · · , γd), where γ1, · · · , γd are eigen-

vectors corresponding to the d smallest eigenvalues of
Z(µL+ Ls)Z

Tx = λZLdZ
Tx.

3. Apply f1, · · · , fK to map the input data sets to the new
d dimensional latent space:
For any xia and xjb, fT

a x
i
a and fT

b x
j
b are in the same d-

dimensional space and can be directly compared.

4. Compute solutions for the learning tasks (e.g. classifi-
cation, ranking) in the latent space with regular learn-
ing/transfer learning techniques, leveraging the data
from the source domains.

Figure 2: The Algorithmic Framework.

difference between domains largely comes from data distri-
butions. Our approach projects the input domains defined by
different features to a new space, so it can be combined with
most existing domain adaptation algorithms to help solve
more challenging adaptation problems. Our paper focuses on
the construction of common latent space rather than studying
which existing domain adaptation approach fits our frame-
work the best. So in the experiments, we compare our algo-
rithm and the other related algorithms on the ability to create
such a latent space. A simple domain adaptation approach is
applied on top of the latent spaces to see how different algo-
rithms help in heterogeneous domain adaptation.

The domain adaptation approach we use is as follows: In
the latent space, we first use the labeled instances from the
source domains to train a linear regression model for the
given learning task, like ranking/classification. Then we ap-
ply manifold regularization [Belkin, Niyogi, and Sindhwani,
2006] as a second linear regression model so that the sum of
these two regression scores is close to the desired label for
each labeled instance in the target domain. The first regres-
sion model makes use of the data from the source domain,
while the second regression model adapts the first model to
the new domain.

3.2 A Representation Translation Framework
Based on Manifold Alignment

Our approach also provides a representation translator across
different domains, which can translate any instance from one
domain to another. This translator offers us the ability to reuse
the existing models rather than just the labels in the source do-
main. For example, if we already have a ranking model in the
source domain, then we can translate any instance from the
target domain to the source domain using the translator and
then directly apply the existing model to process the trans-
lation result. Such a translation is done via the latent space,
which only keeps the information that is shared by all the

input domains. So the information that is shared across do-
mains can be translated; the information that is only useful
for one particular domain will not be translated.

The representation translation framework is illustrated in
Figure 3. Without loss of generality, we assume only one
source domain X and one target domain Y are given. Fol-
lowing the algorithmic framework, once mapping functions
fX and fY are available, we can map instances from each
individual data set to the latent space as follows: For any
xi ∈ X , its representation in latent space is fTXxi. For any
yj ∈ Y , its representation in latent space is fTY yj . Compared
to fX and fY , fXf+Y and fY f+X go one step further, where ‘+’
represents the pseudo inverse. They directly build mappings
between input manifolds, and can be used as “translators” to
translate instances between spaces. The formulas to translate
instances across domains are as follows:

For any xi ∈ X, its representation in Y is (fXf+Y )Txi.

For any yj ∈ Y, its representation in X is (fY f+X)T yj .

4 Applications and Results
To decide µ, we first re-scale Ws and W such that the sum
of all elements in Ws equals to the sum of all elements in
W1, · · · ,WK . If matching instances and topology preserva-
tions are equally important, µ = 1. If we want to focus more
on topology preservation, µ > 1.

4.1 An Illustrative Example
In this example, we directly align the given datasets and
use some pictures to illustrate how the alignment algorithms
work. The given datasets come from real protein tertiary
structure data. A protein 3D structure is a set of amino acids.
Let m be the number of amino acids in a given protein and
C1, · · · , Cm be the coordinate vectors for the amino acids,
where Ci = (Ci,1, Ci,2, Ci,3)

T and Ci,1, Ci,2, and Ci,3 are
the x, y, z coordinates of amino acid i. In this test, we use
two proteins as input data sets and each of which has 215
amino acids. We manually label 5% amino acids in each set
as positive, 5% as negative, and the remaining are unlabeled.
We denote the first set X1, the second set X2, which are both
represented by 3 × 215 matrices. To evaluate how the new
algorithm re-scales the input data sets, we manually stretch
X1 by setting X1 = 10 ·X1.

For the purpose of comparison, we plot both datasets on
the same graph (Figure 4(A)). It is clear that these two data
sets are quite different. The alignment results using the algo-
rithm in Figure 2 are shown in Figure 4(B). In data set 1, a
red • represents a positive instance, a blue • represents a neg-
ative instance, and a green · represents an unlabeled instance;
In data set 2, a red 4 represents a positive instance, a blue
4 represents a negative instance, and a purple · represents an
unlabeled instance. From the results, we can see that both
data sets are rescaled to the same size, the positive instances
take the left side, and the negative instances take the right
side, no matter which domain they are from. In the middle
of the figure, some positive and negative instances mix to-
gether. The reason for this is that our approach also preserves
the topology of the given data set. So the final solution is in
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on Manifold Alignment.
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Figure 4: An Illustrative Example.

fact a tradeoff of three goals: matching the instances with the
same labels, separating the instances with different labels and
preserving the topology for each data set. In this test, µ = 1.

4.2 Text Categorization
The TDT2 corpus consists of data collected during the first
half of 1998 and taken from 6 sources. In the data set we
are using, the documents that appear in more than one cate-
gory were removed, and only the largest 30 categories were
kept, thus leaving us with 9,394 documents in total. For the
purpose of this test, we construct feature sets using two well-
known topic modeling algorithms: Latent semantic indexing
(LSI) and Latent Dirichlet Allocation (LDA).

We divide the data set into two subsets of the same size,
and then learn LSI topics from the first subset and LDA top-
ics from the second subset. We project the first subset onto
top 1,000 LSI topics, the second subset onto 1,000 LDA top-
ics. This results in two data sets X1 and X2. We assume the
labels for all documents in the first subset are available. For
the second subset, only 5% documents are labeled. In this
test, µ = 1. We first applied our approach to align source
and target domains, resulting in a common latent space. Then
we applied domain adaptation algorithm on top of this space
to learn class categorization for the unlabeled documents in
the target domain. For any document xi2, the predicted “cat-
egory label” is a 30 × 1 vector. We use the probability that
the true category is among the top K categories in this label
vector to evaluate the performance of different approaches.
Note that if we use the largest entry of the label vector to
label the document, then the prediction accuracy is equal to
the reported result for K = 1. For the purpose of compari-
son, we tested Canonical Correlational Analysis (CCA) and
manifold alignment using correspondence under the same set-
ting.We also report the performance of manifold regulariza-
tion using the data from target domain only. The results are

summarized in Figure 5. The new label-based manifold align-
ment outperformed the other approaches. The performance of
CCA was similar to manifold regularization. Manifold reg-
ularization does not leverage the data from source domain,
while CCA does not take manifold topology into considera-
tion, so it might run into overfitting problems. In this test,
we applied all features in the latent space. We also tried us-
ing top 1,000 features sorted by eigenvalues, and the perfor-
mances for two manifold alignment approaches and CCA sig-
nificantly dropped. Under the new setting, our approach still
outperformed all three other approachs (the results are not in-
cluded in this paper).

4.3 Learning to Rank
In this test, we apply our algorithm to the problem of learn-
ing to rank. We assume that for the queries in the training
set (source domain), we have a large number of judged docu-
ments. For each query in the test set (target domain), we only
have judgements for a few documents even though the total
number of retrieved documents could be larger than several
thousand. The problem is to improve ranking performances
for the queries in the test set. We assume that the source and
target domains do not share common features.

The data we use in this experiment is the TREC collection
used by Aslam et al. [Aslam et al., 2009] to compare the ef-
fect of different document selection methodologies for learn-
ing to rank. The document corpus, the queries and the rele-
vance judgments in this collection are obtained from TREC
6, 7 and 8 ad-hoc retrieval track. This data set contains 150
queries. The document set we use in our experiments con-
tains the documents from the depth-100 pools of a number of
retrieval systems run over these queries. Depth-k pools are
constructed by judging only the top k documents from dif-
ferent systems and ignoring the rest of the documents. Each
query on average contains approximately 1,500 judged docu-
ments, where on average 100 of them are relevant. In this data
set, each query-document pair is represented by 22 features.
These features are a subset of the LETOR 3.0 features [Liu et
al., 2009]. The documents in this data set have two labels: rel-
evant and non-relevant. Relevant documents do not distribute
uniformly. Some queries have much less relevant documents
than others. For the purpose of test, the data set is split into 5
folds, where each fold contains a training set with 60 queries
and a test set with 90 queries. In the training set, all query-
document pairs are labeled. In the test set, for each query we
have 10 documents that are labeled and roughly 1,500 docu-
ments that are not labeled. To simulate a real world problem,
we assume 2 features in the source domain are missing. We
also apply a rotation and a random noise to the remaining 20
features in the source domain such that the training and test
sets do not share common features.

We treat the training set as the source domain; each test
query together with its retrieved documents forms the target
domain. This results in one source domain and many target
domains. We test each target domain independently. Since
the source and target domains are defined by different fea-
tures, most existing domain adaptation approaches will not
work for this scenario. Similar to the previous test, we tested
our new algorithm, correspondence-based manifold align-
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Figure 6: TREC Test.

ment [Wang and Mahadevan, 2009], CCA and manifold reg-
ularization (target domain only) using this data. We use the
average precision (AP) of each query in the test set to com-
pare the quality of different algorithms. Figure 6 summarizes
the average of 90 average precision scores for each fold. The
y axis in the plots shows the average precision value and the
x axis shows the fold in the data sets used to test the method.
In this test, µ = 100 and d = 40. Similar to the result of
TDT2 test, the new label-based manifold alignment outper-
formed the other approaches. CCA performed the worst for
this task. Interestingly, manifold regularization (target do-
main only) did a reasonably good job in this test (and also
in the previous test). Manifold regularization takes unlabeled
data instances in the target domain into consideration. This
helps solve overfitting problems even in the case when the
labeled information is very limited in the target domain.

5 Conclusions

In this paper, we propose a manifold alignment based ap-
proach for heterogeneous domain adaptation. A key aspect of
this approach is to construct mappings to link different fea-
ture spaces in order to transfer knowledge across domains.
The new approach can handle the situation when the input
domains do not share any common features or instances. Our
paper focuses on the construction of common latent space
rather than studying which existing domain adaptation ap-
proach fits our framework the best. This paper also ex-
tends correspondence based manifold alignment approaches
by making use of labels rather than correspondences to align
the manifolds. This extension may significantly broaden the
application scope of manifold alignment.
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