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Abstract. Approximation of matrices using the Singular Value Decom-
position (SVD) plays a central role in many science and engineering appli-
cations. However, the computation cost of an exact SVD is prohibitively
high for very large matrices. In this paper, we describe a GPU-based ap-
proximate SVD algorithm for large matrices. Our method is based on the
QUIC-SVD introduced by [6], which exploits a tree-based structure to
efficiently discover a subset of rows that spans the matrix space. We de-
scribe how to map QUIC-SVD onto the GPU, and improve its speed and
stability using a blocked Gram-Schmidt orthogonalization method. Us-
ing a simple matrix partitioning scheme, we have extended our algorithm
to out-of-core computation, suitable for very large matrices that exceed
the main memory size. Results show that our GPU algorithm achieves
6∼7 times speedup over an optimized CPU version of QUIC-SVD, which
itself is orders of magnitude faster than exact SVD methods.
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1 Introduction

The Singular Value Decomposition (SVD) is a fundamental operation in linear
algebra. Matrix approximation using SVD has numerous applications in data
analysis, signal processing, and scientific computing. Despite its popularity, the
SVD is often restricted by its high computation cost, making it impractical for
very large datasets. In many practical situations, however, computing the full-
matrix SVD is not necessary; instead, we often need only the k largest singular
values, or an approximate SVD with controllable error. In such cases, an al-
gorithm that computes a low-rank SVD approximation is sufficient, and can
significantly improve the computation speed for large matrices.

A series of recent papers have studied using matrix sampling to solve the
low-rank matrix approximation (LRMA) problem. These algorithms construct a
basis made up of rows or linear combinations of rows sampled from the matrix,
such that the projection of the matrix onto the basis has bounded error (more
specifically, the error is statistically bounded with high probability). Common
sampling-based methods include length-squared sampling [4, 2] and random pro-
jection sampling [3, 12]. In this paper, we focus on a method called QUIC-SVD,
recently introduced by [6]. QUIC-SVD exploits a tree-based structure to perform
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fast sampled-based SVD approximation with automatic error control. The main
benefit compared to previous work is that it iteratively selects samples that are
both adaptive and representative.

Our goal is to map the QUIC-SVD algorithm onto the graphics processing
unit (GPU) to further improve its efficiency. Modern GPUs have emerged as
low-cost massively parallel computation platforms that provide very high float-
ing point performance and memory bandwidth. In addition, the availability of
high-level programming languages such as CUDA has significantly lowered the
programming barrier for the GPU. These features make the GPU a suitable and
viable solution for solving many computationally intensive tasks in scientific
computing. We describe how we implemented the QUIC-SVD algorithm on the
GPU, and demonstrate its speedup (about 6∼7 times) over an optimized CPU
version, which itself is orders of magnitude faster than exact SVD methods. We
also describe a matrix partitioning scheme that easily adapts the algorithm to
out-of-core computation, suitable for very large matrices. We have tested our
algorithm on dense matrices up to 22,000× 22,000, as reported in Section 3.

Related Work. Acceleration of matrix decomposition algorithms on modern
GPUs has received significant attention in recent years. Galoppo et al. [5] reduced
matrix decomposition and row operations to a series of rasterization problems
on the GPU, and Bondhugula et al. [1] provided a GPU-based implementation of
SVD using fragment shaders and frame buffer objects. Since then, the availability
of general programming language such as CUDA has made it possible to program
the GPU without relying on the graphics pipeline. In [13], a number of matrix
factorization methods are implemented using CUDA, including LU, QR and
Cholesky, and considerable speedup is achieved over optimized CPU algorithms.
GPU-based QR decomposition was also studied by [9] using blocked Householder
reflections. Recently, Lahabar et al. [10] presented a GPU-based SVD algorithm
built upon the Golub-Reinsch method. They achieve up to 8× speedup over an
Intel MKL implementation running on dual core CPU. Like most existing work
(including commercial GPU-based linear algebra toolkit such as CULA [7]), their
focus is on solving the exact SVD. In contrast, our goal is to solve approximate
SVD on the GPU, which can provide additional performance gain for many
large-scale problems in practical applications.

2 Algorithm

2.1 Overview

Given an m× n matrix A (where n is the smaller dimension), the SVD factors
A into the product of three matrices: A = UΣV T where U and V are both
orthogonal matrices (UTU = I and V TV = I) and Σ is a diagonal matrix
storing the singular values. An exact SVD takes O(mn2) time to compute and
thus is expensive for large matrices. To approximate the SVD, we can construct
a subspace basis that captures the intrinsic dimensionality of A by sampling
rows or taking linear combinations of rows. The final SVD can be extracted
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(a) Single cosine tree (b) Partitioned cosine trees

Fig. 1. (a) shows a single cosine tree; (b) shows a set of cosine trees constructed using
our partitioning scheme, such that all trees collectively build a common basis set. Yellow
arrow indicates the matrix rows that a tree node owns; red arrow indicates a vector
inserted into the basis set, which is the mean vector of the rows owned by a node.

by performing an exact SVD on the subspace matrix, which is a much smaller
than the original matrix. For example, if the intrinsic dimensionality of A is
approximately k, where k � n, the computation cost is now reduced to O(mnk).

The QUIC-SVD [6] is a sample-based approximate SVD algorithm. It itera-
tively builds a row subspace that approximates A with controlled L2 error. The
basis construction is achieved using a binary tree called cosine tree, as shown in
Figure 1(a), where each node represents a collection (subset) of the matrix rows.
To begin, a root node is built that represents all rows (i.e. the entire matrix A),
and the mean (average) vector of the rows is inserted into the initial basis set.
At each iteration, a leaf node ns in the current tree is selected for splitting. The
selection is based on each node’s estimated error, which predicts whether split-
ting a node is likely to lead to a maximal reduction in the matrix approximation
error. To perform the splitting, a pivot row rp is sampled from the selected node
ns according to the length-squared distribution. Then, ns is partitioned into two
child nodes. Each child node owns a subset of rows from ns, selected by their
dot products with the pivot row. Specifically, rows closer to the minimum dot
product value are inserted to the left child, and the remaining are inserted to
the right child. Finally, the mean vector of each subset is added to the basis set,
replacing the mean vector contributed by the parent node.

Figure 1(a) shows the cosine tree constructed at an intermediate step of the
algorithm. Each leaf node represents a subset of rows, and contributes a mean
vector to the current basis set. As the tree is split further, the basis set expands.
The process terminates when the whole matrix approximation error is estimated
to fall below a relative threshold:

‖A− Â‖2F = ‖A−AV̂ V̂ T‖2F ≤ ε‖A‖2F

where V̂ is the approximate row basis set constructed using the algorithm, Â =
AV̂ V̂ T is the reconstructed matrix with the approximate SVD, and ‖·‖F denotes
the Frobenius norm. This error is calculated using a Monte Carlo estimation



4 Blake Foster, Sridhar Mahadevan, Rui Wang

routine, which estimates the projection error of A onto the row basis set V̂ . The
error estimation routine returns an error upper bound with confidence 1 − δ,
where δ is an adjustable parameter. Therefore, when δ is small, the error is
bounded by the returned value with high probability.

The Monte Carlo estimation works as follows. First, randomly select s rows
from the matrix using length-squared distribution, where s is logarithmic to
the number of rows. Second, project each selected row ri to the current basis
set V̂ , calculate the squared length of the projection ‖riV̂ ‖2F , and divide it by
the probability of selecting that row (recall the probability is proportional to
the squared length of that row). This results in a weighted squared magnitude
wSqMagi for each selected row. Intuitively, if a row is well represented by the
basis V̂ , the projection will preserve its squared magnitude. Finally, the mean
and variance of wSqMagi is used to model the statistics of all rows in A projected
onto V̂ , from which the error bound can be calculated. Details can be found in [6].

This Monte Carlo estimation routine is also used to estimate the error con-
tributed by a node, in order to prioritize the selection of nodes for splitting.
Intuitively, nodes with large error are not well-approximated by the current ba-
sis, and thus splitting them is likely to yield the largest benefit.

Whenever a vector is inserted into the basis set, it is orthogonalized against
the existing basis vectors using Gram-Schmidt orthogonalization. This is neces-
sary for the Monte Carlo error estimation and SVD extraction. Once the tree
building terminates, the current basis set accurately captures the row subspace
of A, and the final SVD can be extracted from the basis set by solving a much
smaller SVD problem.

In summary, the main computation loop involves the following steps: 1) select
a leaf node with the maximum estimated error; 2) split the node and create
two child nodes; 3) the mean vector of each child is inserted into the basis set
and orthonormalized (while the one contributed by the parent is removed); 4)
estimate the error of each child node; 5) estimate the error of the whole matrix
approximation, and terminate when it’s sufficiently small. For more details, we
refer the reader to [6].

2.2 GPU Implementation

We implemented QUIC-SVD using the CUDA programming language, in con-
junction with the CULA [7] library to extract the final SVD. We found that most
of the computation is spent on the following two parts: 1) computing vector inner
products and row means for node splitting; 2) Gram-Schmidt orthogonalization.
Therefore in the following we focus on discussing these two parts. The compu-
tation for each tree node is spread across the entire GPU device. Note that as
we assume the input matrix is low-rank, the number of nodes we need to create
is small relative to the matrix dimensions.

When we split a node, we need to compute the inner product of every row
with the pivot row (which is selected by sampling length-squared distribution
of the rows). Since a node does not necessarily span contiguous rows, we could
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not use a simple matrix-vector multiplication call to accomplish this step. Re-
arranging the rows of each node into contiguous chunks after each split was not
an option, as this would incur excessive memory traffic. Instead, we maintain
an index array at each node to point to the rows that the node owns, and then
use a custom CUDA kernel to compute all inner products in parallel. To main-
tain memory coherence, we assign each CUDA block to a row. Thus all threads
in a block cooperatively work on a single row, which is stored contiguously in
memory. Next, the rows are split into two subsets based on their inner products
with the pivot row. Specifically, we first use a parallel reduction to compute
the minimum and maximum inner product values, then assign a subset label to
each row based on whether its inner product value is closer to the minimum or
maximum. For each subset we again use a custom CUDA kernel to compute the
mean vector, which will be inserted into the basis set.

When we add a new mean vector to the basis, it must be orthonormalized
with respect to the existing basis vectors with the Gram-Schmidt process. Given
a set of orthonormal basis vectors v1, ...,vk and a new basis vector r, the classical
Gram-Schmidt process would compute

r′ = r− pv1
(r)− ...− pvk

(r), and vk+1 = r′/‖r′‖

where pv(r) = (r · v)v denotes the projection of r onto v. Both the projection
and subtraction can be done in parallel, but the numerical stability is poor. The
modified Gram-Schmidt process subtracts the projection vector sequentially:

r1 = r− pv1
(r); r2 = r1 − pv2(r1); ... r′ = rk = rk−1 − pvk

(rk−1)

This is mathematically the same, but the numerical stability is improved greatly.
Unfortunately, this formulation serializes the computation and cannot be easily
parallelized.

To exploit the benefits of both, we propose to use a blocked Gram-Schmidt
process [8], which involves partitioning the basis vectors into κ blocks (subsets).
Within each block, we use the classical Gram-Schmidt to gain parallelism; and
across blocks we use the modified Gram-Schmidt to gain numerical stability.
Specifically, assume the current set of basis vectors is partitioned into the fol-
lowing κ blocks: V1, ..., Vκ(κ� k). We will then compute

u1 = r−GS(r, V1), u2 = u1 −GS(u1, V2), ...uκ = uκ−1 −GS(uκ−1, Vκ) = r′

where GS(u, V ) denotes the standard Gram-Schmidt orthogonalization of u with
respect to basis subset V . Note that when κ = 1 or κ = k, the algorithm
degenerates to the classical or the modified Gram-Schmidt respectively. We set
κ such that each block contains approximately 20 basis vectors, and we have
found that this provides a good tradeoff between speed and numerical stability.

Among the other steps, the Monte Carlo error estimation is straightforward
to implement on the GPU; selecting a splitting node is achieved with a priority
queue [6] maintained on the CPU; and the extraction of the final SVD is per-
formed with the CULA toolkit. The cost of SVD extraction is insignificant as it
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only involves computing the SVD of a k×k matrix. The priority queue is imple-
mented on the CPU because it’s inefficient to implement such a data structure
on the GPU. Moreover, as the priority queue requires only a small amount of
data to be transferred between the CPU and GPU, it incurs very little overhead.

2.3 Partitioned Version

To accommodate large datasets, we introduce a partitioned version of the algo-
rithm that can process matrices larger than GPU or even main memory size.
While the original QUIC-SVD algorithm [6] did not consider out-of-core com-
putation, we found that the structure of the cosine tree lends itself naturally
to partitioning. To begin, we split the matrix A into s submatrices A1, ..., As,
each containing dm/se consecutive rows from A. Next, we run QUIC-SVD on
each submatrix Ai sequentially. A naive algorithm would then simply merge the
basis set constructed for each submatrix Ai to form a basis for the whole matrix.
While this would give correct results, it would introduce a lot of redundancy (as
each basis set is computed independently), and consequently reduce efficiency.

We make a small modification to the algorithm to eliminate redundancy. We
build an individual cosine tree for each submatrix Ai, but all submatrices share
a common basis set. The algorithm processes the submatrices sequentially in or-
der. When processing submatrix Ai, the corresponding matrix rows are loaded
into GPU memory, and a new cosine tree is constructed. The basis set from
previous submatrices is used as the initial basis. If the error estimated from this
basis is already below the given threshold, the algorithm will stop immediately
and proceed to the next submatrix. Intuitively this means submatrix Ai is al-
ready well represented by the current basis set, hence no update is necessary.
Otherwise, the algorithm processes Ai in the same way as the non-partitioned
version, and the basis set is expanded accordingly. Once we are done with the
current submatrix, the GPU memory storing the matrix rows is overwritten with
the next submatrix.

After a complete pass through every submatrix, we observe that the whole
matrix approximation error is equal to the sum of the each subset’s approxi-
mation error, which is bounded by the given relative error threshold. In other
words:

‖A− Â‖2F =
∑s
i=1 ‖Ai − Âi‖2F ≤

∑s
i=1 ε‖Ai‖2F = ε‖A‖2F

where Âi = AiV̂ V̂
T is the submatrix Ai reconstructed using the row basis V .

The equalities in the above equation hold due to the definition of the squared
Frobenius norm, which sums over the squares of individual elements. Thus by
controlling the relative error of each submatrix, we can bound the error of the
whole matrix in the end. Figure 1(b) shows an example of three cosine trees
sharing a common basis.

Note that by using partitioning, only a fraction of the matrix data are loaded
to GPU memory at a time, allowing for out-of-core computation. However, a
downside with this method is that it serializes the processing of submatrices,
thus is not suitable for parallel computation on multiple GPU devices. One
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(a) Running time reported for each of the three algorithms listed.

(b) Plots of speedup factors comparing each pair of algorithms.

Fig. 2. Performance and speedup comparisons for the following three algorithms: CPU
QUIC-SVD, GPU QUIC-SVD, and MATLAB’s svds. The input matrices are randomly
generated with size ranging from 10002 to 75002 and rank ranging from 100 to 1000.

approach to address this issue would be to process one submatrix independently
on each GPU, and then merge the results on a single GPU. The merging step
is essentially performing another QUIC-SVD. The related error analysis of this
approach remains for future work.

SVD Extraction Given a matrix A ∈ Rm×n and a basis V̂ ∈ Rn×k, QUIC’s
SVD-extraction procedure first projects A onto the basis, resulting in an m× k
matrix P = AV̂ . It then computes an exact SVD on the k × k matrix PTP ,
resulting in U ′Σ′V ′T = PTP . Note that this step can be replaced by an eigen-
decomposition of P . Finally, the approximate SVD of A is extracted as V = V̂ V ′,
Σ =

√
Σ′, and U = PV ′Σ−1.

We assume that P can fit in memory, since k � n. The matrix A cannot fit
in memory, so we once again load A into memory one block at a time. Given a
block Ai, the corresponding block of Pi ⊂ P is AiV̂ . After we have completed a
pass over all of A, the entire P is in memory. We then proceed with the rest of
the computation as described above.
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3 Results

For testing and evaluation, we compared results of our GPU-based algorithm to
the following three implementations: 1) a multi-threaded CPU version of QUIC-
SVD; 2) MATLAB svds routine; and 3) the Tygert SVD [11], which is a fast
CPU-based approximate SVD algorithm built upon random projection. To make
fair comparisons, we have optimized the CPU version as much as we can. We
used Intel Math Kernel Library for linear algebra operations and OpenMP for
all applicable loops. In each test case, we plot the running time as well as the
speedup over a range of matrix sizes and ranks. We use random matrices for
testing. Given a rank k and size n, we first generate an n×k matrix and a k×n
matrix filled with uniform random numbers between [−1, 1]; we then multiply
them to obtain an n×n matrix of rank k. Our experimental results were collected
on a PC with an Intel Core i7 2.66 GHz CPU (which has 8 hyperthreads), 6 GB of
RAM, and an NVIDIA GTX 480 GPU. Both the CPU and GPU algorithms use
double-precision arithmetic. For QUIC-SVD, we set the relative error threshold
ε = 10−12, and δ = 10−12 (in Monte Carlo error estimation) for all experiments.
All timings for the GPU implementation includes both the data transfer time
(to and from the GPU) and actual computation time (on the GPU).

Figure 2(a) shows a performance comparison of our GPU implementation vs.
the CPU implementation of QUIC-SVD as well as MATLAB svds. The matrix
size ranges from 1, 0002 to 7, 5002 (the largest that svds could handle on our
system), and the matrix rank ranges from 100 to 1000. All three algorithms
were run with the same input and similar accuracy, measured by the L2 error
of SVD approximation. Figure 2(b) plots the speedup factor for the same tests.
In addition, we show the speedup factor of the CPU version of QUIC-SVD
over svds. We observe that the CPU QUIC-SVD is up to 30 times faster than
svds, and our GPU implementation is up to 40 times faster. In both cases, the
maximum speedup is achieved under a large and low-rank matrix. This makes
sense because matrices with lower ranks favor the QUIC-SVD algorithm. From
this plot we can see that the speedup primarily comes from the QUIC-SVD
algorithm itself. If we compare the GPU and the CPU versions of QUIC-SVD
alone, the maximum speedup of the GPU version is about 3 times (note that
the two have their peak performances at different points). Although this is a
moderate speedup, it will become more significant for larger matrices (shown
below), as the GPU’s parallelism will be better utilized.

Figure 3(a) shows a performance comparison of our GPU and CPU imple-
mentations to Tygert SVD [11], which is a very fast approximate SVD algorithm
that exploits random projection. Here we set the size of the test matrices to range
from 1, 0002 to 22, 0002, and the rank to range from 100 to 1000. As a 22, 0002

(double precision) matrix is too large to fit in GPU memory, we used our par-
titioned version with 4 partitions. Again all three algorithms were run with the
same input and comparable accuracy. Figure 3(b) plots the speedup factor for
each pair of the tests. Note that the CPU version and Tygert algorithm have
comparable performance, while the GPU version is up to 7 times faster than ei-
ther. Although the GPU version does not perform as well on small matrices due
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(a) Running time reported for each of the three algorithms listed.

(b) Plots of speedup factors comparing each pair of algorithms.

Fig. 3. Performance and speedup comparison for the following three algorithms: CPU
QUIC-SVD, GPU QUIC-SVD, and Tygert SVD. The input matrices are randomly
generated with size ranging from 10002 to 220002 and rank ranging from 100 to 1000.

to the data setup and transfer overhead, its benefits are evident for large-scale
matrices.

4 Conclusions and Future Work

In summary, we have presented a GPU-based approximate SVD algorithm. Our
method builds upon the QUIC-SVD algorithm introduced by [6], which exploits
a tree-based structure to efficiently discover the intrinsic subspace of the in-
put matrix. Results show that our GPU algorithm achieves 6∼7 times speedup
over an optimized CPU implementation. Using a matrix partitioning scheme, we
have extended our algorithm to out-of-core computation, suitable for very large
matrices.

In ongoing work, we are modifying our GPU algorithm to work with sparse
matrices. This is important as large-scale matrices tend to be sparse. We will also
test our algorithm in practical applications. One application we are particularly
interested in is extracting singular vectors from large graph Laplacians. This is
instrumental for certain machine learning problems such as manifold alignment
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and transfer learning. Finally, we have found that the Monte Carlo error estima-
tion is taking a considerable amount of overhead. We would like to investigate
more efficient error-estimation schemes.
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