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Figure 1: Exploring collections of 3D shapes. We present an approach for learning variability within a set of similar shapes, such
as a collection of airplanes, without any labels or correspondences (a). Our analysis automatically extracts a deformation model that
characterizes variability based on the spatial arrangement of components in a template shape. Here, the primary mode of variation involves
the wings moving along the fuselage in a coupled manner (b). We use this deformation model to provide a constrained manipulation interface
for exploring the collection (c). Remarkably, our method avoids establishing correspondences between shapes at any stage of the algorithm.

Abstract

As large public repositories of 3D shapes continue to grow, the
amount of shape variability in such collections also increases, both
in terms of the number of different classes of shapes, as well as the
geometric variability of shapes within each class. While this gives
users more choice for shape selection, it can be difficult to explore
large collections and understand the range of variations amongst
the shapes. Exploration is particularly challenging for public shape
repositories, which are often only loosely tagged and contain nei-
ther point-based nor part-based correspondences. In this paper, we
present a method for discovering and exploring continuous vari-
ability in a collection of 3D shapes without correspondences. Our
method is based on a novel navigation interface that allows users to
explore a collection of related shapes by deforming a base template
shape through a set of intuitive deformation controls. We also help
the user to select the most meaningful deformations using a novel
technique for learning shape variability in terms of deformations of
the template. Our technique assumes that the set of shapes lies near
a low-dimensional manifold in a certain descriptor space, which
allows us to avoid establishing correspondences between shapes,
while being rotation and scaling invariant. We present results on
several shape collections taken directly from public repositories.

Keywords: 3D database exploration, shape descriptors, shape
analysis, morphable models, model variability

1 Introduction

A growing number and variety of 3D models are becoming avail-
able on the web via online repositories. Popular websites such as
TurboSquid or Google 3D Warehouse contain hundreds of thou-
sands of models from a wide range of object classes, including air-
planes, cars, furniture, etc. One key benefit of these repositories is
that they make it possible to incorporate 3D models into a variety of
workflows without having to create 3D geometry from scratch. For
example, authoring a 3D game or animation often requires model-
ing the environment where the action takes place. Using repository
models to populate these environments significantly reduces the
required modeling effort. In addition, 2D graphic designers some-
times incorporate 3D content into their work so that they can tweak
perspective and lighting while creating the final image, and thus
also benefit from diverse repositories of 3D models.

While the growing availability of 3D models gives users an increas-
ing range of content from which to choose, exploring large repos-
itories can be a challenging task. Most online repositories support
text-based search/filtering and return a list of all the matching mod-
els. This interface can help users quickly select a class of objects
(e.g., all the cars), but it does not support easy exploration of the
variations within that class. For example, searching for “car” in
the Google 3D Warehouse returns tens of thousands of models on
thousands of results pages, and it is difficult to get an overall sense
for what types of cars are available or the range of different car
shapes without looking at all the results. Furthermore, text-based
search does not allow users to explore collections of shapes based
on geometric characteristics; for instance, while looking at one car
in the collection, a user may want to see if there are similar models
with skinnier bodies or larger wheels.

Another approach to exploring collections of 3D models is to or-
ganize them based on geometric similarities and differences. The
most basic operations in this context are shape comparison and re-
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Figure 2: Navigating in descriptor space. This plot is an MDS
projection of the shape descriptors for a collection of 71 bicycle
models, generated using the 100-dimensional smoothed histogram
descriptor described in Section 5.1. While the 4 highlighted models
are similar, their positions in descriptor space do not indicate any
obvious consistent structural variation.

trieval, which consists of finding models in a collection that are
most similar to a given 3D shape. Along these lines, there is a large
body of existing work on shape descriptors that attempt to capture
important geometric properties of 3D shapes to enable meaningful
shape-to-shape comparisons. While analyzing a set of 3D models
in descriptor space often makes it easy to identify clusters of similar
models and to retrieve models that match a given target shape, these
techniques do not directly address the exploration problem. As with
text-based filtering, clustering in descriptor space may still result in
large, unorganized sets of similar models that are difficult to ex-
plore. On the other hand, example-based shape retrieval is most
useful when the user already has a sense for what types of models
are present in the collection and has at least one example of the
desired type of models. As an alternative, the user can explore a col-
lection by navigating directly in descriptor space. However, most
descriptors are very high-dimensional, and a standard projection of
the space, such as multidimensional scaling (MDS), typically does
not result in an intuitive set of parameters for exploration, due pri-
marily to the large amount of geometric detail present in the shapes
(Figure 2), which can obscure the global structural variability.

Finally, a different set of methods for navigating a collection of
shapes aims at obtaining an explicit representation for the variabil-
ity observed in the collection, by finding a consistent parametriza-
tion for the shapes and then performing statistical analysis in the
parameter space. The most common way for parametrizing a set of
shapes is by establishing correspondences between points or parts
of shapes and measuring their displacements across the shapes in
the collection. Active shape models in computer vision [Cootes
et al. 1995], statistical shape analysis in biology [Dryden and Mar-
dia 1998] and inverse kinematics in computer graphics [Sumner
et al. 2005] all share this spirit. Such methods are useful for navi-
gating within a family of related shapes because they can constrain
exploration within the bounds of the observed data. However, ob-
taining reliable correspondences across even moderately sized col-
lections of shapes is a very challenging problem, especially for the
unstructured user-generated shapes found in public repositories.

In this work, we propose a new correspondence-free technique for
exploring unorganized collections of 3D models that focuses on
learning and presenting variations within a set of similar shapes.
Specifically, our method analyzes the input collection to extract and
organize continuous variability that can be expressed in terms of the
relative sizes and positions of shape parts. Based on this analysis,
we provide an exploration interface in which the user interactively

deforms a template shape by dragging arrows that indicate the main
variability axes amongst the input shapes. As the template deforms,
the system presents the closest matching model in the collection.

There are two key ideas behind our approach:

I. Exploration via template deformation. Unlike standard
example-based retrieval where users must obtain and specify an
example model for each query, we allow users to explore the
collection via interactive deformation of a template shape. Our
system helps the user select a suitable template and provides simple
direct manipulation tools for specifying deformations.

II. Constrained template deformation model. To help the user
specify deformations that match the actual shape variations in the
collection, we propose a novel technique for extracting a con-
strained template deformation model directly from the collection.
Notably, our method does not require correspondences between
the models in the collection; instead, we propose a technique that
converts variability in the descriptor space representation of the col-
lection into a deformation model of the template shape.

Our strategy of combining a direct manipulation template-based in-
terface with a constrained deformation model addresses many of the
limitations of existing exploration techniques. Unlike text-based
search, our approach allows the user to explore a collection based
on geometric characteristics, and in contrast to previous descriptor-
based methods, we represent shape variation in terms of template
deformation, with an intuitive, continuous parameter space that al-
lows users to explore the variability in a collection with respect to
the configurations of parts that comprise the object. For example,
in one of our results, we analyze a collection of airplanes and au-
tomatically extract a deformation model in which the positions of
the wings vary from the front to the back of the fuselage (Figure 1).
Based on this analysis, we allow the user to explore the collection
by directly deforming the wings of the template model. Finally, the
fact that we do not rely on computing shape-to-shape correspon-
dences makes our method both robust to geometric diversity and
efficient, enabling real time exploration of shape collections.

The main assumptions of our method are as follows. First, we as-
sume that the shapes in the input collection all share a common
global part structure (e.g., a set of four-legged chairs or two-winged
airplanes). However, we do not assume the shapes to be similarly
segmented, as this is rather unrealistic for general shape reposito-
ries. For example, the wing of an airplane may be composed of
a single connected mesh component in one model and dozens of
components in another. We also assume that most of the shape
variability within the collection can be explained in terms of the
relative sizes and positions of the shape parts. More specifically,
we assume that given any pair of shapes A and B in the collection,
it is possible to deform A by modifying the sizes and positions of
its parts to align A close to B. Finally, we assume that the space of
possible deformations is low dimensional and sufficiently densely
sampled in the collection. In other words, we assume that we are
given a shape collection that lies near a low-dimensional manifold
in a deformation space defined with respect to the relative sizes and
positions of shape parts.

Our work makes two main contributions:

• We present a template-based interface for exploring collections
of similar 3D models via constrained direct manipulation.

• We introduce a novel technique to convert descriptor variability
into a deformation model for a template shape without relying
on correspondences between shapes.

In the remainder of the paper, we describe the details of our ap-
proach and present several results.



2 Related Work

Morphable models and deformation modeling. A collection of
shapes with assigned correspondences implicitly encodes a defor-
mation model for the collection. Such shapes can be seen as high
dimensional points within a common coordinate system, and their
principal modes of variations can be directly extracted using statis-
tical tools. Blanz et al. [1999] in their highly influential work ex-
plore this idea in the context of 3D face models. Subsequently, the
framework has been extended to analyze shapes of human bodies
in consistent poses [Allen et al. 2003], and also for human bodies
with both pose and size variations [Anguelov et al. 2005]. Sumner
et al. [2005] represent meshes as feature vectors of deformation
gradients relative to a reference pose, and allow direct mesh manip-
ulation restricted to a nonlinear span of the example feature vectors.
Kokkonos and Yuille [2007] learn object deformation models using
an active appearance model among objects with manually annotated
landmark correspondences, which is similar in spirit to statistical
shape analysis in biology [Dryden and Mardia 1998]. In the medi-
cal domain, Kim et al. [2008] use a PCA based deformation model
between a template and training images for robust registration of
MR brain scans. Recently, Berner et al. [2011] extract repetitive
object parts where the parts form low dimensional shape spaces.
Alternatively, Kilian et al. [2007] create a shape space for isomet-
ric deformations that allow computation of geodesic paths between
model pairs with given correspondence. Mitra et al. [2007] map
transformation domain manipulations to indirectly deform the cor-
responding shapes in the object space.

While all of the above methods can learn useful modes of variation
for specific classes of shapes, their reliance on accurate correspon-
dences is a significant limitation for the task of exploring unorga-
nized collections of 3D shapes. In particular, there is typically a
large amount of variation in topology and geometric quality across
models in public repositories, even those within the same class. For
example, as noted by Xu et al. [2010] it is not uncommon to see
point sets, polygon soups, and water-tight meshes all within a single
collection of models. In the face of such variations, global corre-
spondence detection remains a challenging open problem (see [van
Kaick et al. 2010]).

Exploring shape datasets. Due to the difficulty of establish-
ing correspondences across unstructured collections of shapes, re-
searchers have proposed several alternative strategies. For example,
text keywords (see [Fisher and Hanrahan 2010] for a discussion),
or proxies for shape parts [Funkhouser et al. 2004; Chaudhuri and
Koltun 2010] are regularly used to query heterogeneous datasets.
Alternatively, models can be mapped to an appropriate global de-
scriptor space (e.g., shape distributions [Osada et al. 2002], spheri-
cal harmonics [Kazhdan et al. 2003], spherical wavelets [Laga et al.
2006], heat kernels [Ovsjanikov et al. 2009]) and based on the prop-
erties of the descriptors (e.g., shape, pose or rotation invariance)
shapes are embedded in a consistent descriptor space without re-
quiring explicit object level correspondences.

While clustering in descriptor space produces broad categorizations
(e.g., distinguishing between cars and horses) studying finer scale
variations within a cluster remains a challenge. Recently, part-
based correspondence has been explored as a method for studying
variations within such model clusters. For example, Golovinskiy
et al. [2009] present an algorithm for simultaneously segmenting
while establishing part correspondences across a set of models
based on clustering on a graph of potential corresponding model
faces, and Kalogerakis et al. [2010] introduce a data-driven ap-
proach for learning a consistent segmentation and labeling of model
parts using a range of geometric and contextual features. In con-
trast, we demonstrate that subtle models variations can be learned

and explored from model collections by establishing a two-way
mapping between descriptor space and object space without com-
puting direct correspondences at the level of features or parts.

There is a significant amount of prior work that supports modeling
with the help of a database of existing models [Funkhouser et al.
2004; Chaudhuri and Koltun 2010; Fisher and Hanrahan 2010; Xu
et al. 2010]. While some of these techniques propose or use specific
ways of searching the database for good candidate models (or sug-
gestions), these methods typically rely on example-based search,
which, as discussed earlier, is not ideal for exploring unfamiliar
collections of shapes. In many ways, our work is complementary
to that of the data-driven modeling community; we focus on tech-
niques that facilitate the exploration of model collections, while
they focus on methods for combining various components from
different models together.

3 Overview

Our approach consists of two main steps. Given a collection of
3D shapes, we first analyze the collection to select a template shape
and extract a deformation model that captures the primary modes of
continuous variability found in the collection. Then, we incorporate
the template and its deformation model into an exploration interface
that allows users to browse the collection by interactively deform-
ing the template to find similar shapes. Since the goal of our work is
to help users understand and explore variations within a collection
of similar shapes, we assume the input models all come from the
same class (e.g., a set of shapes returned by text-based filtering
or clustering in some descriptor space). Furthermore, we focus
on extracting continuous rather than discrete variability. Thus, our
approach works best for object classes whose shape variations are
characterized by the relative size and positions of the main object
parts (e.g., bicycles, cars, planes and other mechanical objects),
and we do not attempt to learn variations in the number of parts
per shape (e.g., chairs with different numbers of legs). Finally, in
our implementation, we assume the input models are represented as
polygonal meshes.

To help explain and motivate our analysis technique, we first dis-
cuss the problem of extracting a deformation model from a set of
shapes in the context of a simple example (Section 4). We then
describe the details of our analysis framework (Section 5) and ex-
ploration interface (Section 6). Finally, we present results from
several experiments (Section 7) and discuss directions for future
work (Section 8).

4 Problem Formulation and Method Overview

In this section, we illustrate the problem of shape exploration with a
motivating example, which underlines both the complexity of shape
analysis and the properties of our approach.

In the most basic setting, suppose that we are given a collection
of s shapes, where each shape is simply a set of n points in 2-
dimensional space, as shown in Figure 3 (top). Our overall goal
is to discover and expose the variability of the shapes in the col-
lection, while factoring out the rotation. Of course, if there is no
a-priori information about the shapes, any set of correspondences
or deformations is equally likely. Now suppose instead that it is
known that every shape in the collection is obtained by deforming
the basis shape, Figure 3 (top left), and that moreover, the set of de-
formations forms a smooth 1-parameter family, although the shapes
are not presented in any particular order. For example, the shapes
in Figure 3 were obtained by scaling the x coordinate of each point
of the shape shown in the top left, by t dx and the y coordinate by
t dy, where t ranges from 0 to 1, and dx, dy are fixed. Moreover,
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Figure 3: Overview of our method. Given a collection of unla-
beled shapes (top), we compute a descriptor for each shape, em-
bedding them into a canonical domain (bottom). If the shapes were
produced by a 1-parameter family of deformations, their descrip-
tors will trace a curve. Moreover, any such family of deformations
of a starting shape will produce a curve in the descriptor space
(bottom red). By fitting the curve lying most closely to the data, we
recover the original deformation.

an arbitrary rotation was added to each shape. Our goal is then to
recover dx and dy as well as the value of t for each shape, while
factoring out the rotations.

Note that even given the knowledge that a set of shapes was pro-
duced by a smooth deformation, establishing point correspondences
is non-trivial due to the combinatorial complexity of the search
for both the right order of the shapes and the right correspon-
dences between them. Indeed, a brute-force approach to establish-
ing point-correspondences between s shapes with n points would
have O(s!n!s) complexity, which is doubly exponential if s = O(n).
One of the main observations of this paper is that if a collection of
shapes comes from a 1-parameter family set of deformations (i.e.,
each shape corresponds to a deformation of some basis shape) then
in an appropriately chosen rotation-invariant descriptor space (Sec-
tion 5.1), the descriptors of the shapes will trace a smooth curve.
In other words, if we summarize each shape by a compact rotation-
invariant descriptor in Rm, which changes smoothly as the shape is
deformed, then the set of all descriptors will form a smooth one-
parameter family in Rm, which is a curve. Moreover, since any
1-parameter family of deformations will produce a set of shapes
whose descriptors trace a curve, given a potential value for dx and
dy we can evaluate how well its curve fits the data in the descriptor
space and pick the deformation parameters that are as faithful as
possible to the data. In particular, if we have an explicit expres-
sion for how the change in the deformation parameters affects the
descriptor, we can view the problem of picking the optimal defor-
mation parameters as an energy minimization problem, and solve it
using gradient descent or other optimization techniques. Note that
in this example we used the descriptor introduced in Section 5.1 and
the continuous optimization framework described in Section 5.3 to
successfully recover the original deformation.

In the rest of this paper, we show how to apply this idea to re-
cover continuous variability in unlabeled collections of 3D shapes.
Namely, if the variability in a collection of shapes can be captured
by deformations of some base template shape, our goal is to recover
both the template as well as its family of deformations. Moreover,
we avoid relying on correspondences across shapes, since obtaining
such correspondences is a very challenging problem, which only
becomes harder with the growth of shape repositories.

5 Shape Analysis and Deformation Modeling

Given a set of related 3D shapes, we apply the high-level approach
described in the previous section to extract and model the continu-
ous variations in the collection. To realize this approach, we present
an analysis framework that addresses the following challenges:

• Identify a suitable shape descriptor whose variability is related
to deformations of the template shape (Section 5.1).

• Select a representative template shape whose deformation will
be used to explain the variability of the input shapes (Sec-
tion 5.2).

• Find variability in the descriptor space and convert it into vari-
ability in the deformations of the template shape (Section 5.3).

• Learn a low-dimensional deformation model that captures the
template deformations (Section 5.4).

5.1 Shape descriptor

As described in Section 4, our general strategy is to extract con-
tinuous variability in the descriptor space, in which each shape is
represented as a vector of fixed finite dimensions, and use it to
infer continuous variability in the relative sizes and positions of
shape parts. The key requirement for a finite dimensional descriptor
to work in our setting is that continuous (or differentiable) defor-
mations of a shape must result in continuous (or differentiable)
changes in each coordinate of the shape descriptor. Moreover, as
we show in Section 5.3, we would like to have explicit expressions
for the change in the descriptor coordinates with respect to shape
deformations.

Note that direct adaptations of most shape descriptors do not sat-
isfy these properties. To illustrate this, Figure 4 shows the changes
of different descriptors under smooth deformation of a shape, ob-
tained by continuously sliding the wings of a plane model along its
fuselage from the very front towards the back (Figure 4 top). We
sampled this deformation 71 times and considered how different
coordinates of multi-dimensional shape descriptors change under
this motion. Figure 4 (bottom left) shows the changes in 3 coordi-
nates of a popular 517-dimensional Spherical Harmonic descriptor
[Kazhdan et al. 2003], while Figure 4 (bottom middle) shows the
changes in 3 out of 100 coordinates of the Shape Distribution [Os-
ada et al. 2002] represented as a histogram of pairwise distances
between 2 million point pairs. To remove randomness in the com-
putation of the histogram, the pairs of points were pre-computed
and deformed together with the rest of the shape.

In order to achieve the above-stated goals, we use a different dis-
cretization of the Shape Distribution. Specifically, given an input
shape M, we first compute Euclidean distances between N pairs of
points (p j1, p j2), j ∈ [1..N], where each p j1 and p j2 is sampled
uniformly at random on M. However, instead of discretizing the
distribution of distances as a histogram, we convolve this distribu-
tion with a Gaussian kernel of a fixed width σ . Thus, given a shape
M its descriptor S(M) is a vector in Rm, with the ith coordinate:

Si(M) =
1
N

N∑
j=1

exp
(
−
(µi − d(p j1, p j2)/R)2

2σ2

)
,

where the normalizing constant R = (1/N)
∑N

j=1 d(p j1, p j2), and
we use µi = 3i/m (for an m-dimensional descriptor vector) and
σ = 0.1 in our experiments. Note that each coordinate Si(M)
changes smoothly under smooth changes of the coordinates of the
points, p j1, p j2, Figure 4 (bottom right).

We note that the same discretization technique can be applied to
other descriptors based on distributions of quantities that change
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Figure 4: Changes of different descriptors under smooth deforma-
tion of a shape. (Top) A basis shape was deformed by progres-
sively moving the wings along the body. (Bottom) Changes of fixed
coordinates of different descriptors. (Left) Spherical Harmonics
[Kazhdan et al. 2003], (middle) Shape Distribution (SD) [Osada
et al. 2002] represented as a histogram of distances, and (right)
our discretization of SD. For simplicity we only present how specific
coordinates of each descriptor change under smooth deformations.

smoothly under shape deformations, such as areas or curvatures.
Nevertheless, the smoothness of the discretized descriptor is very
easily broken, e.g., by scaling these quantities by their maximum
value rather than the mean. Similarly, convolving a distribution
after binning it to a histogram will not result in a smooth descrip-
tor; since a histogram of a fixed number of values — and thus, its
convolved version — has only a finite number of possible states,
it cannot possibly vary smoothly under continuous deformations.
Moreover, our discretization technique does not necessarily achieve
smoothness for all histogram-based descriptors. For example, the
Shape Diameter Function [Shapira et al. 2008] measures the lengths
of inward-pointing rays within a shape, which can change discon-
tinuously under deformations. Note that it is also possible to pro-
duce smoothly varying descriptors by summarizing a distribution
using its moments, where ith coordinate of the descriptor becomes
(1/N)

∑N
j=1(d(p j1, p j2)/R)i, or to use the empirical characteristic

function:
∑

j exp(ι t d(p j1, p j2)) for various values of t, where ι is
the imaginary unit. We leave the comparison of these descriptors
and exploration of other possibilities to future work.

It is also important to observe that S(M) is invariant under rigid
deformations as well as global scaling of the sample points. Fur-
thermore, as shown by Boutin and Kemper [2004] almost all n-
point configurations are reconstructable from their distributions of
distances. Since S(M) is simply a convolution of the Shape Distri-
bution with a Gaussian kernel of fixed width, it contains the same
amount of information (since it is invertible in the Fourier domain)
and can thus discriminate between non-congruent shapes.

5.2 Template selection and deformation space

In the first stage of our pipeline, we compute the descriptor for each
shape in the given collection. Since this stage is done off-line and
only once, we emphasize accuracy over efficiency, and thus, can
afford to use a large set of point-pairs for computing the descriptor.
In practice, we use 2 million point pairs for every shape, and 100
coordinates for the descriptor S(M) sampled uniformly between 0
and 3 (recall that the mean distance is always 1).

To illustrate the dependence of the accuracy of the estimation of
our descriptor on the number of sample points, we plotted in Fig-
ure 5 the 2D and 3D MDS embedding of the descriptors computed
for the shapes from the set shown in Figure 4 (top). Unlike the
experiment shown in Figure 4, however, we computed the descrip-
tor independently for each pose, rather than fixing the set of point
pairs. As a result, since the pairs are sampled randomly, there will
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Figure 5: The variance in the estimation of the descriptor de-
creases with increasing sampling density. The points represent
2D (left) and 3D (right) MDS embedding of the descriptors com-
puted for the set of shapes used in Figure 4, but sampled indepen-
dently for each shape. The curve in the descriptor space is well
pronounced already with 100k.

be variance in the estimation of the descriptor. On the other hand,
because the shapes are related by a smooth deformation, we expect
the descriptors to trace a curve in the descriptor space. As can be
seen in Figure 5, the variance in the estimation of the descriptor
decreases when increasing sampling density (from 20k to 100k to
2M samples), and the curve becomes well pronounced.

After computing the descriptor for all shapes, our system helps the
user select a template shape whose constituent parts define the al-
lowable set of deformations (i.e., the deformation space) for our
analysis. Since the goal of our analysis is to determine how the
relative sizes and positions of object parts vary across the input col-
lection, the chosen template should include all the basic parts for the
given object class and ideally be segmented into exactly those parts.
As noted by Xu et al. [2010], shapes in public repositories tend to be
over-segmented when considering simply their mesh connectivity.
Thus, we adopt a simple strategy for selecting a template shape in a
collection. We first order the shapes by the distance of their descrip-
tor to the average descriptor in the collection. Next, we filter out all
shapes that have more than a user-specified maximum number of
connected mesh components. Finally, we automatically suggest the
first shape to the user as a potential template. With this approach,
we end up suggesting a template that closely resembles the average
while not being over-segmented.

In most cases, manual inspection by the user is still necessary to
ensure that the template components are reasonably segmented and
actually correspond to a meaningful set of parts. If the user is not
happy with the first suggestion, she can view the other shapes in
the ordered list of suggested templates. In addition, we allow the
user to modify a template shape by selecting components to group
together into a single part. In all of our experiments, we were able
to find satisfactory templates amongst the first 2–3 shapes closest to
the mean, and for three of our six test datasets, we ended up using
the automatically suggested template without any modifications.
For the remaining three datasets, we grouped a few components
together to simplify the template part structure; this grouping took
less than one minute per template. Note that the exact choice of
the template shape is not crucial in our method as long as it has the
desired global structure, since relations based on deformation are
transitive and reflexive — i.e., A is deformable onto B implies that
B is deformable onto A.

For the chosen template shape, with C components (or user-
defined groups of components), we define the template configura-
tion X = (x1, . . . , x6C) as the coordinates of the bounding box for
every component. We parameterize the deformation space of the
template shape by a set of 6C deformation parameters that corre-
spond to 3 translation and 3 scaling parameters for each component.
Specifically, given a deformation vector D ∈ R6C, the deformed co-
ordinate of a point p = (px, py, pz) that belongs to component c
becomes p(D) = (Dc1 px + Dc2,Dc3 py + Dc4,Dc5 px + Dc6), where
Dc1 . . .Dc6 are the deformation parameters in D corresponding to
component c.



Although more flexible parameterizations of the deformation space
are possible, e.g., [Sorkine and Alexa 2007], our goal is to capture
global variability using as few as possible deformation parameters.
Note also that since we view each shape as a point in the high-
dimensional deformation space, we need a dense sampling to re-
cover patterns in the deformation space without over-fitting, which
becomes progressively more difficult by introducing more compli-
cated and thus higher dimensional deformation parameterizations.

5.3 Descriptor variability and template deformations

Given a template shape and a parametrization of its deformation
space, our goal is to use it to navigate through other shapes in a
collection and to learn their variability. In other words we would
like to capture the variability of shapes present in the collection in
terms of the deformation of the template shape.

We start by identifying local patterns among the set of descriptors
of the shapes in the collection. Specifically, since by construction
our descriptors change smoothly under deformations of the shape,
low dimensional families of deformations get mapped to low di-
mensional variability of the descriptors. Therefore to capture shape
variability, we perform local PCA in the descriptor space around
the descriptor of the undeformed template shape. We select a large
set of neighbors of the template descriptor, and find the principal
directions of variability of the descriptors in this collection. Our
goal then is to convert this variability in the descriptor space into
variability in the deformation of the template.

To solve this problem, first consider the following simple formu-
lation: suppose we are given descriptors of two shapes S(M1) and
S(M2), and our goal is to find a deformation of M1 that would cause
its descriptor to move as closely as possible to that of M2. This
problem can be phrased in terms of energy minimization. For a
particular choice of deformation parameters D, let

E(D) = ‖S(M1(D))− S(M2)‖2,

where M1(D) represents shape M1 deformed according to D.

Then, the optimal deformation D can be defined as Dopt =
arg minD E(D), and found using non-linear optimization tech-
niques. One key requirement of such techniques is that the gradient
∇E(D) exists and preferably can be computed analytically. Note
that this is very easy to do with our descriptor, given the knowledge
of partial derivatives of the coordinate of each point p ∈ M1 with
respect to the deformation parameters: ∂ p(D)i/∂D j. In particular:

∇E(D) = 2(S(M1(D))− S(M2))J,

where J is the Jacobian matrix, such that J(k, i) = ∂S(M1(D))k/
∂Di, which can be easily computed as:

J(k, i) =
1
N

N∑
j=1

exp
(
−
(µk − d j/R)2

2σ2

)
(µk − d j/R)

σ2

∂ (d j/R)
∂Di

,

where d j = d(p j1(D), p j2(D)), R = 1
N

∑N
j=1 d j, and

∂ (d j/R)
∂Di

= N
∂d j/∂Di

∑
d j − d j

∑
∂d j/∂Di

(
∑

d j)2 ,

∂d j

∂Di
=

p j1(D)− p j2(D)

d j(D)
·

∂ (p j1(D)− p j2(D))

∂Di
.

In particular, if p(D) = (D1 px + D2,D3 py + D4,D5 pz + D6), then
e.g. ∂ p(D)/∂D1 = (px, 0, 0), ∂ p(D)/∂D2 = (1, 0, 0) and similarly
for Di, i = 3 . . . 6.

To summarize, if we are given a parametrization of the deformation
space by a fixed number of parameters encoded in a vector D, such
that the coordinates of all points of the shape change smoothly un-
der the changes of these parameters, then the gradient of the energy

E(D) is well defined and has a simple closed form solution, which
can be used to find the optimal deformation D.

Note, however, that in general multiple solutions may exist for Dopt
since, although our descriptor is informative, because of limited
precision and memory multiple shapes may exist sharing the same
descriptor. On the other hand, since we are interested in the vari-
ability among the descriptors, rather than fitting the deformation to
a single point in the descriptor space, we would like to fit it to an
entire curve (a line in the case of PCA), thereby also alleviating the
ambiguity in the solution.

For this, we sample a given principal direction with L equally
spaced sample points starting at the descriptor of the undeformed
template shape, and rather than solving for a single deformation D,
we solve for L deformations D1...DL that minimize the following
energy function:

L∑
j=1

‖S(M(D j))− S j‖2 + α

L∑
j=2

‖D j − D j−1‖2,

where the second term is designed to ensure smoothness of the de-
formations. In practice, we use L = 3 and α = 2 for the examples
in this paper.

Note that this formulation assumes that uniformly spaced deforma-
tions in the deformation space will produce approximately uniform
changes in the descriptor space. Although this may not be true in
general, we have observed that for medium deformations, this is not
a restrictive assumption.

We compute the optimal set of deformations using the same op-
timization framework as described above, made possible by the
smoothness of the energy with respect to the deformation param-
eters, and thus our ability to compute the analytic gradient ∇E(D).

The output of this procedure is a set of 2L deformations for each
principal direction with L in each positive and negative directions.
Using these deformations we then learn a deformation model that
is used to navigate the shape collection efficiently.

5.4 Learning the deformation model

To combine the 2L template deformations from the previous step
into a deformation model, we use an approach similar to the Active-
Shape Models of Cootes et al. [1995] and related techniques. First,
we convert each deformation D from a set of translation and scal-
ing parameters into a deformation vector T = (t1, t2, . . . , t6C) that
represents an explicit offset from a given template configuration.
While D and T are equivalent (i.e., they define the same template
deformation), T is a more convenient representation for learning the
deformation model. Next, we perform PCA on all 2L deformation
vectors and treat the first K principal components as a deformation
basis. This basis represents the core of our deformation model.
By restricting the space of allowable deformations to linear com-
binations of the basis vectors, we ensure that the template always
deforms in a way that corresponds with the underlying descriptor
variability. To limit how far the template can deform in each basis
direction, we project the original 2L deformations onto the basis
and compute the minimum and maximum projected values in each
basis dimension – in other words, we compute the K-dimensional
bounding box of the original 2L deformations vectors projected
onto the basis. We define the space of allowable template defor-
mations as the linear combinations of basis deformations whose
coefficients fall within this bounding box. For the examples in this
paper, we set K = 2. Also, to make our learned deformation models
a bit more flexible, we increase the range of allowable coefficient
values in each basis dimension by a small scale factor.



(a) Template view (b) Model view (c) Descriptor view

Figure 6: Exploration interface. As the user deforms the template
shape using coordinate arrows (a), its descriptor is displayed in the
context of the collection (c), and the closest model is shown (b).

6 Exploration

Having analyzed a collection of shapes to obtain a template and
corresponding deformation model, we provide an exploration inter-
face that visualizes the variability in the collection and allows the
user to explore the set of input shapes by interactively deforming
the template.

Our interface consists of three linked views (Figure 6):

The template view shows the set of C axis-aligned bounding boxes
that correspond to the components of the template shape. This view
allows the user to specify a template deformation by directly ma-
nipulating the individual template boxes.

The model view shows the model in the collection that is most
similar to the current template configuration. This view updates
automatically as the user deforms the template.

Finally, the descriptor view shows a 2D MDS embedding of the de-
scriptors for the entire collection and the descriptor for the current
template configuration, which updates as the user deforms the tem-
plate. This view allows the user to see how template deformations
map to descriptor space and provides visual context for how the
current template configuration relates to the rest of the collection.

The remainder of this section describes the main features of our
interface, and explains how these features help the user understand
and navigate the variety of shapes in the collection.

6.1 Visualizing variability

To help the user understand the variability in the collection with
respect to the template shape, our template view provides two types
of visualizations.

Coordinate arrows. As discussed in the previous section, we pa-
rameterize the deformation space of a template by the 6C coordinate
values that define the size and position of each template component.
Thus, one way to visualize the variability in the collection is to show
the range of allowable values for each of these coordinates under
the given deformation model. We show these ranges using arrows,
one for each coordinate, that extend from the corresponding tem-
plate box face to the minimum/maximum allowable value for that
coordinate. To reduce visual clutter, the user can tell the system
to only show the arrows for a selected template box (Figure 7a).
By emphasizing how individual coordinates are allowed to deform,
coordinate arrows help the user understand variability in terms of
specific template components. For example, Figure 7b shows that
in the airplane collection, the length of the wing and its position
along the fuselage both vary much more than the wing thickness.

Component arrows. A different way to visualize variability is to
show how the overall arrangement of template components varies
across the collection. To this end, we generate component arrows,

(b) Component arrows(a) Coordinate arrows

Figure 7: Arrows. We generate coordinate arrows and component
arrows to visualize variability with respect to the template shape.
These images show the variations within a collection of airplanes.

which are simply a subset of all the coordinate arrows for the tem-
plate. For each template component, we identify the dimension
(i.e., x, y or z) whose two corresponding coordinates have the max-
imum range of allowable values. We then show the corresponding
two coordinate arrows. These component arrows allow the user
to see, at a glance, the main ways in which the relative positions
of components can change under the deformation model. For ex-
ample, Figure 7b shows that the primary variations in the airplane
dataset correspond to the wings moving along the fuselage and the
vertical tail fin sliding forwards and backwards.

In order to generate both coordinate and component arrows, we
must be able to determine the allowable range of values for a given
template coordinate xi with respect to the current template configu-
ration X . To do so, we first construct the offset vector u that repre-
sents how X changes when we increase/decrease xi. We then project
X and u into the basis space defined by the deformation model, to
get a set of basis coefficients Y and basis offset v. Since the de-
formation model specifies the allowable range of basis coefficient
values, we can determine the longest distance we can travel along
vi starting from Y before we reach the limit of allowable template
deformations. Finally, we take this longest distance in basis space
and convert it to range of allowable values for xi.

6.2 Exploring via constrained direct manipulation

To explore the collection, the user deforms the template by interac-
tively dragging along any visible arrow in the template view. As the
user drags, we update the template as follows. First, we modify the
current template configuration X1 by updating only the coordinate
associated with the dragged arrow. We then project this modified
configuration X ′1 into the deformation basis to obtain a set of ba-
sis coefficients Y2. We clamp each coefficient based on the range
of allowable values specified by the deformation model, and then
we multiply Y2 by the basis deformation vectors to reconstruct a
new template configuration X2. Since we always project the tem-
plate back into the deformation basis, the user is able to explore
the space of allowable deformations for the entire template just by
modifying a single coordinate. Furthermore, since dragging on an
arrow attempts to modify only the corresponding coordinate, this
interaction enables both part scaling and translation, as long as such
deformations are supported by the deformation model.

Once the template is updated, we compute the descriptor for the
new configuration and then find the most similar model in the col-
lection by performing a nearest neighbor search in descriptor space.
We update the model view to show the nearest neighbor model, and
we update the descriptor view to show the new template descriptor
value. If the user scrolls in the model view, we cycle through the k
nearest neighbor models, where k is a user-specified parameter.



class # of shapes # conn. comp. % manifoldmean std.dev.
Bicycles 67 96.8 97.3 29.8

Cars 100 75.2 165.3 67
Motorbikes 81 223 207.3 16

Planes 55 52.4 97.8 25.5
Chairs 132 444.9 1931.8 89.4

Table 1: Properties of our datasets. Note that the number of con-
nected components ranges wildly across shapes (from 1 to 20494 in
our datasets), and only a small fraction of shapes are manifold.

One important property of our direct manipulation approach is that
it automatically enforces any spatial dependencies between parts
that are captured by the deformation model. For example, with
the deformation model that we extracted from the collection of air-
planes, dragging the left wing of the template automatically moves
the right wing as well (see supplementary video). While it is techni-
cally possible to explore the collection by deforming each template
coordinate independently, we found the learned dependencies to be
critical for achieving a practical exploration interface. As an ex-
ample, Figures 8d–e, show two principal modes of the deformation
model for a collection of bicycles and motorcycles. In this model,
there is a relationship between interwheel distance and the height
of the body component; long motorcycles have lower bodies, while
long bicycles tend have higher bodies. Without the deformation
model, the user would have to guess what template deformations
might match the collection. In this case, even if the user guesses
correctly that there are shapes with a long interwheel distance and
slides the front wheel forward (Figure 8e), he would only find long
motorcycles and not long bicycles.

7 Results

To evaluate our approach, we consider five classes of 3D shapes:
airplanes, bicycles, motorcycles, cars and chairs. We chose these
objects because they have a well-defined set of parts (e.g., wings,
wheels, etc.), and variations within these classes of models are often
characterized by the spatial layout of the parts. Furthermore, me-
chanical shapes and furniture are very popular in online repositories
(e.g., 40k “cars” and 14k “chairs” in the Google 3D Warehouse).

For each class, we gathered a dataset of 3D models, ranging in size
from 55 to 132 models (Table 1). We obtained most of our examples
from the INRIA GAMMA Group repository [Saltel 2008], which
aggregates 3D models from a variety of commercial and academic
databases (e.g., Foundation 3D, the Princeton Shape database), with
a few extra shapes added from the Google 3D Warehouse. Note that
we did not prune models based on any low-level geometric proper-
ties. Thus, our datasets span a wide range of model complexity
and quality, which is typical of online repositories in general. For
example, across our test data the number of connected components
varies from 1 to 20494, and a significant portion of the models are
non-manifold as shown in Table 1. Finally, since the goal of our
approach is to find variations within collections of similar shapes,
we removed outliers from the datasets by thresholding the distance
to measure [Chazal et al. 2010], with k = 10 in our smoothed
histogram descriptor space. Table 1 summarizes the shapes we
obtained after pruning and outlier detection.

To determine the variations within each class of shapes, we ana-
lyzed the datasets as described in Section 5. Note that for tem-
plate selection, we manually grouped a small number of connected
components in the airplane and chair templates, and we used the
automatically selected template for the bicycles, motorcycles, and
cars. Given these templates, our approach automatically extracted
a deformation model for each class of shapes. We then used our

exploration interface to visualize and navigate the variability in the
collection.

Figures 8a–e show the main modes of variation for the five different
classes of shapes. Notice that our technique captures changes in
both the size and position of the template components. For exam-
ple, the distance between the front and back wheel accounts for
most of the variability in the motorcycles, while the length and
width of the body varies across the set of cars. Furthermore, as
we discussed in Section 6.2, our method automatically learns and
encodes the spatial dependencies between components to help the
user understand and explore the space of allowable deformations
as defined by the data. For example, symmetric components such
as wheels and wings deform together in all four learned deforma-
tion models. We also capture less obvious dependencies, such as
the body of the motorcycle moving downwards as the front wheel
moves forward; this relationship is mainly due to several stretched,
low-profile “chopper” bikes in the dataset, such as the one shown
in the bottom row of Figure 8b.

As an additional experiment, we combined the bicycles and motor-
cycles into one collection to see if we could learn a single defor-
mation model for these two related classes of shapes. The analysis
produced a deformation model with two distinct modes of variation
(Figures 8c and 8d). Interestingly, the second mode of variation in
the combined set contains a deformation related to stretching the
body along its width, so that skinny configurations corresponded
to bicycles. Using these deformations, we were able to navigate
through both the bicycles and motorcycles in our exploration inter-
face, as shown in the accompanying supplementary video.

Timing. By far, the most time consuming part of our approach
is pre-processing, when we compute the descriptor for each shape
in the collection. Using a simple MATLAB implementation, this
computation took under 18 seconds per shape on average for 2M
point pairs on an Intel Core 2 Duo processor. During optimization,
we only use 20k samples to compute the descriptor for efficiency.
However, prior to optimization we find a set of 20k samples such
that the descriptor computed using this set is within 0.5 percent of
the descriptor computed using 2M pairs. The time for optimization
depends on the number of connected components in the template,
but always remained under 1-2 minutes for templates with up to 8
connected components.

8 Conclusions and Future Work

In this paper, we introduced a method to capture and explore vari-
ability in a collection of shapes without correspondences. Our main
insight is to study the relation between the deformation of a shape
and its global, high-dimensional descriptor. We introduced a mod-
ification of a previously suggested descriptor that varies smoothly
under smooth deformations of the shape, and therefore allows us to
analyze shape variability in the descriptor space. We described a
method for recovering this variability in terms of deformations of a
template model and described an exploration interface that allows
us to navigate a collection of related shapes via restricted template
manipulation.

Although our system has shown encouraging results, we believe
that this is only a beginning and there is a number of interest-
ing questions to be answered in the future. First, although our
parametrization of the deformation space is low dimensional, the
results of the optimization can be non-intuitive with parts “drifting
apart.” An explicit encoding of the part connectivity in the opti-
mization may be an interesting way to resolve this issue. Similarly,
since we solve a non-convex non-linear problem, we may only find



(e) Bicycles(d) Motorcycles

(f) All bikes: �rst mode

(g) All bikes: second mode

(h) All bikes: manual

(a) Cars (b) Airplanes (c) Chairs 

Figure 8: Summary of results. We apply our method to extract templates and deformation models for five classes of shapes (a–e). For each
class, we show sample template deformations on the left and the corresponding nearest neighbor shapes from the collection on the right. The
grey boxes indicate the selected template shape for each dataset. Notice that the learned deformation models capture variations in both the
size and position of components. They also encode dependencies between parts, so that, for example, the wings of the airplane move together.
In addition, we visualize the principal modes of variation from a dataset with both bicycles and morotcycles (f–g). These modes capture
several non-trivial deformations including movement of the wheels along the length and height of the template, and shrinking of the width of
the body in the second mode (g). In contrast, a manual deformation of the template is unlikely to include all of the learned deformations (h).



a local minimum of the energy. A convex formulation of a similar
optimization problem is an interesting problem for the future.

Other extensions to our framework may include outlier detection
for shape retrieval by verifying similar shapes using curves in the
descriptor space that their deformations produce. As mentioned
earlier, it is also interesting to consider and compare other descrip-
tors in which shape deformation results in explicit changes. Perhaps
most interesting is the case of analyzing the relation of discrete
variability in the shape (such as adding extra components), in terms
of the changes of various descriptors. Finally, we are considering
extensions to our exploration interface, where the user can query
the system for deformations that explore different parts of the de-
scriptor space.

Acknowledgements. We would like to acknowledge the IN-
RIA GAMMA group and especially Eric Saltel for the model
database [Saltel 2008], the anonymous reviewers for the helpful
comments and suggestions, and Primoz Skraba for the extremely
useful feedback and discussions. The work was partially supported
by a KAUST visiting student scholarship, an Adobe internship,
NSF grants FODAVA 0808515, IIS 0914833 and CCF 1011228,
NSF/NIH MathBio grant 0900700, and a grant from Google Inc.
Special thanks to Skype for enabling a seamless communication
channel during all the stages of the project.

References

ALLEN, B., CURLESS, B., AND POPOVIĆ, Z. 2003. The space of
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