
EUROGRAPHICS 2011 / M. Chen and O. Deussen
(Guest Editors)

Volume 30 (2011), Number 2

Discovery of Intrinsic Primitives on Triangle Meshes

Justin Solomon, Mirela Ben-Chen, Adrian Butscher and Leonidas Guibas

Stanford University

Figure 1: Localized vector fields which are an optimized linear combination of approximate Killing fields (left), a segmentation
from these fields (middle), and a decomposition into intrinsic primitives with prominent intrinsic symmetry generators (right).

Abstract
The discovery of meaningful parts of a shape is required for many geometry processing applications, such as
parameterization, shape correspondence, and animation. It is natural to consider primitives such as spheres,
cylinders and cones as the building blocks of shapes, and thus to discover parts by fitting such primitives to
a given surface. This approach, however, will break down if primitive parts have undergone almost-isometric
deformations, as is the case, for example, for articulated human models. We suggest that parts can be discovered
instead by finding intrinsic primitives, which we define as parts that posses an approximate intrinsic symmetry.
We employ the recently-developed method of computing discrete approximate Killing vector fields (AKVFs) to
discover intrinsic primitives by investigating the relationship between the AKVFs of a composite object and the
AKVFs of its parts. We show how to leverage this relationship with a standard clustering method to extract k
intrinsic primitives and remaining asymmetric parts of a shape for a given k. We demonstrate the value of this
approach for identifying the prominent symmetry generators of the parts of a given shape. Additionally, we show
how our method can be modified slightly to segment an entire surface without marking asymmetric connecting
regions and compare this approach to state-of-the-art methods using the Princeton Segmentation Benchmark.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.5]: Computational Geometry
and Object Modeling—Geometric algorithms, languages, and systems

1. Introduction
Searching for meaningful parts of a given shape is an im-
portant step in the geometry processing pipeline, providing
an initial division for parameterization, matching, correspon-
dence, editing and other basic tasks. One way to approach
this problem is to characterize the properties of a “good”
part, keeping the target application in mind. For example,
if the end goal is shape understanding, parts should come
from meaningful categories recognized by humans. If, on the
other hand, the target application is parameterization, then

it would be more useful if the parts were parameterizable
over simple domains like spheres and disks. Finally, a shape
editing application might prefer parts that are described by a
small set of parameters that the user can manipulate, such as
the axis and radius of a surface of revolution.

In this paper, we define a “good” part as one exhibiting an
approximate intrinsic symmetry; we name these parts intrin-
sic primitives. Such parts are near-isometric deformations of
extrinsically symmetric shapes like spheres, planes and sur-
faces of revolution, whose symmetries can be expressed us-
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ing continuous parameters. We do not seek reflectional sym-
metries or other discrete structures. They are useful for ap-
plications that seek parts with structure that can be described
succinctly, and they often correlate well with parts perceived
by humans. While extrinsically symmetric primitives repre-
sent a fairly limited set of surfaces, allowing for intrinsic and
approximate symmetry considerably widens the set of ob-
servable self-similarities, capturing shapes whose structure
is clear perceptually but not visible in the Euclidean setting.
For instance, the tentacles of an octopus model have cylin-
drical structure and the head of a human model might be
approximately spherical; these structures may not be visible
if they are forced to conform to exact cylinders or spheres
when checking for structure without allowing for bending
and localized deviations from symmetry.

Fitting primitives for shape partitioning is a well-
known approach in image processing [AFS06] and geom-
etry processing [GG04]; and our work is a natural ex-
tension to the intrinsic setting. To find intrinsic primi-
tives, we employ discrete approximate Killing vector fields
(AKVFs) [BCBSG10]. Killing fields are tangent vector
fields that generate continuous symmetries [DC93]. But rel-
atively few surfaces admit Killing fields since exact intrinsic
symmetries are rare on arbitrary surfaces. AKVFs general-
ize Killing fields — these are critical points of a Killing en-
ergy that measures the amount of asymmetry of a given field.
[BCBSG10] shows how these
vector fields can be computed
on a triangle mesh by solving
an eigenvalue problem. The in-
set shows examples of AKVFs.

This paper extends [BCBSG10] by investigating the
AKVFs of a composite object that is constructed by gluing
together simple parts. We define a localized vector field to
be one that has non-negligible norm on only one part and a
tangled vector field to be a linear combination of localized
vector fields. We show that the AKVFs of a composite sur-
face span a subspace similar to the span of the AKVFs of
its parts. Thus, we first find the AKVFs of the composite,
and then we untangle them by finding the best linear combi-
nations that localize onto the parts; See Figure 2 for an ex-
ample of AKVFs before and after untangling. Our model of
untangling is closely linked to a well-understood problem in
factor analysis, and for this reason it can be accomplished ef-
ficiently using a preexisting statistical algorithm. Finally, we
apply a standard clustering method to extract the intrinsic
primitives and remaining asymmetric parts. The entire ap-
proach is based on developing a global understanding about
the structure of the surface rather than using only localized
notions of shape; thus, it is more likely to be robust to both
noise and localized deformations.

One application of our method is shape segmentation, in
which asymmetric connecting regions are divided among
parts based on their approximate symmetries to generate
a division of the entire surface. Our method compares

acceptably with state-of-the-art segmentation methods in
some of the object categories of the Princeton Segmentation
Database [CGF09], a result that may have implications con-
cerning human understanding of shape. More importantly,
when allowing for the existence of asymmetric connecting
regions, we show how to find the intrinsic primitive parts
of a shape and the most prominent symmetry generators on
each part, which may be useful for shape classification and
other applications.

Figure 2: AKVF norms on a simple model: (top) origi-
nal and (bottom) after untangling. Note how the untangled
AKVFs are localized on individual parts.

1.1. Previous Work

Recent research in geometry processing has focused on find-
ing and making use of intrinsic symmetries, first consid-
ered in [RBBK07]; papers such as [RBBK10] also consid-
ered partial symmetries on surfaces with some asymmetric
parts. [MBB10] presents an approach to finding partial dis-
crete intrinsic symmetries, identifying parts with grid-like
structure without considering the continuous case.

More generally, there is a considerable body of research
related to mesh segmentation, and a full survey is beyond the
scope of this paper. We concentrate on the latest approaches
and those methods that are most related to ours. We refer the
reader to [Sha08, APP∗07] for a more thorough review.

Our method is based on clustering faces of the mesh
with similar local intrinsic symmetries. A closely-related
approach is segmentation using slippage analysis [GG04].
Slippage motions are rigid motions of a surface that displace
it in tangential directions. Surfaces that support such motions
are extrinsically symmetric, e.g. planes, spheres and cylin-
ders. Since this method is based on extrinsic rigid motions,
it is unable to detect intrinsic symmetries. For example, a
bent planar patch will have a single extrinsic translational
symmetry, but in reality has three intrinsic symmetries (two
translations and one rotation). In this way, our method can
be considered an extension of [GG04] to “intrinsic slippable
motions.” Our method further differs from theirs in that we
can use a global top-down approach to locate clusters be-
cause of the properties of AKVFs of composite objects.

An approach that explicitly partitions input shapes into
sets of primitives is [AFS06]. This paper uses a bottom-up
approach, explicitly fitting planes, spheres and cylinders to
each segment. As in [GG04], the fitting method uses the ex-
trinsic geometry of the surface and thus is not invariant to
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near-isometric deformations; it cannot be applied to find-
ing intrinsic primitives. A similar recent approach presented
in [SSCO08] uses values of the Shape Diameter Function
(SDF) as features of mesh faces and performs the clustering
by segmenting the histogram of the SDF values. This ap-
proach is more general than fitting primitives, and it is able to
identify bent cylinders since different points on a bent cylin-
der will have similar SDF values. Our method, however, is
more general, identifying any near-isometric deformation of
a cylinder, rather than only those that preserve radius.

Two other related methods that use local symmetries to
find the clusters are [PSG∗06] and [LCDF10]. The former
builds feature vectors based on extrinsic symmetry planes
and the latter based on distances in a space where symmet-
ric points are mapped to the same location. Since the first
method is based on extrinsic reflection symmetries, it cannot
detect parts which are approximately intrinsically symmet-
ric. The second method searches for a global symmetry be-
tween different parts of a shape, whereas we focus on parts
which are themselves symmetric.

The most recent work on clustering face-based features
was proposed in [KHS10], which describes a supervised
learning approach. Instead of using a single criterion for
segmentation, the algorithm infers human-like segmenta-
tions and labeling from training data. Although the method
works remarkably well in practice, generating the training
data is still a non-negligible task, and the parts it gener-
ates are motivated by semantic rather than geometric appli-
cations. Finally, two recent intrinsic segmentation methods
make use of global spectral data, although the operators they
consider are not related to intrinsic symmetries. In particu-
lar, [SOCG10] uses the heat kernel signature and [Reu10]
uses the eigenfunctions of the Laplace-Beltrami operator to
divide meshes. Those, however, exhibit a very different be-
havior than the eigenfunctions we are considering. For ex-
ample, the Fielder vector (the first non-trivial eigenvector of
the Laplace-Beltrami operator) tends to be aligned with the
principal direction of an object, whereas the direction of the
first eigenvector of our operator is governed by the intrinsic
symmetries of the shape, as can be observed in Figure 5(c).

1.2. Contribution

Compared to existing methods, our contribution is two-fold.
First, we are able to discover intrinsic primitives of a shape,
extending similar work on extrinsic primitives [GG04]. Sec-
ond, in contrast to previous approaches, we are able to dis-
cover these primitives using a more efficient top-down ap-
proach that analyzes the approximate intrinsic symmetries
of the whole object. This is made possible due to our under-
standing of the behavior of AKVFs of composite objects.

The inputs to our method are a triangle mesh, the required
number of parts k, and the number of AKVFs N. We com-
pute the first N AKVFs of the mesh as in [BCBSG10] and
apply an optimization procedure to find a set of N localized

vector fields. Using these fields, we assign a feature vector
of N values to each face. Finally, we use k-means clustering
on these features to retrieve a set of k cluster centers. By ex-
tracting isolines of functions based on the distances to these
cluster centers, we output a partitioning of the shape into ap-
proximately symmetric parts and an asymmetric remainder.

The rest of the paper is organized as follows. In the next
section, we remind the reader how AKVFs are found accord-
ing to [BCBSG10] and investigate the behavior of AKVFs
on a composite object. In Sections 3 and 4 we describe
the main building blocks of our algorithm: untangling the
AKVFs and clustering them. In Section 5 we describe the
full algorithm and show some experimental results and pos-
sible applications. We conclude with a discussion and future
research directions in Section 6.

2. AKVFs of Composite Surfaces

2.1. Discrete AKVFs

Any tangent vector field on a surface generates a deforma-
tion of the surface: simply let all points “flow” along the
vector field for a fixed amount of time t. Killing vector fields
have the additional property that the deformations they gen-
erate are isometric to the initial surface, or, equivalently, that
if all points on the surface flow for a fixed amount of time,
pairwise geodesic distances on the surface will be preserved.

Only a limited set of surfaces admit Killing vector fields,
including developable surfaces, spheres and surfaces of rev-
olution. Using a variational formulation, however, one can
generalize the notion of Killing field to define approximate
Killing fields. To this end, we formulate an energy func-
tional called the Killing energy based on the L2 norm of
the deviation from the over-determined condition satisfied
by exact Killing fields. More precisely, a vector field X on
a surface Σ is Killing if and only if its covariant deriva-
tive tensor is anti-symmetric. The covariant derivative is a
generalization to surfaces of the Jacobian matrix of a pla-
nar vector field, hence it can be thought of as a 2×2 matrix
Mq(X), given at each point q on the surface. Hence, the vec-
tor field X is Killing if and only if ∀q ∈ Σ, Pq(X) = 0, where
Pq(X) = Mq(X) +Mq(X)T . See [BCBSG10] for more de-
tails on Killing vector fields, and the derivation of P. The
Killing energy of X is KΣ(X) :=

∫
Σ
‖P(X)‖2/

∫
Σ
‖X‖2, and

AKVFs are the critical points of KΣ. Alternatively, they are
solutions of the eigenvalue problem P∗P(X) = λX , where
P∗ is the L2-adjoint of P, and the lowest eigenvalue of P∗P
is the Killing energy of Σ.

In the discrete setting, we are given a triangle mesh M =
(V,F,E), where V , F and E are the sets of vertices, faces and
edges, respectively. To calculate AKVFs we need a method
to discretize vector fields and an accompanying discretiza-
tion of the operator P∗P. A common approach to the dis-
cretization of differential operators on meshes is the use of
Discrete Exterior Calculus (DEC) [DKT06], which repre-
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sents vector fields using discrete one-forms given by a vec-
tors of size |E|. The operator P∗P can be discretized using
a matrix R ∈ R|E|×|E|. For completeness we give the exact
expressions for computing R in the additional material. The
eigenvectors of R are discrete one-forms which can be in-
terpolated using Whitney forms (see [DKT06]) to generate
tangential vector fields on the faces of the mesh.

If a surface has an AKVF that is close to an exact Killing
field, the smallest eigenvalue of R will be close to zero, and
its matching eigenvector will generate the associated approx-
imate symmetry. If we have a more complex shape, such as
the one in Figure 2, it is not clear a priori what the eigenvec-
tors associated to the smallest eigenvalues of R represent.
We show that if the shape is a composite consisting of sev-
eral parts possessing approximate intrinsic symmetries and
the transition regions between the parts are small enough,
then the AKVFs behave more or less as if these parts were
independent of each other.

This independence is a manifestation of a general prop-
erty of elliptic equations admitting a variational formulation,
such as those defining Killing and Laplace-Beltrami opera-
tor eigenvalue problems. To analyze this phenomenon we
first consider an idealized setting, where the transition re-
gions between the parts are infinitesimal; we will discuss
real-world scenarios later on. We also consider only a sur-
face that decomposes into two component parts, since the
results below generalize in a straightforward manner to mul-
tiple parts connected in more complex ways.

2.2. Composite Surfaces with ε-Transition Regions

Let Σ be a compact surface embedded in R3 and sup-
pose that we can decompose it into two components Ω1
and Ω2, whose interiors are disjoint, as well as a "small"
transition surface Nε, such that Σ = Ω1 ∪Nε ∪Ω2, and
∂Nε = ∂Ω1∪∂Ω2. Suppose further that each component Ωi
equals a “large” surface Σi from which a small ball of ra-
dius 0 < ε� 1, centered at a point on Σi, has been removed;
Finally, suppose that the transition region Nε can be con-
tained in a ball of radius O(ε) and has surface area O(ε2).
An example for such a surface is the dumbbell (see Fig-
ure 4(b)), where: Σ1 and Σ2 are two spheres, Ω1 and Ω2 are
two spheres with small holes, andNε is the "neck" region.

We consider the eigenvalue problem for a linear, elliptic
partial differential system of equations for a one-form ω of
the form P∗P(ω) = λω where P is a first-order partial differ-
ential operator. We would like to compare the spectral data
of P∗P on Σ with the spectral data of P∗P on Σ1 and Σ2.
Let λ1 ≤ λ2 ≤ ·· · be the eigenvalues of P∗P on Σ, counted
with multiplicity; and let ω1,ω2, . . . be the corresponding or-
thonormalized eigenvectors. Next, merge all the eigenvalues
of P∗P restricted to Σ1 and Σ2 into one set {µn : n ∈ N}
sorted in increasing order (again, accounting for multiplici-
ties), and denote by un the corresponding eigenvectors. Our
spectral comparison will estimate the discrepancy between

the eigenvalues λn and µn for each n up to a threshold. To
additionally compare eigenvectors, we further introduce the
proxy eigenvectors denoted ũ1, ũ2, . . ., where the ũn equals
the appropriate AKVF eigenvector from one of the Σi mul-
tiplied by a smooth cut-off function χ

(i) that vanishes on the
neck region and the other Σi.

Proposition 1. There exist constants ε0,C > 0 depending
only on the eigenvalues of Σ1, Σ2 and a number M(ε) with
limε→0 M(ε) =∞ so that the spectral data of P∗P satisfies:

1. If ε < ε0 then for all n s.t. λn < M(ε) we have

|λn−µn| ≤C/| log(ε)| .

2. Let Pn,δ be the L2-orthogonal projector onto the subspace
Wn,δ := span{ũk : k s.t. |λn−µk| ≤ δ}. If ε < ε0 then for
all δ > 0 and n s.t. λn < M(ε) we have

ωn = Pn,δ(ωn)+η

where η⊥Wn,δ and satisfies ‖η‖2
L2 ≤C/

(
δ

2| log(ε)|
)
.

The first part of the Proposition states that up to a thresh-
old M(ε) the eigenvalues of the composite object are close
to the eigenvalues of the parts if the neck region is small
enough. The reason for the threshold is that the transition
regions themselves begin to contribute to the spectrum of
P∗P when the eigenvalue under consideration is sufficiently
large. The spectral data of P∗P above the threshold would
contain eigenvalues coming from the transition region and
corresponding eigenfields supported (up to small L2 error)
on the transition region. We can say that the threshold in-
creases to infinity with ε because we have assumed that the
transition region decreases in size with ε in a uniform way.

The second statement is more complicated to account for
multiplicity. This is because it can happen that a finite num-
ber λn1 , . . . ,λnk of the eigenvalues of P∗P are very close
together; in this case, any linear combination of the corre-
sponding eigenvectors ωn1 , . . . ,ωnk would be approximately
an eigenvector that should be compared to a linear combi-
nation of ũk for appropriate k. Thus the Proposition asserts
that the subspace spanned by ωn1 , . . . ,ωnk is approximately
equal to the subspace spanned by these ũk. Results of this
kind are fairly well-known in the mathematical literature.

For completeness, we give a full proof of this result and
the appropriate references in the supplemental material.

(a) (b) (c)

Figure 3: A demonstration of Proposition 1: (a) the AKVFs
of the parts, (b) the AKVFs of the composite, and (c) the
spectrum of the composite (red) and the parts (blue).

c© 2011 The Author(s)
Journal compilation c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



Justin Solomon & Mirela Ben-Chen & Adrian Butscher & Leonidas Guibas / Discovery of Intrinsic Primitives on Triangle Meshes

Figure 3 demonstrates the Proposition on a surface con-
sisting of three parts (a sphere and two ellipsoids) connected
by small transition regions. Figure 3(a) shows the norm of
the first 12 AKVFs of the three parts (un for n = 1, . . . ,12),
grouped by similar eigenvalues. Figure 3(b) shows the first
12 AKVFs of the composite (ωn), grouped the same way.
Finally, in Figure 3(c) we see the sorted eigenvalues of the
parts (µn), and the composite (λn). Within each group, the
exact ordering is immaterial, since the eigenvalues are sim-
ilar. It is evident that within each group the eigenvectors of
the parts match the eigenvectors of the composite, up to ef-
fects cause by the “neck” regions. In general, the eigenvalues
of the composite are bigger than the eigenvalues of the parts,
since the “neck” hampers the exact symmetry of the parts.

2.3. Toy Examples

To demonstrate Proposition 1, we consider a dumbbell sur-
face Σ as the one in Figure 4. Assume Σ is cylindrically
symmetric about the axis through the sphere centers, that the
spheres have radius 1, and that the neck has radius ε� 1.

Figure 4(a) compares the first 32 eigenvalues of Σ for two
values of ε. The first six eigenvalues of the components are
zero since each sphere has three exact KVFs, and the rest
are clustered with varying multiplicity. The spectrum of Σ is
closer to those of the components when ε is smaller. Specif-
ically, the first six eigenvalues of Σ are close to zero and
separated from the others.

(a) (b) (c)

Figure 4: (a) The first 32 eigenvalues for two neck sizes; (b)
norms of the first six AKVFs; and (c) the first two AKVFs,
the sum and difference of which generates localized fields.

Figure 4(b) shows the norms of the first six AKVFs of Σ.
The AKVFs of the composite are not localized on the two
spheres, and have similar support on both. A closer look in
Figure 4(c), however, shows that the first AKVF rotates both
spheres in the same direction, whereas the second AKVF
rotates the spheres in opposite directions. Taking the sum
and difference of the first and second eigenvectors reveals
two new “almost” eigenvectors, which are localized on the
two spheres. In general, some unknown linear combination
would generate “almost” eigenvectors localized on the parts.

Figure 5(a,b) shows more examples of AKVFs of surfaces
created by gluing together primitives with necks of varying
size using the MeshMixer software [SS10]. Note that lo-
calization persists even if the parts have higher genus, e.g.
a torus. Furthermore, although we primarily use extrinsic

(a) (b) (c)

Figure 5: (a,b) Examples of AKVFs of composite surfaces.
(c) Different behavior of AKVFs (top, center) versus the
Fiedler vector (bottom), on a shape where the rotational
symmetries of the parts are not aligned with the principal
direction of the shape.

primitives in these examples, our formulation is purely in-
trinsic, and thus holds for almost-isometric deformations of
extrinsic primitives, such as the octopus models in Figure 9.

Figure 5(c) shows the different behaviors of the Laplace-
Beltrami eigenvectors and the Killing eigenvectors. The
model is composed of two flat ellipsoids, each having rota-
tional symmetry, connected at the equator by a thin “neck”.
The first two AKVFs of the composite, shown in Figure 5(c,
top and center) indeed correspond to the first eigenvectors of
the parts, those that generate the extrinsic rotational symme-
try. The Fiedler vector - the first eigenvector of the Laplace-
Beltrami operator - shown in Figure 5(c, bottom), on the
other hand, follows the principal direction of the shape.

(a) (b) (c)

(d) (e)

Figure 6: (a) Norms of the first two AKVFs; (b) the AKVFs
rotate in the same and opposite directions, respectively; (c)
the norm of the sum and difference of the AKVFs from (b);
and (d,e) the norm of the first two AKVFs and a linear com-
bination of them for another model.

2.4. Real-World Composite Models

The spectral comparison theorem of the previous section is
in essence a perturbative result that holds when ε is small.
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There are generalizations of Proposition 1 that handle the
case when the transition region has fixed length but infinites-
imal width [JM92] (where the neck contributes in lower
eigenvalues), and that derive asymptotic expansions of the
spectral data in powers of ε [Gad05] (providing intuition for
what happens when ε increases). But an exact analysis of the
behaviour of the spectral data is difficult for large ε.

However, real-world composite models are exactly those
for which we cannot expect the transition regions to be in-
finitesimal. Yet experimental evidence suggests that the rela-
tion between the eigenvectors of the composite and its parts
is mostly preserved. Figure 6 shows of AKVFs of two mod-
els from the Princeton Segmentation Benchmark [CGF09]
and linear combinations localized on the parts.

Note how the phenomena exhibited on the spheres repeats
for the man model in Figure 6(b): the first AKVF rotates
both legs in the same direction, whereas the second rotates
each leg in the opposite direction. Figure 6(c) shows the sum
and difference of the first two AKVFs, which are localized
on each leg. Figure 6(d,e) show the first two AKVFs, and a
linear combination of them for another model.

3. Untangling AKVFs

We have seen that the AKVFs of a composite surface span
a linear space close to the one spanned by the AKVFs of its
parts. Thus, if we have extracted the AKVFs of a composite,
there should exist linear combinations that generate a set of
vector fields localized on the parts; we call the technique for
finding these fields “untangling.” In this section, we describe
how to untangle a given set of input vector fields ω1, . . . ,ωN
to produce an alternative set ũ1, . . . , ũN , where each ũi is a
linear combination of the inputs optimized to have maxi-
mally separate support that represents a different part of Σ.

3.1. Tangling Energy

The overlap between two vector fields ω1 and ω2 on Σ can
be measured using a “tangling energy” designed to identify
pairs of fields whose supports are similar:

ETang(ω1,ω2) =
∫

Σ

‖ω1‖2‖ω2‖2

Note that uniformly scaling a field ω does not affect its sup-
port or Killing eigenvalue, so before untangling we normal-
ize ωi such that

∫
Σ
‖ωi‖2 = 1. Then, the integrand above is

large where both ω1 and ω2 have large magnitudes, showing
where the fields are tangled locally.

Usually, more than two fields need to be untangled, hence
we extend the energy function Etang using pairwise products:

ETang(ω1, . . . ,ωN) =
N

∑
i=1

N

∑
j=i+1

∫
Σ

‖ωi‖2‖ω j‖2 (1)

On a discrete mesh M = (V,F,E), the vector fields are

represented using discrete one-forms. To be consistent with
this DEC formulation, we express the norm of ωi on each
edge as a vector of length |E| as well. For the edge e ∈ E,
we take (‖ω‖)e =

√
(?1)e|(ω)e|, where ?1 is the discrete di-

agonal Hodge star for one forms, given by a diagonal matrix
containing the standard cotangent weights [Hir03]. This def-
inition is consistent with the usual DEC definition of the L2

inner product, which sums these norms on the whole mesh:
〈ω,ω〉= ω

> ?1 ω.

To define discrete tangling energy, we work in matrix no-
tation. We define a matrix Φ ∈ R|E|×N whose i-th column
is ωi. We then take H =

√
?1 and |Φ| to be the matrix that

contains the absolute values of the elements of Φ. It is easy
to see that the i-th column of the matrix H|Φ| is the vector
‖ωi‖. Since (H|Φ|)2

ei = (Hee|Φei|)2 = (HeeΦei)
2, we have

that the discrete tangling energy is given by:

ETang(Φ) =
N

∑
i=1

N

∑
j=i+1

|E|

∑
e=1

(HΦ)2
ei(HΦ)2

e j (2)

3.2. Untangling Vector Fields

The objective of the AKVF untangling algorithm is to find
a set of coefficients defining a linear combination of the
eigenvectors ωi that minimizes the discrete tangling energy
ETang. This linear combination can be expressed as ΦA,
where A ∈ RN×N . To avoid degenerate situations and reg-
ularize the system, we limit ourselves to rotation matrices
A ∈ SO(N). Formally, we solve the optimization problem:

minimize
A∈SO(N)

ETang(ΦA) =
N

∑
i=1

N

∑
j=i+1

|E|

∑
e=1

(HΦA)2
ei(HΦA)2

e j

(3)

This optimization problem is very similar to the problem
of rotation in factor analysis [Har76], and the untangling en-
ergy is related to the so-called orthomax criterion. The goal
in factor analysis is to extract a small set of “factors” that
explain a larger set of given observations, e.g. by using Prin-
cipal Component Analysis. These factors are required to be
sparse, such that any observation can be described as a lin-
ear combination of a small number of factors. Thus, the usual
procedure is to first extract the factors and then to find the op-
timal linear combination that will lead to sparsity. Although
our situation is not directly related to factor analysis, factor
sparsification is exactly what we are attempting to accom-
plish in “untangling” the AKVFs. As it turns out, the dis-
crete tangling energy given in Equation 2 is identical to the
statistical “parsimony criterion” described in [Har76].

Rotation has been well-studied in factor analysis, and
efficient methods have been developed for finding a lo-
cal minimum of the optimization problem in Equation 3.
Specifically, an efficient algorithm using SVD was proposed
in [Hor65] and used later for sparse modeling of medi-
cal images in [SSL06]. The algorithm is based on the fact
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that the solution A is equal to argmaxA(tr(A>Q)), where
Q = Φ

>H>(HΦA)ˆ3 (the notation Xˆ3 means the element-
wise exponentiation by three of the elements in the matrix
X). Thus, one can keep Q fixed, solve for the matrix A
which maximizes tr(A>Q), and then update the estimate for
Q using A. Although the algorithm appears in several other
sources, we provide it here for completeness in Algorithm 1;
note that each iteration is fairly efficient, since it involves
only matrix multiplication and finding the SVD of a rela-
tively small N×N matrix.

Input: Φin ∈ R|E|×N , H, tol, maxiter
Output: Φout
begin
A← Id; Φout ← HΦin; d← 0
for i← 1 to maxiter do

dold ← d
[L,D,M] = svd((HΦin)>Φout ˆ3)

A← LM>; d← trace(D); Φout ← HΦinA
if |d−dold |/d < tol then

break
end

end
Φout ← ΦinA

end

Algorithm 1: Procedure for untangling AKVFs.

Figure 7: AKVFs before (left) and after (right) untangling.

For our experiments, we used tol = 10−5 and maxiter =
500. Figure 7 shows examples of the norms of a few AKVFs
before and after untangling; the untangled AKVFs are local-
ized on the parts of the composite object, as we required. In
the following section we will show how to use these local-
ized vector fields for part discovery. Note that it can be the
case that two EKVFs have similar support and cannot be un-
tangled; for instance, this situation may occur when a part
exhibits both rotational and translational symmetry. In this
case, factor analysis simply produces multiple fields local-
ized on the same part; no undesired cancellation occurs since
this would imply the existence of a smaller intrinsic symme-
try on the part that is not present. Multiple fields localized on
the same part may help classify the type of symmetry on the
part but should not affect part discovery or segmentation, so

the particular linear combination of fields with similar sup-
port produced by factor analysis is unimportant.

4. Part Discovery with Untangled AKVFs

In Section 2 we showed the relation between the AKVFs of a
composite and those of its parts. Using this, we demonstrated
in Section 3 how to extract localized vector fields from the
set of AKVFs of the composite. Assuming our surface is
composed of a few parts, these extracted vector fields should
be close to the AKVFs of the parts. If we now formulate a
clustering problem using these new vector fields as features,
we should be able to discover the intrinsic approximately
symmetric parts. Indeed, given a surface Σ and a set of N
localized vector fields ũi, we are looking for k components
Ωi and a connecting regionN such that Σ =N ∪(∪iΩi) and
each ũi has non-negligible norm only on one of the Ω j’s.

In the discrete setting, we are given a triangle mesh M =
(V,F,E). To extract the components from the ũi, we first map
each face to a feature vector given by a function ϕ : F→RN .
Since we want to find the parts on which the ũi are localized,
we use the norm of the interpolated ũi at the center of each
face for the features. The mapping ϕ is thus defined as

ϕ( f ) = (‖ũ1( fc)‖,‖ũ2( fc)‖, ...,‖ũN( fc)‖) ,

where f ∈ F and fc is the barycenter of f .

Since we know the ũi are localized on the Ω j, we expect
the points in high-dimensional space to be grouped such that
in each group only a small number of coordinates is nonzero.
As a simple example, consider a model consisting of three
parts, and take N = 3. In this case, each face will be mapped
to a point in R3 that lies on one of the coordinate axes. This
separation can be seen easily in Figure 8(a), which shows
the feature space ϕ(F) of the “three spheres” object from
Figure 5(a). In this case, the AKVFs were localized to begin
with and hence are equal to the ũi.

(a) (b)

Figure 8: For 3 AKVFs the feature space, R3, can be eas-
ily visualized. (a) The segmentation of the model from Fig-
ure 5(a). (b) its matching segmented 3D feature space.

To generate a coarse partition of Σ we cluster the
faces in feature space using the distance d( fi, f j) = 1−
cos(∠(ϕ( fi),0,ϕ( f j))). The distance is chosen to be scale-
invariant because scaling a feature vector does not affect
which fields are the most prominent at a given point on the
surface. If the points lie on the same coordinate axis, this
distance will be close to zero, mapping such points to the
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same cluster. Note that this approach is identical to project-
ing the points on the sphere and using squared Euclidean dis-
tances. In the general case, each part might have more than
one AKVF, since the original part might have had multiple
symmetries, and then the features of each part lie on a differ-
ent low-dimensional hyperplane in RN . In that case as well,
using the angle-based distance will result in the correct clus-
ters. We use a standard k-means classifier with this metric
to compute a set of cluster centers C j ∈ RN , j = 1, . . . ,k and
assign each face to its closest center to get a coarse partition-
ing of the faces Si. Figure 8 shows the resulting partitioning
for this simple model on the original surface and in feature
space. Since k-means returns a local minimum depending on
its starting point, we run the algorithm a few times, choosing
the result in which ∑

k
i=1 ∑ f∈Si

d(ϕ( f ),Ci) is minimal.

Optionally, we might want to generate smoother boundary
curves not limited to the edges. To create a smooth boundary
curve between two neighboring face clusters Si and S j, we
compute the zero-isoline of the function gi j : M→ R given
by gi j(p) = d(Ci,ϕ(p))−d(C j,ϕ(p)). This is done by defin-
ing ϕ on the vertices and interpolating it to the interior of the
faces. ϕ on the vertices is defined as the area weighted aver-
age of ϕ on the neighboring faces.

Alternatively, to find Ωi with stronger intrinsic symme-
tries and a nonempty asymmetric connecting region N , we
consider all pairs of adjacent face clusters, Si and S j, and
extract the ε and −ε isolines of the function gi j for ε > 0
controlling the size ofN . Since this function is meaningless
on other clusters, we only consider parts of these isolines
curves which are either in Si or in S j. Faces between these
curves are marked as transition regions.

Figures 9 and 10 shows part decompositions and segmen-
tations extracted using this technique, given an untangled set
of ũi. The number of parts k was given as a parameter, and
we used N = 2k AKVFs, as discussed in the next section.
For some models we show a segmentation by taking ε = 0,
and for others we show the symmetric parts and remove the
connecting regionN .

5. Experimental Results

5.1. Implementation Details

Given the building blocks detailed in the previous two sec-
tions, description of the entire symmetric part discovery
technique is fairly straightforward:

1. Compute AKVFs ω1, . . . ,ωN .
2. Untangle ω1, . . . ,ωN using Algorithm 1.
3. Cluster faces using k-means as described in Section 4.

With code from [BCBSG10] for computing AKVFs, the
part discovery algorithm is straightforward to implement.
Using Matlab’s implementation of k-means and SVD, code
for producing an unrefined mesh segmentation fits into a rel-
atively short script. To generate the smooth isolines, we re-
fined the original mesh to contain vertices that coincide with

the 0 and ε isolines. As a post-processing step, if ε > 0, we
remove boundary regions that border on a single symmet-
ric part and add them to that part. Additionally, we remove
parts smaller than some fixed size. The process takes 20-30
seconds to run on average-sized meshes from the Princeton
Segmentation Benchmark using a laptop wih a 3.06GHz pro-
cessor; a refined implementation likely could run faster.

5.2. Parameters and Limitations

The algorithm has relatively few parameters, and none exerts
undue influence on the output. The parameters needed to run
the algorithm are as follows:

• k, the number of desired segments. This parameter obvi-
ously affects the resolution of features likely to be discov-
ered; a potential topic for future research is the develop-
ment of techniques for estimating this value.

• N, the number of AKVFs to compute. This parameter de-
termines the number and size of the possible features to
identify; low values will leave out important AKVFs de-
scribing symmetric surface components, while high val-
ues of N generate high-frequency AKVFs of limited use-
fulness. Since each part is supposed to contribute a maxi-
mum number of three AKVFs (if it is a deformation of a
sphere or a plane) and usually two AKVFs (if it is a defor-
mation of a general surface of revolution), we set N = 2k.
We added upper and lower bounds of 16 and 32, to make
sure we have a sufficiently large range of AKVFs.

• For all our experiments we used 100 k-means iterations,
and ε = 10−5 for Algorithm 1, which in all cases was
more than sufficient to reach convergence.

The main limitation of this approach is its dependence on
mesh quality. Robust curvature estimates and other precau-
tions must be used to compute useful AKVFs on noisy sur-
faces. Remeshing models improved AKVF computation in
some examples. A less prominent limitation of the intrinsic
primitive technique is that it can be difficult to find parts that
are on different scales, since smaller features are likely to be
associated with larger eigenvalues that might be ignored.

Outputs of part discovery occasionally might not align
with segmentations generated by humans given the goal of
finding intuitively meaningful rather than symmetric parts.
As with any other segmentation or part discovery technique,
the use of the method presented here must be paired with
its application. While the AKVF method reliably discovers
parts with intrinsic symmetries it does not always identify
surface regions with asymmetric but semantically recogniz-
able features; this behavior is expected and potentially desir-
able depending on the use of the algorithm.

5.3. Applications

The discovery of basic parts of a mesh is a fundamental task
in geometry processing, and there exist several applications
for a fully-intrinsic approach to such a problem. We present
two short applications of our technique.
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5.3.1. Segmentation

When ε = 0, the computed symmetric parts are guaranteed
to be adjacent. Thus, they segment the input surface Σ into k
parts with similar AKVF structures, which reflect the basic
symmetries of the surface patches. Figure 9 shows such seg-
mentations of some sample surfaces. These not only reveal
the symmetric parts of the surfaces but in many cases also
provide an intuitive divisions of the surfaces. The construc-
tion of the intrinsic primitive segmentation thus suggests that
intrinsic symmetries may play some role in human percep-
tion of the segments in a given model. The figure also com-
pares between our segmentation and two state-of-the-art seg-
mentation methods: Shape Diameter Function [SSCO08],
and Randomized Cuts [GF08]. The comparison shows that
in many cases our segmentation agrees with those methods,
and in a few cases even improves on them. It is worth noting
that we did not post-process our cut lines: they are just the
iso-lines of a distance function as defined in Section 4.

Shape
Diam 

Rand
Cuts 

Intrinsic 
Symmetry 

ShapeDiam RandCuts Intrinsic Symmetry

ShapeDiam RandCuts Intrinsic Symmetry
ShapeDiam RandCuts Intrinsic Symmetry 

ShapeDiam RandCuts Intrinsic
Symmetry 

Shape
Diam

Rand 
Cuts

Intrinsic
Symmetry 

Shape 
Diam 

Rand 
Cuts

Intrinsic
Symmetry 

Figure 9: Segmentations of various shapes (bottom), with
comparisons to [SSCO08] and [GF08] algorithms (top).

The results in Figure 9 reveal pros and cons of the pro-
posed approach. For instance, the leg segments on the oc-
topi demonstrate invariance to isometric deformation. The
legs of the human model on the upper right are segmented
differently above and below the knees because they cut off
the translational symmetries of the upper and lower parts;
smaller k values keep the full legs in individual segments
because the weaker translational symmetries are ignored in
favor of the rotational symmetries of the entire legs. Similar
dependences on k can be seen in the fawn and table mod-
els (lower left), where extra segments appear because k is
fixed a priori; these issues might be resolved by replacing
k-means with a method that chooses the number of clusters.

For completeness, Figure 11 compares the “Rand index”
of intrinsic primitive segmentation to that of other published

approaches in various object categories from the Princeton
Segmentation Benchmark [CGF09]. This value measures the
dissimilarity between the produced segmentations and the
benchmark’s ground truth dataset using the fraction of pairs
of faces that both agree or disagree on the segment to which
they belong; see [CGF09] for details. The new approach
compares fairly well with the other approaches, although it
does not provide the best possible segmentations according
to the benchmark. As explained in Section 5.2, the Bench-
mark’s comparison between intrinsic primitive segmenta-
tions and those produced by humans is not a perfect eval-
uation since the objective of intrinsic primitives is to search
for a particular type of part. Even so, the reasonable perfor-
mance indicated in Figure 11 shows that the segmentations
are meaningful beyond the mathematics of AKVFs.

5.3.2. Part Discovery

Rather than forcing every patch on Σ to belong to a “sym-
metric” part, taking ε > 0 allows for a nontrivial asymmetric
connecting region N , producing parts with clearer symme-
tries. This adjustment shows the true value of the intrinsic
primitive algorithm as a technique for part discovery rather
than segmentation. Figure 10 shows part decompositions of
some sample models. Additionally, each part is shown with
flow lines indicating some of its principal symmetries. Find-
ing the symmetries of a given part Ωi is as simple as finding
those untangled vector fields ũ j with the largest values of∫

Ωi
||ũ j||2/

∫
Σ
||ũ j||2 and projecting them onto Ωi.

Figure 10: Various models broken into symmetric parts,
with flows of prominent AKVFs marked to show the intrinsic
symmetries detected.

6. Conclusions and Discussion

We have presented an algorithm for dividing a given surface
Σ into nearly-symmetric regions Ωi and an optional asym-
metric connecting regionN . The algorithm is not only effec-
tive for finding parts with self-symmetry but also mathemati-
cally justified and provably intrinsic, as shown by examining
the structure of AKVFs on composite surfaces. The part dis-
covery method has relatively few parameters and is straight-
forward to implement given pre-existing numerical and geo-
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Figure 11: Comparison of Rand indices computed by the benchmark in [CGF09].

metric algorithm building blocks. A number of potential ap-
plications could make use of the decomposition of a shape
into symmetric parts. Symmetric parts are straightforward
to parametize, and the symmetries easily could help guide
shape editing. Matching and correspondence techniques also
can make use of the additional data about the symmetries
provided by the AKVFs with support on a given segment.

Beyond its potential applications, this exploratory new
technique also leaves a number of potential avenues for
future research. Since intrinsic primitives are paired with
their significant AKVFs, it should be possible to find group-
theoretic descriptions of each part’s self symmetries for use
in understanding global structure. The presence or lack of
symmetries could be used to compare surfaces and synthe-
size new geometry, and near-symmetries could be refined to
denoise or improve surface models. The structure of the con-
necting region N also may provide some clues to the con-
nectivity of various features on Σ.

Intrinsic primitives provide a unique perspective on the
geometry of a given model and clearly demonstrate the value
of AKVFs. Their application could play a key role in the
larger research goal of understanding the structure and repe-
tition present in discrete surfaces.
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