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In the 1984 movie, “The Karate Kid”, a young teenager named Daniel LaRusso triumphs

in a local martial arts tournament while coached by his apartment’s handyman, Mr. Miyagi.

Mr. Miyagi used a unique coaching style that developed Daniel’s fundamental skills in martial

arts before teaching their context and application. Initially, the way by which Mr. Miyagi

coached confused Daniel. Time after time, Daniel went to Mr. Miyagi’s home expecting to

learn standard “karate moves” (e.g., how to punch), but, ended up doing repetitive household

chores, such as, painting fences and waxing cars. The only instructions Mr. Miyagi would

offer pertained to the chores themselves: “left hand, right hand,” “up, down,” “wax on, wax

off,” or “breath in, breath out.” Although Mr. Miyagi knew his motives and felt gratified in

his teachings, Daniel was frustrated. He was desperate to learn Karate, yet, to him, he was

only doing tedious chores. Ultimately, Daniel lost his cool and said,
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Daniel: “I’m being your expletive slave... we made a deal... you’re supposed to

teach, and I’m supposed to learn... I haven’t learned a expletive thing”.

Miyagi: “You learn plenty”.

Daniel: “I’m going home, man!”.

Subsequently, Mr. Miyagi showed by example how the chores translated to karate. Each

chore had a purpose and taught Daniel how to move his arms (up and down and left to

right) to defend himself. From that point onward, Daniel continuously built upon his karate

abilities and trusted Mr. Miyagi.

Today, we teach Introductory Statistics, or more broadly, Introductory Data Analytics

(DA), in a way that is similar to Mr. Miyagi’s coaching style. We teach several quantitative

methods using small contrived problems that, in many cases, lack relevance to the real-

world. However, unlike Daniel, many students seem to miss having an “a-ha” moment when

they realize how to connect classroom concepts for real-world applications. Current classes

focus mainly on the quantitative aspects of DA and fail to provide opportunities for students

to grasp context and think critically. For example, to apply DA thoughtfully students need

critical thinking skills to compartmentalize large problems into manageable pieces, formulate

and evaluate solutions with both quantitative and qualitative rigor, make judgements that

assimilate current information with new, and reflect upon their judgements. Furthermore,

fundamental to the application of these skills is the ability to be creative and apply current

knowledge and/or analytical tools in ways that might not have been considered previously.

Yet, in current DA classes, students only have opportunities to practice creative, critical

thinking after they have mastered quantitative theory and methods.

As professors of introductory DA classes, we can do better than Mr. Miyagi. Rather

than focusing only on mathematical concepts in class, we can integrate them with critical

thinking so that students develop all of the skills necessary to learn from data. Interactive

data visualizations (IDVs) can help with the integration. Data visualizations that adjust to
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Figure 1: The “Eight Elements of
Thought” (EoT) by Elder and Paul
[2010].

student investigations can inspire students to make

conjectures and assess them without necessarily mas-

tering complex mathematical methods. Thus, stu-

dents can apply critical thinking, as defined by the

“Eight Elements of Thought” (EoT) in Figure 1, to

real-world problems before, during, and after the stu-

dents develop quantitative DA tools.

In this paper, we show how one may teach crit-

ical thinking with multi-dimensional scaling (MDS)

and Weighted Multi-dimensional scaling (WMDS)

[Kruskal and Wish, 1978] using IDVs. The IDVs that

we present are based on a methodology that we call Bayesian Visual Analytics (BaVA)

[House et al., 2010]. We explain BaVA in the next section using an simulated example.

1 IDV with BaVA BaVA 

BS VA 
Explore 

Rigorous Assess 
Assimilate 

Qualitative 
Interpretable 

Models 
 Quantitative 

Abstract 

Visual Analytics (VA): “The science of
analytical reasoning facilitated by interac-
tive visual interfaces” [Thomas and Cook,
2005]. VA fosters intuitive data explorations
so that experts may assess data, assimilate
the information in data, and make qualita-
tive judgements.

Bayesian Statistics (BS): A statistical
paradigm that enables inference for un-
knowns θ given data d and summaries of a
posterior distribution π(θ|d). Such formula-
tions are mathematically rigorous, abstract
models that characterize datasets quantita-
tively.

BaVA combines methods in Visual An-

alytics with Bayesian statistics so that

experts may guide rigorous, quantita-

tive data analyses via intuition and in-

teractions (e.g., dragging, filtering, high-

lighting observations) with data visualiza-

tions. Mechanistically, BaVA is an itera-

tive process that, when wrapped within

interactive software, creates, adjusts, and

remakes two-dimensional displays of high-
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dimensional data. The process is shown in Figure 2 and iterates as follows: 1) model

data d conditional on unknowns θ using Bayesian or data mining methods, 2) esti-

mate and display estimates of θ in a relevant display v, 3) prompt experts to as-

sess and adjust the display if known or hypothesized structure in the data is miss-

ing (e.g., users may drag or highlight observations), 4) parameterize adjustments, and

5) update the original model (from step 1) so that steps 2-5 may repeat. The nov-

elty of BaVA is that display adjustments in step 3 are considered to be reliable, ex-

pert cognitive feedback f (c) or additional data that is worth incorporating within display-

generating models. Thus, the BaVA machinery interprets, quantifies, and expresses

expert feedback in parametric form f (p) to update step 1) and repeat the process.
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Figure 2: The BaVA process.

To exemplify BaVA, we explore a simulated

dataset from House et al. [2010] that includes

three groups (red, blue, and green) of three clus-

ters, as shown in Figure 3a. Each group clusters

observations based on a combination of the di-

mensions {x, y, z}. For example, these data could

represent three genera of flowers (Rosa, Iris, and Tulipa) that each have measurements from

three different species. The species may cluster based on combinations of x=pedal width,

y=pedal-length, and z=sepal-length. To assess the clusters and uncover the dimension combi-

nations visually (i.e., in two dimensions), we consider Principal Component Analysis (PCA)

[Jolliffe, 2002]. PCA is a common DA approach that projects complex datasets to a preferred

number (e.g., two) of dimensions. Each projected dimension is a “principal component.”

Figure 3b displays the top two principal components (denoted {r1, r2}) for the data shown

in Figure 3a. One benefit of data displays, is that we do not necessarily need to know how

to create them- to interpret them. In this case, PCA displays the data spatially in Figure

3b so that observations that are similar and different appear close and far from each other,
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Figure 3: Figure a shows a three-dimensional simulated dataset that includes three groups
(red, blue, and green) of three clusters (marked by dark, medium, and light shades of varying
colors). Figure b is a PCA projection of the dataset. Notice that we cannot see some of the
clusters. To express feedback about the display, two dark blue points are dragged together
(as denoted by arrows in Figure b). Based on this feedback, the visualization is reconfigured
using BaVA methods. Now, blue and red clusters are clear. To see the green clusters, the
BaVA process can repeat.

respectively. Notice that clusters in the blue group overlap slightly. To separate the clusters

and assess the dimensions (i.e., combinations {x, y, z}) that structure the blue group, we

drag two dark blue points together (as depicted by arrows in Figure 3b). This is one way of

expressing cognitively that we want the dimensions for which the dark blue points are similar

to be represented clearly in the display. BaVA parameterizes this cognitive expression and

updates the display accordingly.

Figure 3c provides the updated view of the data. Notice that we now see clusters in both

the blue and red groups. By only moving two blue observations, we learned that the blue

and red groups use comparable combinations of {x, y, z} to cluster. Additionally, we learned

this without an understanding of PCA.

In effect, BaVA provides a computational mediator between data characterizing models

and domain experts. The experts learn from the summaries provided by the models and the

models change in response to visual feedback offered by the experts. As a computational

mediator, BaVA and its non-probabilistic forms serve as perfect tools to motivate, teach,

and solidify methods in data analytics (DA). In the next section, we provide an example

using a well known analytical approach called Multi-dimensional scaling (MDS).
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2 Critical Thinking with IDV and MDS

In a course that relies on IDV to emphasize both critical thinking and DA, the focus shifts

from DA methodology to solving real-world problems based on both data and personal

judgement. For example, MDS, is a data visualization scheme that seeks to find a low-

dimensional (e.g., two-dimensional) representation of data, e.g., a map, that portrays how

the data spread in the high-dimensional space. The map results from minimizing a stress

function that, to some, is hard to conceptualize. Typical approaches for teaching MDS rely,

first, on explaining how to minimize the abstract stress function and, second, observing the

results in a data display. Based on such approaches, students tend to memorize the MDS

procedure and do not develop a comprehensive understanding of MDS. In turn, students

may fail to grasp limitations and/or extensions of MDS that may apply to problems that

differ slightly from classroom exercises.

On the other hand, IDVs that are based on relevant case studies motivate and enable

students to draw on what they know and build an understanding of both the methods and

applications of DA. In particular, we recommend teaching MDS by presenting an open-

ended, real-world case study and progressing through four phases, I) Assess and Explore,

II) Methods, III) Implement, and IV) Reflect. During these phases, the students use IDVs,

to assess the case study, learn a DA technique (e.g., MDS, PCA), implement a technique

computationally, and reflect upon results and implications.

We define these phases so that they correlate strongly with the “Elements of Thought”

(EoT), as shown in Figure 1b and developed by Elder and Paul [2010]. The EoT decomposes

the process of critical thinking into tangible components that, to us, captures both the

quantitative and qualitative aspects of problem-solving. Thus, we deliberately focus the

objectives of each phase to correspond to one or more elements of EoT so that all elements

are covered by the conclusion of phase four. In the next section, we provide an example how
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to teach critical thinking jointly with MDS.

3 Example

Here, we describe how to use four phases for teaching MDS using an example from Endert

et al. [2011]. At the end of each section, we high-light which elements of EoT are covered

within each phase. Also, Table 1 summarizes the phases by bullet points the phase objectives,

categorizes the objectives as either quantitative and qualitative aspects of problem-solving,

and states which elements of EoT are covered. Before we begin, we motivate the phases with

a case study.

Case Study: The U.S. census bureau attempts to survey every individual living
within the United States in order to better represent its individuals, and construct
economic, health, and educational policies. We have access to a subset of the 1990
census [UCI, 1990] that includes 2.5 million observations and p = 68 features
(i.e., variables) including wealth, education, marital status, employment status,
occupation, family details, driving patterns, etc. The U.S. President (in 1992)
would like to implement policy that will help those with low socio-economic sta-
tus. What would you (the students) recommend? Use census data to support the
recommendations.

3.1 Phase I. Assess and Explore the Data

The way by which the case study is phrased suggests that there are multiple recommendations

for the President. Thus, Phase I requires that the students 1) state in their words the goal

of their endeavors, 2) hypothesize what they will learn from the data, and 3) explore the

data. For the exploration, the students may look directly at an excel file that contains the

data, use quantitative methods they currently know to summarize the data, and assess the

data visually using BaVA software.

Figure 4a plots an initial MDS BaVA display of a random sample (n = 3000) from the

census dataset. During Phase I, we do not explain the quantitative BaVA method used to
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a) b) c) d)

Figure 4: Figure a) provides an initial MDS view of the census data. The circles were added
to draw attention to three clusters. Figure b) shows that students can mark observations
based on ranges of salary (‘×’ and ‘�’ show observations with salaries that are ‘less than
$15k’ and ‘with than $30k and $60k’, respectively) and drag observations (denoted by arrows)
to inject feedback (as defined in Section 1) into visualizations. In response to the feedback,
BaVA reconfigures the data. Figure c) displays the reconfiguration. We added a dotted line
to show that the marked observations from Figure b) separate. In Figure d) we add circles
to reference 4 clusters of interest.

display the data. Rather, we provide information on how to interpret and use Figure 4a

to explore the data. In this case, each data point in Figure 4 represents an individual’s

completed survey. Although the axes of the visualization do not have an explicit physical

meaning, the distance between any pair of surveys conveys the degree to which they are

similar; e.g., surveys that appear in clusters are more similar to one another (according to

the 68 data features) than surveys that appear in different clusters. However, the display,

as currently plotted, does not convey how the surveys differ. That is, the mathematical

method (MDS) used to create Figure 4a weighted the data features equally. Thus, to learn

the features that differentiate the surveys, the students must explore the data and interact

with the display; e.g., students may high-light observations according to requested criteria

and/or change the perspective of the visualization by taking advantage of BaVA machinery.
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MDS: A data visualization scheme
that preserves pairwise distances in
high-dimensional observations within a
low-dimensional data representation (e.g.,
in two dimensions). Within the context of
the census data from Section ??, denote
every high-dimensional observation i (for
i ∈ {1, ..., n}) by di = (di,1, ..., di,p) (p = 68).
MDS solves a two-dimensional, reduced
version, ri = (ri,1, ri,2), of each data point.
The solution minimizes the difference in
pairwise distances within D = [d1, ..., dn]′

and R = [r1, ..., rn]′; e.g., the distance
‖ra − rb‖ between points ra and rb may

approximate δ
(d)
a,b , the distance between da

and db. That is,

R = min
r1,...,rn

∑
i<j≤n

|‖ri − rj‖ − δi,j| , (1)

δi,j =

p∑
d=1

Dist(di,d − dj,d),

where Dist(·) represents a univariate dis-
tance function; e.g., euclidean distance.
Solving Equation (1) is an optimization
problem for which closed form expres-
sions exist under certain mathematical con-
straints.

WMDS: WMDS is equivalent to MDS,
but includes a p−vector of weights, w =
{w1, ..., wp} (where,

∑
dwd = 1) within the

function Dist(·), e.g.,

δi,j =

p∑
d=1

Dist(di,d − dj,d)wd

so that some dimensions in data D impact
the solution for R more than others. When
wi = wj for all {i, j} ∈ {1, ..., p}, WMDS
and MDS solve for equal values of R.

For example, suppose that some stu-

dents focus on the word “socio-economic”

in the case study description and want to

learn if there are features that correlate

with the variable salary. Given the obvi-

ous structure in Figure 4a, these students

might first identify three clusters and use

high-lighting to discover that Group 1 rep-

resents surveys from working class peo-

ple, Group 2 includes surveys from unem-

ployed adults, and Group 3 includes sur-

veys from adults under 20 years of age.

Since none of the clusters are based purely

on salary, the students may next high-

light surveys based on two salary ranges:

‘less than $15k’ or ‘within $30k and $60k.’

Figure 4b marks the surveys with the re-

spective salary ranges by ‘×’ or ‘�.’ The

marked observations do not present a clear

clustering structure. This means that the

display does not rely heavily on salary to

differentiate observations. To change the

perspective of the display and up-weight

the role of salary in the display, the stu-

dents may drag the marked observations

from each group apart (the arrows in Fig-
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ure 4b depict dragging). In turn, the software implements the BaVA process to reconfigure

the visualization, as shown in Figure 4c. Now, the data appear in several small clusters and

salary, in part, explains the spatialization of the clusters. We add a line to Figure 4c to

show that the marked observations from Figure 4b separate perfectly; those above and below

the line have surveys with salaries ‘within $30k and $60k’ and ‘less than $15k,’ respectively.

Stopping the data exploration here would not support the students’ goal to address the

President’s concerns and assess features correlated with salary. Thus, it is up to the students

to assess which variables work jointly with salary to create the cluster structure in Figure

4c. One advantage of using the WMDS BaVA software is that, unlike Figure 4a, Figure 4c

weights some data features more than others in response to the students’ feedback in Figure

4b. The data features with the highest weights are the following: Salary (29%), Have a

reliable form of transportation to work (20%), Whether or not employed (25%), and Years

of education (10%). With this information, students may mark observations in Figure 4c

to discover that 1) all observations for which r1 < −0.2 represent employed individuals, 2)

clusters 1 and 2 include individuals who make ‘within $30k and $60k’, but do or do not have

reliable modes of transportation to work, 3) clusters 3 and 4 include individuals who make ‘less

than $15k’ and either ‘drive themselves to work’ or ‘take public transportation’ respectively.

Now, students may conjecture that people with low-incomes need transportation assistance.

We expect students to make several conjectures about the data based on their visual

explorations. The students report their findings in journals and, at the end of Phase I,

during oral presentations. In the next phase, the students learn the mathematical and

computational methods driving the visualization. An understanding of these methods may

(or may not) impact their interpretations of the data.
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EoT #1-5: The students assess their points of view, state the goal, and ask questions ;

gain an appreciation for the need of information/data to address questions; and interpret

data visualizations to infer relationships in the data.

3.2 Phase II. Learn Mathematical Methods

Phase I does not require students to master mathematical concepts for data exploration.

Now, in the second phase, the students learn the mathematical theory of MDS (as explained

in Section 2 and in the sidebar), as well as its constraints. The students complete standard

problems sets to reinforce the mathematical concepts. At the conclusion of the phase, stu-

dents conjecture and formulate mathematically how displays based on MDS may change,

given changes in its theory.

EoT # 5,6,7: The students learn the mathematical formulations of visualizations that

rely on assumptions and result in interpretations which may lead to inference.

3.3 Phase III. Implement Computation

In Phase I, the students use software that implements the BaVA machinery based on the

mathematics of Phase II. Now, the students program one or more modules within the software

to re-implement BaVA. The software is coded in a way that includes self contained modules

which, when removed, can be replaced by code created by students. By replacing modules,

students are shielded from high-level coding. The modules that the students will replace

include those that 1) read large high-dimensional datasets and 2) solve for coordinates R

using a variety of techniques.

Since some students may not have computer programming in their backgrounds, com-

puter lab assignments are important and Phase III may last longer than other phases. Note
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that those experiencing programming for the first time have the benefit of a clear motivation

to learn tedious (arguably), fundamental concepts, including, variable initialization, if/then

statements, and loops.

EoT #5,6: Phase III reinforces the importance of summarizing and interpreting data

using mathematical and computational concepts and models

3.4 Phase IV. Reflect

Now that the students have explored the data, learned the mathematics of MDS, and pro-

grammed it, the students have an opportunity to assess both the technical methods used to

visualize the data and their personal thoughts while assessing and interpreting information

in the data.

In regards to methods, the students experience in Phase I the need to adjust data displays,

but only learn during Phases II and III a deterministic approach for summarizing data. Thus,

in Phase IV, the students hypothesize, formulate mathematically, and implement how the

visualization can adjust to their data interactions. Similar to Phase III, the students replace

the BaVA software module that parameterizes feedback and adjusts data displays.

When students drag observations together or apart, the students are suggesting that

the dimensions for which the observations are similar or different, respectively, are more

important than the remaining dimensions; the weights of the important dimensions should be

higher than the remaining weights. One way to incorporate this information is a data display

is to apply Weighted MDS (WMDS). WMDS allows users to control a weight vector w =

{w1, ..., wp} that reflects the degree to which each data dimension influences the visualization.

WMDS results from a slight change in the MDS stress function. Students can solve for

the weight by inverting the WMDS optimization and fixing the locations of the adjusted

observations.
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During Phase IV, the students also reflect upon what they gained from the data. During

the reflection, they address the goals of the case study, state whether they validated their

hypothesizes or corrected any misconceptions, and discuss any personal or analytical con-

straints. At the conclusion of Phase IV, students share their reflections and present their

findings during an oral presentation and within a paper.

EoT #6,7,8,1: The students 1) evaluate the model and its interpretation given certain

assumptions and 2) reflect upon implications (based on their points of view) of what

they learned from the data and the role data served in making recommendations to the

President.

Table 1: Lessons to teach MDS and critical thinking are motivated by real-world problem that
includes the use of census data. The lessons group into four phases that cover one or more of the 8
Elements of Thinking (EoT). Also, during the phases, the students experience both the quantitative
and the qualitative aspects of problem-solving.

Phase EoT Quant/Qual Description

I. Assess/ 1-5

Qualitative
Evaluate personal understanding and issues in the
case study; State specific questions and hypotheses
that might be learned from the data; Describe rev-
elations from data exploration

Explore
Quantitative

Learn the meaning of the visualization; Assess if it
reflects personal judgement; Make adjustments, as
needed

II. Methods 5, 6, 7
Qualitative Hypothesize assumptions or weaknesses of WMDS

Quantitative Learn WMDS theory and math skills therein
Qualitative Assess efficiency of code

III. Implement 5, 6 Quantitative Gain computational skills

IV. Reflect 1, 7, 8
Qualitative

Assess WMDS and implementation; Evaluate weak-
nesses again; Design how to change theory and code
to correct weaknesses; Assess personal biases; Re-
flect on what is learned; Suggest solutions or find-
ings for the case study; Quantify gains of using data

Quantitative Implement theory and code adaptions
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4 Discussion

Using DA (e.g., statistics) as a platform to emphasize critical thinking is not a new idea.

However, the way by which we propose to integrate critical thinking with complex math-

ematical and computational methods is. We use IDVs so that students construct their

understanding of 1) how to think critically, 2) the role of data in critical thinking, and 3)

the mathematical and computational methods needed to summarize high-dimensional data.

Additionally, as students progress through the phases, they have many opportunities to both

assess what they understand and correct misconceptions.

Here, we only presented ideas within the context of MDS and WMDS. However, they can

apply easily to other DA methods, including PCA and Classification and Regression Trees

(CART). In time, we hope to develop an introductory DA course based on IDVs. Each unit

in the course will correspond to a different DA method, rely on a different real-world case

study, and apply the four phases. In this course, students will have multiple opportunities to

experience the EoT and master not only DA methods, but also the thought process needed

to solve problems with data.

References

Elder, L. and Paul, R. (2010), A Thinker’s Guide to Analytic Thinking, Founda-

tions of Critical Thinking, http://www.criticalthinking.org/store-page.cfm?go=

1&itemID=171&P=products&cateID=132&subcatID=0&catalogID=224.

Endert, A., Han, C., Maiti, D., House, L., Leman, S., and North, C. (2011), “Observation-

level Interaction with Statistical Models for Visual Analytics,” Tech. rep., Virginia Tech.

House, L., Leman, S., and Han, C. (2010), “Bayesian Visual Analytics (BaVA),” Tech. Rep.

10-2, FODAVA, http://fodava.gatech.edu/node/34.

14



Jolliffe, I. (2002), Principal Component Analysis, John Wiley and Sons, Ltd, 2nd edn.

Kruskal, J. B. and Wish, M. (1978), “Multidimensional Scaling,” Sage University Paper

series on Quantitative Application in the Social Sciences, 48, 07–011.

Thomas, J. and Cook, K. (eds.) (2005), Illuminating the Path, National Visualizations and

Analytics Center.

UCI, M. L. R. (1990), “US Census Data (1990) Data Set,” http://archive.ics.uci.edu/

ml/datasets/US+Census+Data+(1990).

15


