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Abstract

Compiling Bayesian networks (BNs) to junc-
tion trees and performing belief propaga-
tion over them is among the most promi-
nent approaches to computing posteriors in
BNs. However, belief propagation over junc-
tion tree is known to be computationally in-
tensive in the general case. Its complexity
may increase dramatically with the connec-
tivity and state space cardinality of Bayesian
network nodes. In this paper, we address
this computational challenge using GPU par-
allelization. We develop data structures and
algorithms that extend existing junction tree
techniques, and specifically develop a novel
approach to computing each belief propaga-
tion message in parallel. We implement our
approach on an NVIDIA GPU and test it us-
ing BNs from several applications. Experi-
mentally, we study how junction tree param-
eters affect parallelization opportunities and
hence the performance of our algorithm. We
achieve speedups ranging from 0.68 to 9.18
for the BNs studied.

1 Introduction

Bayesian networks (BNs) are an effective tool in a di-
verse range of applications that require representation
and reasoning with uncertain knowledge and data. In-
ference over BNs can be either exact or approximate.
Perhaps the most popular exact inference algorithm,
belief propagation in junction trees, relies on the com-
pilation of a BN into a junction tree. Exact belief up-
dating (or marginalization) is then performed by mes-
sage passing over the junction tree [6]. Each node of a
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junction tree is a clique computed from the moralized
graph based on the original BN.

However, belief propagation over junction trees is
known to be computationally hard. Computational
difficulty increases dramatically with the density of
the BN, the treewidth of the network, and the num-
ber of states of each network node [9]. In addition,
some practical issues associated with the specific im-
plementation platform also affect the computation per-
formance [1]. In our work, we address the computa-
tional problem of belief propagation on both the ana-
lytical and implementation levels.

Two fundamental issues, which may cause large cliques
in junction trees, are: (i) the topology and connect-
edness of a BN [9] and (ii) the high cardinality of a
significant set of discrete BN nodes [13]. Discrete BN
nodes can have high cardinalities for several reasons:
First, they may represent discrete parameters, for ex-
ample categorical parameters, that inherently take a
large number of values [13]. A second reason for high-
cardinality, discrete BN nodes is that they are used
to represent continuous parameters. The number of
states grows exponentially with the number of bits
used when representing a quantized continuous param-
eter. Consequently, if a fine-grained discretization is
used in BN nodes, the difficulty of computation may
become a major challenge.

The above issues may cause very large cliques to be
formed in junction trees, and thus hinder the appli-
cation of BNs in cases where real-time inference is re-
quired. In addition, there can be major computational
challenges when BN inference is in the inner loop of
iterative algorithms like the EM algorithm [5]. There-
fore, it is of great interest to develop parallel comput-
ing techniques to speed up junction tree inference. Re-
cently, graphic processing units (GPUs) have become
increasingly programmable and their parallel process-
ing power can now be used for general purpose com-
putation with Compute Unified Device Architecture
(CUDA). However, due to the intricate nature of join



tree computation and the distinctive GPU program-
ming architecture, it is still a major challenge to adapt
junction tree algorithms to the GPU. In this paper,
we discuss data structures and algorithms that extend
existing junction tree techniques [1,6], and specifically
develop a novel approach to parallel message compu-
tation using belief propagation in junction trees.

Parallelization of Bayesian network computation has
been investigated in previous research [2–4, 7, 8, 10,
14, 15]. A data parallel implementation for junc-
tion tree inference has been developed for a cache-
coherent shared-address-space machine with physi-
cally distributed main memory [4]. Parallelism in the
basic sum-product computation has been investigated
for GPUs [14]. The efficiency in using disk memory
for exact inference, using parallelism and other tech-
niques, has been improved [3]; parallel techniques for
BN structure learning have also been developed [7].
An algorithm for parallel BN inference using pointer
jumping has been introduced [10]. Both parallelization
based on graph structure [8] as well as node level prim-
itives for parallel computing based on a table extension
idea have been developed [15]; a GPU implementation
based on this idea was later developed [2].

In this paper, we also focus on node level parallelism,
motivated by the existence of very large cliques in junc-
tion trees from applications. In such settings, node-
level operations are often the dominating part of the
problem [15]. However, we take a different approach
from previous research [2, 15], and in particular our
approach is motivated by the cluster-sepset mapping
method of Huang and Darwiche [1]. We develop a
parallel message computation algorithm for junction
tree belief propagation. The speedup of this par-
allel algorithm, relative to the sequential algorithm,
is analyzed theoretically. Experimental results, with
speedups ranging from 0.68 to 9.18, show our GPU
implementation’s performance as it varies according
to the junction tree topology.

Our paper is organized as follows: In Section 2, we re-
view BNs, junction trees, and parallel computing using
GPUs. In Section 3, we describe our parallel approach
to message computation for belief propagation in junc-
tion trees. Experimental results are discussed in Sec-
tion 4. In Section 5 we conclude and outline future
research.

2 Background

2.1 Belief Propagation in Junction Trees

A BN is a compact representation of a joint distribu-
tion over a set of random variables X . A BN is struc-
tured as a directed acyclic graph (DAG) whose ver-

tices are the random variables and the directed edges
represent dependency relationship among the random
variables. The evidence in a Bayesian network consists
of variables that have been instantiated.

The junction tree algorithm propagates beliefs (or pos-
teriors) over a derived graph called a junction tree. A
junction tree is generated from a BN by means of mor-
alization and triangulation [6]. Each vertex Ci of the
junction tree contains a subset of the random variables
that forms a clique in the moralized and triangulated
BN, denoted by Xi ⊆ X . Associated with each ver-
tex of the junction tree there is a potential table φXi

.
With the above notations, a junction tree can be de-
fined as J = (T,Φ), where T represents a tree and Φ
represents all the potential tables associated with this
tree. Assuming Ci and Cj are adjacent, a separator
Sij is induced on a connecting edge. The variables
contained in Sij are defined to be Xi ∩ Xj .

Belief propagation is invoked when we get new evi-
dence e for a set of variables E ⊆ X . We need to
update the potential tables Φ to reflect this new in-
formation. To do this, belief propagation over the
junction tree is used, this is a two-phase procedure:
evidence collection and evidence distribution. For the
evidence collection phase, messages are collected from
the leaf vertices all the way up to a designated root
vertex. For the evidence distribution phase, messages
are distributed from the root vertex to the leaf vertices.

Figure 1 shows a toy BN and the corresponding junc-
tion tree. As shown in the figure, during the evidence
collection phase, the two leaf nodes pass messages to
the root node {A,B,D}, updating its potential table.
During the evidence distribution phase, the root node
passes messages back to the two leaf nodes.

Message passing can be viewed as the atomic operation
for belief propagation, both for evidence collection and
distribution. Mathematically, a message passed from
vertex i to vertex j can be written as:

φ∗
Sij

=
∑

Xi/Sij

φXi
, φ∗

Xj
= φXj

φ∗
Sij

φSij

, (1)

where φ∗
X represents the updated potential table

of vertex X . From these potential tables we can
marginalize and compute P (X|e) where X ∈ X and e

is the evidence.

2.2 CPU/GPU Platform

GPUs are designed for compute-intensive, highly par-
allel computations. Compared to CPUs, more transis-
tors are in GPUs devoted to data processing rather
than data caching and flow control. GPUs are
well-suited to problems that can be expressed as
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Figure 1: An example Bayesian network with five ran-
dom variables (left) along with the derivative junction
tree (right). Message passing is done between adja-
cent junction tree vertices, and we parallelize it using
N threads as indicated.

data-parallel computations where data elements are
mapped to parallel processing threads. GPUs are typ-
ically used to accelerate compute-intensive parts of an
application, and thus attached to a host CPU perform-
ing control-dominant computations. Today, a CPU
and its GPU communicate via a PCI-Express bus.

CUDA is a general-purpose parallel computing ar-
chitecture developed by NVIDIA. CUDA consists of
three key parallel computing abstractions: a hierar-
chy of thread groups, shared memories, and barrier
synchronization. These abstractions are exposed to
the programmer as a programming language, making
CUDA a model that scales to an increasing number
of processor cores [11]. Specifically, CUDA provides a
fine-grained data and thread parallelism nested within
coarse-grained data and task parallelism. A kernel is
organized as a set of thread blocks when executed.
A thread block is a batch of threads that all execute
on one of the multiprocessors. As a result, they can
cooperate by efficiently sharing data through shared
memory, and can synchronize their execution to co-
ordinate memory access. Blocks of the same size can
execute the same kernel batched together as a grid of
blocks. However, threads in different blocks cannot
communicate and synchronize with each other.

3 Computing Each Message Faster

We parallelize the atomic operation of belief
propagation–message passing, as shown in Figure 1.
The advantage of doing so is that atomic level paral-
lelism can be embedded in different belief propagation
algorithms unobtrusively, without any change of those
algorithms.

Associated with each junction tree vertex Ci and the
contained set of variables Xi, there is a potential ta-
ble φXi

containing non-negative real numbers that are
proportional to the joint distribution of Xi. If each
variable can take sj states, the size of the potential

table is |φXi
| =

∏|Xi|
j=1 sj , where |Xi| is the cardinality

of Xi.

Message passing from Ci to an adjacent vertex Ck, with
separator Sik, involves two steps:

1. Marginalization. The potential table φSik
of

the separator is updated to φ∗
Sik

by marginalizing
the potential table φXi

:

φ∗
Sik

=
∑

Xi/Sik

φXi
. (2)

2. Scattering. The potential table of Ck is updated
using both the old and new table of Sik:

φ∗
Xk

= φXk

φ∗
Sik

φSik

. (3)

We define 0
0 = 0 in this case, that is, if the de-

nominator in (3) is zero, then we simply set the
corresponding φ∗

Xk
to zeros.

3.1 Index Mapping for Parallelism

Although written in a compact form, each of equation
(2) and (3) is actually a set of many equations updat-
ing all the cells in the potential tables φSik

and φXk
.

Our key contribution is to efficiently parallelize the
computations in (2) and (3) by partitioning these sets
of equations into independent subsets of equations.

This can be done by taking a closer look at the data
flow in the message passing procedure. We concentrate
on the j-th element of the separator’s potential table,
i.e., φSik

(j). Here, φSik
(j) is the potential value asso-

ciated with a specific instantiation of the variables in
Sik. In the marginalization step, to update the value of
φSik

(j), we need to retrieve values from the elements in
φXi

which have the same instantiation for those vari-
ables. Note, the values of those elements in φXi

are
only required for the computation related to φSik

(j).
Similarly, in the scattering step, for all the elements in
φXk

that have the same instantiation for the variables
in Sik as φSik

(j), we need to multiply their value by
φ∗
Sik

(j)/φSik
(j). This suggests a natural way to com-

pute (2) and (3) using data parallelism. To handle the
computation related to each specific element in φSik

,
we can assign a separate thread, as long as the GPU
has threads available.

Figure 2 illustrates the data flow in a message passing
from the left child to the root node in Figure 1. In this
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Figure 2: We introduce multiple index mapping ta-
bles between a clique and a separator. The map-
ping tables from the left clique to the separator:
µXi,φSik

(0) = {0, 1, 4, 5}, µXi,φSik
(1) = {2, 3, 6, 7}. The

mapping tables from the right clique to the separator:
µXk,φSik

(0) = {0, 1}, µXk,φSik
(1) = {2, 3}.

case, Xi = {A,B,D}, Xk = {B,C} and Sik = {B}.
Let us assume that all random variables in {A,B,C}
are binary with states {0, 1}. The light gray boxes in
Figure 2 are the values used in computations related to
the first element of φSik

, B = 0. The dark gray boxes
are for computations related to the second element of
φSik

, B = 1. The computation related to different
elements in φSik

are independent, providing a natural
opportunity for parallelism.

The only problem left is that we need to figure out
the “mapping relationship” from the elements of φXi

and φXk
to the elements of φSik

. The mapping rule
is that the corresponding elements in φXi

and φSik

should have the same instantiation for the variables in
Sik. To this end, for a certain element in φSik

, say,
φSik

(r), we first convert the index r into a state string
Y r = (xr

1, . . . , x
r
|Sik|

) and then scan through all the
elements of φXi

or φXk
. For the j-th element in φXi

(j = 1, . . . , |φXi
|), we convert the index j into a state

string as Xj
i = (xj

1, . . . , x
j
|Xi|

) and check whether the

variables that also appear in Sik take the same states
as in Y r. If yes, φXi

(j) should be among the data
to load in when we perform the marginalization for
φSik

(r). Similarly, we can determine which elements
should be updated in φXk

during the scattering phase.

3.2 Index Mapping Table

Suppose the j-th random variable in Xi can take sj
states. To convert the index j into the sequence of
variable states takes O(|Xi|

∑
j sj). Then the whole

Figure 3: Data structure used to parallelize message
passing from clique m to clique n in the junction tree.

1

2

3

Look Up Table Separator: CPT
Look Up Table

1

2

3

SeparatorClique i Clique k

Clique i: CPT

Clique k: CPT

scanning process to match the elements of Xi and S
will take O(|φXi

||Xi|
∑

j sj) time. This could be a con-
siderable amount of computation time when the po-
tential table size is large. It is extremely inefficient
for every thread to scan through the whole potential
table φXi

and φXk
, since only a small fraction of them

will be used by each thread. To tackle this potential
inefficiency, we introduce an index mapping table tech-
nique inspired by the cluster-sepset mapping (CSM)
technique [1], where a mapping table µX ,S is created
to store the index mappings from φX to φS . To adapt
CSM to parallel computing, instead of creating one
mapping table [1], we create |φSik

| mapping tables.
In each mapping table µXi,φSik

(j) we store the indices
of the elements of φXi

mapping to the j-th separa-
tor table element. Mathematically, µXi,φSik

(j) = {r ∈

[0, |φXi
| − 1] : φXi

(r) is mapped to φSik
(j)}.

Algorithm 1 Message Passing(φXi
, φXk

, φSik
)

Input: φXi
, φXk

, φSik
.

for j = 1 to |φSik
| in parallel do

sep star=0;
for n = 1 to |µXi,sj | do
sep star[j] = sep star[j]+φXi

(µXi,sj [n])
end for
for n = 1 to |µXk,sj | do

φXk
(µXk,sj [n]) =

sep star[j]
φSik

[j] φXk
(µXk,sj [n])

end for
end for

The thread that handles the j-th element of the sepa-
rator potential table just needs to look up µXi

, φSik
(j)

and retrieve the corresponding data from φXi
, as

shown in Figure 3. Further, we avoid unnecessary re-
computation of the mappings by precomputing them



when the junction tree is established. Despite the re-
quirement for memory (increased by the size of the
clique potential table), our index mapping table often
provides a large speedup.

Our novel algorithm for one message passing is shown
in Algorithm 1. A function that runs on the GPU
as different threads is called a kernel. Algorithm 1
is wrapped into a kernel function, thus enabling paral-
lelism. While beneficial from a parallelism perspective,
there are kernel invocation overhead and memory la-
tency issues associated with this use of a GPU, as we
will further discuss below.

3.3 Belief Propagation Algorithm

Algorithm 2 Collect Evidence(J, Ci)

for each child of Ci do
Message Passing(Ci, Collect Evidence(J ,child))

end for
return(Ci)

Algorithm 3 Distribute Evidence(J, Ci)

for each child of Ci do
Message Passing(Ci, child)
Distribute Evidence(J , child)

end for

Algorithm 4 Belief Propagation(J, Croot)

Input: J, Croot
Initialization (J)
Collect Evidence(J, Croot)
Distribute Evidence(J, Croot)

Belief propagation can be done using both breadth-
first and depth-first traversal over a junction tree. In
our work, we consider the Hugin algorithm, which
adopts depth-first belief propagation. Given an es-
tablished junction tree J with root vertex Croot, the
pseudo code is shown in Algorithm 4. We first ini-
tialize the junction tree by multiplying together the
Bayesian network potential tables (CPTs). Then, a
two phase belief propagation is adopted [6]: collect
evidence and then distribute evidence.

3.4 Analysis of Speedup

From the description above, one can see that the
amount of parallelism is determined by the number of
elements in the separators’ potential table |φS |. Sup-
pose the junction tree has n vertices; then the total
number of message passings for full belief propagation
is 2(n − 1). Considering a message passed from Ci to

Ck, the total number of additions is (|φXi
|−|φSik

|) and
the total number of multiplications is (|φXk

|+ |φSik
|).

Therefore the theoretical time complexity of one mes-
sage passing between vertex i and k is

(|φXi
| − |φSik

|) + (|φXk
|+ |φSik

|)

|φSik
|

=
|φXi

|+ |φXk
|

|φSik
|

,

which gives |φSik
| times speedup over sequential code.

Belief propagation is just a sequence of messages
passed in a certain order [6].

Let Ne(C) denote the neighbors of C in the join tree.
The time complexity for belief propagation is

∑

i

∑

k∈Ne(Ci)

|φXi
|+ |φXk

|

|φSik
|

. (4)

Kernel invocation overhead, incurred each time Algo-
rithm 1 is invoked, turns out to be an important per-
formance factor. If we model the invocation overhead
for each kernel call to be a constant τ , then the time
complexity becomes

∑

i

diτ +
∑

i

∑

k∈Ne(Ci)

|φXi
|+ |φXk

|

|φSik
|

, (5)

where di is the degree of a node Ci. In a tree structure,∑
di = 2(n− 1). Thus the GPU time complexity is

2(n− 1)τ +
∑

i

∑

k∈Ne(Ci)

|φXi
|+ |φXk

|

|φSik
|

. (6)

From this equation, we can see that junction tree
topology impacts GPU performance in at least two
ways: the total invocation overhead is proportional to
the number of nodes in the junction tree, while the sep-
arator table sizes determine the degree of parallelism.

The overall speedup of our novel parallel belief propa-
gation approach is determined by the equation

Speedup =

∑
i

∑
k∈Ne(Ci)

(|φXi
|+ |φXk

|)

2(n− 1)τ +
∑

i

∑
k∈Ne(Ci)

(|φXi
|+|φXk

|)

|φSik
|

.

Clearly, performance is closely related to the distri-
bution of the size of the separators’ and cliques’ po-
tential tables. A simple bound for the speedup is
mini,k |φSik

| ≤ Speedup ≤ maxi,k |φSik
|. For the kind

of junction tree that has mostly large separators, our
parallel algorithm is expected to perform very well.
The worst case is that all the separators of the junc-
tion tree are small. However, even in this case, since
|φS | ≥ 2, we are in theory guaranteed to have at
least two times speedup over sequential code. How-
ever, taking into account that the CPU/GPU plat-
form incurs invocation overhead and the long memory



Figure 4: Histograms of separator potential table sizes for eight Bayesian networks.
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latency when loading data from slow device memory
to fast shared memory, the theoretical speedup is hard
to achieve in practice.

From the equations above, we can estimate the overall
belief propagation speedup to be around the average
potential table size ¯|φSik

|. We take an experimental
approach to study how the structure of the junction
trees affects the performance of our parallel technique
on the CPU/GPU setting in Section 4.

4 Experimental Results

In our work, we use the NVIDIA GeForce GTX460 as
the platform for our implementation. This device con-
sists of seven multiprocessors, and each multiprocessor
consists of 48 cores and 48K on-chip shared memory
per thread block. The peak thread level parallelism
achieves 907GFlop/s. In addition to the fast shared
memory, a much larger but slower off-chip global mem-
ory (785 MB) that is shared by all multiprocessors
is provided. The bandwidth between the global and
shared memories is about 90 Gbps. In the computa-
tion, we are using single precision.

4.1 Methods and Data

Our implementation is tested on a number of
Bayesian networks (see http://bndg.cs.aau.dk/

html/bayesian_networks.html). They are from dif-
ferent problem domains, with varying structures and
state spaces. These differences lead to very different
junction trees, as reflected in Table 1. In our work,
we would like to not only to compare the performance
of our parallel code to the sequential code, but also
study how the structure of junction tree—for exam-
ple the size of the separators’ potential table—affects
performance in the parallel case versus the sequential
case. We compile the Bayesian networks into the junc-
tion trees offline and then run belief propagation over
the junction trees, see Algorithm 4.

As mentioned in Section 3, the performance is related
to the distribution of the size of the separators’ poten-
tial table, i.e., |φS |. Hence we also present histograms
of the potential table sizes for all the junction trees in
Figure 4.

4.2 Optimization on GPU

Our novel message computation algorithm (Algorithm
1) is wrapped into a kernel to enable GPU parallelism,
and a kernel is organized as a set of thread blocks
when executed. Varying the thread block size may
impact performance, and we would like to optimize
thread block and grid size for each of the experimental
junction trees. We experimented with varying block
sizes and picked the best one for a given BN.



Dataset Mildew Diabetes Barley Pigs Munin2 Munin3 Munin4 Water
# of JT nodes 28 337 36 368 860 904 872 20
Max. CPT size 4,372,480 190,080 7,257,600 177,147 504,000 156,800 784,000 995,328
Min. CPT size 336 495 216 27 4 4 4 9
Ave. CPT size 341,651 32,443 512,044 1,927 5,653 3,443 16,444 173,297
Max. SPT size 71,680 11,880 907,200 59,049 72,000 22,400 112,000 147,456
Min. SPT size 72 16 7 3 2 2 2 3
Ave. SPT size 9,273 1,845 39,318 339 713 553 2,099 26,065

BP on GPU [ms] 53 94 106 75 125 104 342 52
BP on CPU [ms] 355 397 974 51 210 137 473 120

Speedup 6.70 4.22 9.19 0.68 1.68 1.32 1.38 2.31

Table 1: Junction tree (JT) statistics and belief propagation (BP) performance for eight Bayesian networks. For
each junction tree, clique potential table (CPT) and separator potential table (SPT) are shown.

Figure 5: GPU execution time as a function of thread
block size.
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Figure 5 shows how execution time changes with block
size for Bayesian networks Barley and Munin3. For
Barley, GTX460 achieves the optimal performance
when each block contains 48 threads. While for
Munin3, optimal performance is found with 16 threads
per block. The performance differences can be ex-
plained by the degree of match between the config-
uration of the GPU architecture and the junction tree
structure. On the GPU, each thread block is exe-
cuted on one multiprocessor. To fully make use of the
GPU’s computing resource, at least 7 thread blocks are
needed, each assigned to one multiprocessor. However,
for Munin3, the separator potential tables are very
small. Less than 7 blocks are created for the message
passing, leaving some multiprocessor unused. The size
of Barley ’s separator potential tables are mostly large
enough to fully use the computing resource. In Figure
4, we present the histogram counts of the potential
table sizes of Barley and Munin3.

Figure 6 illustrates the scalability of the speedup. We
order the junction trees according to the average size
of the separator potential tables, and plot the speedup
relative to the average separator potential table. In
general, the junction tree with larger average separa-
tor potential table has better speedup. This coincides
with our analysis (see Section 3.4) that larger separa-
tor potential tables provide more opportunity for par-
allelization and hence better performance.

Figure 6: Speedup as a function of average separator
potential table size.
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4.3 Performance Comparison with
Sequential Code

As a baseline, we implemented a sequential program
on an Intel CPU. The execution time of the program
is comparable to that of GeNie/SMILE [12], a widely
used C++ software package for Bayesian network in-
ference. We do not directly use GeNie/SMILE as the
baseline here, because we do not know the implemen-
tation details of GeNie/SMILE. Detailed information
for the CPU and GPU platforms is in Table 2.

Table 1 gives the execution time comparison for the
GTX460 and the Intel CPU. The obtained speedup
ranges from 0.68 to 9.18. The performance is an over-
all effect of many factors such as parallelism, mem-
ory latency, kernel invocation overhead, etc. Those
factors, in turn, are closely correlated with the un-
derlying structures of the junction trees. Networks
Pigs, Munin2, Munin3 and Munin4 mostly consist of
small vertices and separators (see Figure 4). There
are only limited opportunities for message computa-
tion parallelism, resulting in limited speedup. On the



Table 2: Experimental platforms.
NVIDIA Geforce GTX 460

# of Processing Cores 336
Shared Memory 48K per block
Global Memory 785MB

Memory Bandwidth 90 GB/sec peak
Intel Core2 Quad CPU

# of Cores 4
Processor Clock 2.5GHz

Cache 8MB
Memory 9 GB

Figure 7: Comparison of kernel overhead (in yellow)
and execution time (in green) for the datasets.
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other hand, for Mildew, Diabetes, Barley and Water,
the potential histograms in Figure 4 skew to the right.
This explains why they have very good speedup. Two
extreme examples are Barley and Pigs. The best per-
former, Barley, has a total of 36 cliques, and an aver-
age separator table size of 39,318. This topology pro-
vides abundant opportunity for parallelism and conse-
quently a good speedup over the sequential code. Pigs,
on the other hand, has 368 cliques, and furthermore
the average separator size is as small as 339. This is
a junction tree with a large number of small cliques
and separators, with very restricted opportunity for
parallelism in message computation.

4.4 Kernel Overhead

For our parallel inference algorithm implementation
on the GPU, we should also consider the overhead
incurred when launching a kernel (kernel overhead).
Figure 7 shows kernel overhead as a fraction of total
execution time. Kernel overhead percentage is deter-
mined by the number of kernel invocations and the
amount of computation per kernel invocation, which
in turn is determined by the structure of the junction
trees.

Kernel overhead may greatly affect the performance.
For Munin3, for example, the overhead counts for as

Figure 8: Memory layout for the mapping tables.
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much as 36% in the overall execution time. This gives
an upper bound of 2.71 on the speedup over sequential
code. However, for Barley, the overhead is only 1.7%
of the overall execution time. The variation in over-
head percentages is caused by the differences in the
structures of the Munin3 and Barley junction trees,
see Table 1 and Figure 4.

4.5 Memory Layout

Appropriate data layout in the global GPU memory
makes a big difference in the memory latency asso-
ciated with bringing data into shared GPU memory.
In our algorithm, the mapping table method is essen-
tially an indirect addressing for the data. In Figure
8, we compare two memory layouts for the mapping
tables. On the left hand side of Figure 8 is a naive
approach; mapping tables are just placed sequentially
in global memory. This may cause bank conflicts when
loading the data into the shared memory. Therefore,
we introduce an advanced approach: for the mapping
tables from a separator to a clique potential table, we
put the elements with the same index in mapping ta-
bles in adjacent memory cells, as shown on the right
hand side of Figure 8. In our experience, this advanced
memory layout gave a 20% - 30 % improvement in the
overall speedup compared to the naive layout.

5 Conclusion and Future Work

In this paper, we have developed a novel approach to
parallel belief propagation over junction trees, based
on the cluster-sepset mapping method. Our approach
focuses on the parallelization of message computation
for message passing in junction trees. In our approach,
the parallel opportunity is in theory equal to the size
of the separator potential table. Although practical
issues such as kernel overhead and memory latency
make it hard to achieve this theoretic performance, our
experimental results still indicate that performance



scales well with the separator potential table sizes.

In experiments with a CUDA implementation of our
parallel message computation algorithm executing on
an NVIDIA GeForce GTX460 GPU, we explored how
performance varies with different junction tree struc-
tures. As expected from our analysis, we found that
our approach performs well for junction trees with
large separator potential tables. However, perfor-
mance is compromised if the junction tree consists of
many small nodes with corresponding small separator
potential tables. Speedup ranged from 0.68 to 9.18.

Our future work will be focused on improving the
parallel computing performance for junction tree mes-
sage passing over small separators. A possible solution
is merging small separators into large ones, and per-
forming belief propagation over such modified junction
trees.
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