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Abstract
Personnel detection at border crossing becomes an important issue
recently. To reduce the false alarm caused by nonhuman animals
or the existence of multiple objects, it is important to discriminate
between humans and nonhuman animals. In this paper, based on
phenomenology of the differences between humans and four-legged
animals, we propose using enhanced autocorrelation pattern for fea-
ture extraction for seismic sensors, a multi-stage feature selection
framework for acoustic sensors. Along with ultrasonic sensors,
we use decision fusion for multi-modality fusion and use Gaussian
Mixture Models for classification. From experimental results, we
show that our proposed methods improve the robustness of the sys-
tem.
Index Terms: Gaussian Mixture Models, sensor fusion, footstep
detection, personnel detection

1. Introduction
Personnel detection is an important task for Intelligence, Surveil-
lance, and Reconnaissance (ISR) requirements [1, 2]. One might
like to detect intruders to a certain area during day and night so that
the proper authorities can be alerted. For example, Homeland Se-
curity often requires detection of illegal aliens crossing the border.
There are numerous other applications where personnel detection is
important.

However, personnel detection is a challenging problem. Video
sensors consume high amounts of power and require a large volume
for storage. Hence, the emphasis is on non-imaging sensors, since
they tend to use low amounts of power and are long-lasting, which
are suitable for border crossing scenario. Moreover, the false-alarm
caused by nonhuman objects or the existence of multiple objects
makes personnel detection more challenging.

Traditionally, personnel detection research concentrated on us-
ing seismic sensors. When a person walks, his/her impact on the
ground causes seismic vibrations, which are captured by the seis-
mic sensors. Previous works have relied on the fundamental gait
frequency gait frequency estimation [3, 4]. Hyung et al. proposed
the method of extracting temporal gait patterns to provide informa-
tion on temporal distribution of the gait beats [5].

At border crossing, animals such as mules, horses, or donkeys
are often known to carry loads. Animal hoof sounds make them
distinct from human footstep sounds. In particular, when humans
and four-legged animals walk together, the sounds they make are
still distinguishable from their combination. Similarly, in acoustic
event detection, Zhuang et al. utilized the distinct characteristic of
each event, using Perceptual Linear Predictive (PLP) as features,
for detection [6, 7, 8].

Passive and active ultrasonic methods were proposed for the

detection of walking personnel for ultrasound signals [9]. The pas-
sive method utilizes the footsteps’ ultrasonic signals generated by
friction forces while the active method used the human Doppler
ultrasonic signature. In an outdoor scene, the passive ultrasound
signals are limited in distance and are noisy. For the active ul-
trasound method, when a person walks, each limb is a compound
pendulum and has distinct oscillatory characteristics which in turn
results in the micro Doppler effect. Similarly, the torso also oscil-
lates at a particular frequency. The ultrasonic sensors can detect the
ultrasonic signature generated by footsteps and movements of the
torso. Zhang et. al. reported the different micro-Doppler gait sig-
natures between human and four-legged animals [10]. These arise
from the different physical mechanisms found in the two different
species. Kalgaonkar et al. analyzed spectral patterns to classify hu-
man walking (walker identification, approach v.s. away, male v.s.
female) [11].

As shown in the above literature review, existing research only
use a single sensor recored in clean environments with a single ob-
ject (a person or a four-legged animal) walking. However, in reality,
when there are many objects such as people or four-legged animals
walking or running in noisy environments, it is difficult to distin-
guish from people and/or four-legged animals using a single sensor
alone with previous approach.

In this paper, we propose a multi-stage acoustic features selec-
tion method and enhanced autocorrelation pattern for seismic fea-
ture extraction. Along with ultrasonic feature, we use the decision
fusion to examine the robustness of our methods.

The organization of this paper is as follows: Section 2 intro-
duces the multi-sensor multi-modality data and events. Section 3
discusses the feature extraction from acoustic, seismic, and ultra-
sonic sensors. Section 4 discusses Gaussian mixture models clas-
sifiers, and decision fusion. Section 5 shows the experiments on
multi-sensor multi-modality dataset, followed by Section 6 discus-
sion. We conclude this paper with future work in Section 7.

2. Data
In this paper, we use a multi-sensor multi-modality realistic dataset
collected by U.S. Army Research Lab and University of Missis-
sippi in Arizona. The data is collected in a realistic environment in
an open field. There are three selected vantage points in the area.
These three points are known to be used by the illegal aliens cross-
ing the border. These places where the data is collected are: (a)
wash (a flash flood river bed with fine grain of sand), (b) trail (a
path through the shrubs and bushes of wild and (c) choke point (a
valley between two hills.) The data is recorded using several sen-
sor modalities, namely, acoustic, seismic, passive infra red (PIR),
magnetic, E-field, passive ultrasonic, sonar, both infra red and visi-



Figure 1: Sensor layout, where a multi-sensor multi-modality sys-
tem has acoustic, seismic, passive Infra-Red (PIR), radar, magnetic,
and electric field sensors

ble video sensors. Each sensor suite is placed along the path with a
spacing of 40 to 60 meters apart. The detailed layout of the sensors
are shown in Figure 1. Test subjects walked or ran along the path
and returned back along the same path.

A total of 26 scenarios with various combinations of people,
animals and payload are enacted and collected the data at those
three sites. We can categorize them as: single person (11.6%), two
people (13%), three people (21.7%), one person with one animal
(14.5%), two people with two animals (15.9%), three people with
three animals (17.4%), and seven people with a dog (5.9%), where
the animals can be a mule, a donkey, a horse, or a dog, and num-
ber is the parentheses represents the percentage of the data. The
data is collected over a period of four days; each day at a different
site and different environment. Also, there is a variable wind in the
recording environment.

2.1. Detection and classification

The time duration for subjects passing by is short (about ten to
twenty seconds at a time) compared to the whole recording time
(five to six minutes recording). Therefore, without the ground truth
of the footsteps time, we would like to extract the time duration
when test subjects passing through, similar to voice activity detec-
tor in speech processing. For acoustic sensors, in an outdoor scene,
the signals are contaminated by wind sounds, human voices, or un-
expected airplane engine sounds. Seismic and PIR sensors, on the
other hand, are relatively clean. Hence, we use either seismic or PIR
sensors by energy detection to determine the time duration when
test subjects pass by (we use seismic sensors with ten seconds du-
rations). For ultrasonic sensors, which are collected separately, we
use energy threshold to determine the time duration when test sub-
jects pass by (ten seconds duration). For each recording, there are
two segment of signals (walked or ran along the path and returned
back along the same path). In this paper, we emphasize on the clas-
sification between humans and humans with four-legged animals.

3. Features Extraction

Based on phenomenology of the differences (micro-Doppler mo-
tion, enhanced autocorrelation pattern, footstep sound) between
humans and four-legged animals, we discuss the features from ul-
trasonic, seismic, and acoustic sensors. The overall flow is shown
in Figure 2.

Figure 2: The overall flow: feature extraction based on phe-
nomenology, GMM classifier, and decision fusion

3.1. Seismic

Seismic sensors capture the vibrations in the ground caused by the
motion of the targets or ground coupling of acoustic waves. There
is a distinct feature between humans and four-legged animals - gait
pattern. Previous approach does not consider the case for multiple
human and/or four-legged animals [5]. When there are multiple hu-
man and/or four-legged animals, it is not reliable for the estimation
of gait period based on single pitch (fundamental frequency) detec-
tion method [12, 13]. Inspired by Hyung’s temporal gait pattern
approach [5] and the progress in multipitch analysis [14], we pro-
pose a gait pattern based on enhanced autocorrelation, as shown in
Figure 3.

We form analytic signals by Hilbert transform and then use
full wave rectification followed by low-pass filtering and down-
sampling for envelope detection. Then, we use enhanced auto-
correlation to estimate the gait pattern and generate 12 features us-
ing triangular window. The idea of enhanced autocorrelation is to
prune the periodicity of autocorrelation function. In a typical case
this representation helps in finding the fundamental periodicities of
harmonic complex tones in a mixture of such tones. It removes the
common periodicities such as the root tone of musical chords [14].

3.2. Acoustic

In acoustic signals, for footsteps, the hoof sounds of animals such as
horses, donkeys, or mules are distinct from human footstep sounds.
Based on this phenomena, we use Perceptual Linear Predictive
(PLP) feature [15], which is a common feature in speech recogni-
tion. There are several strategies due to the property of the realistic
dataset:

• Noisy
As mentioned in Section 2, the data is recorded in a open
field. There are noisy wind sounds blowing in the record-
ings. We use spectral subtraction method to reduce the effect
by noise [16, 17].

• No label for exact footsteps time
In the dataset, since there is no label for the exact time of
footsteps sounds, we have to use the seismic sensor informa-
tion, assuming that the peaks in the seismic signals are corre-
sponding to footsteps. Suppose there are n peaks in seismic
signals at time ti, for i = 1, ..., n, we choose a small time
δ around the peaks and extract PLP features within the time



Figure 3: Seismic feature extraction algorithm

periods (ti − δ, ti + δ), for i = 1, ..., n. In each time pe-
riod, we extract 13-dimensional PLP features using 186ms
Hamming windows with 75% overlap, where 186 ms is ap-
proximately equal to the time duration of a single footstep
(from heel strike to toe slap). Along with the delta and delta-
delta coefficients of the PLP features, there are totally 39-
dimensional features.

• Overlapping class
Our goal is to classify humans only and humans with four-
legged animals (or abbreviated as humans with animals).
In the humans with animals class, there are instances that
the footstep sounds are from humans. Therefore, there will
be some overlaps between the two classes in the feature
space. Discriminative methods such as support vector ma-
chine (SVM) will not work properly under this condition. It
is also not suitable for training the generative models for the
two classes directly. Hence, we propose a multi-stage frame-
work for feature selection as shown in Figure 4. The idea of
the framework is to drop the features in humans with animals
class which are similar to the features in human only class.
The algorithm of the framework is as follows:

1. Train two models for humans only and humans with
animals using training data as shown in the left block.

2. Predict the training data of humans with animals class
using trained models as shown in the middle block.
Each frame in the training data is predicted as either
humans class or humans with animals class.

3. Keep the frames which predicted as humans with ani-
mals class and train a new model as estimated animals
only class.

4. Use the new model of estimated animals only class
and the original humans only model for classification
as shown in the right block.

Figure 4: Multi-stage framework for acoustic feature selection

Note that the acoustic features belong to short-time features
which extracts information within a short time duration, while seis-
mic, ultrasonic features belong to long-time features. Therefore,
the multi-stage feature selection framework applies for acoustic fea-
tures only.

3.3. Ultrasound

Ultrasonic sensor, also known as acoustic Doppler sensor [9], emits
acoustic waves toward the objects and receives reflected response
from objects. Benefits of using ultrasonic sensors include low-cost
($5 USD in 2011) and low-power. The limitation is that, by being
acoustic in nature, ultrasonic sensor has a limited range of the order
of ten meters.

The velocity of a moving object relative to an observer can be
estimated by measuring the frequency shift of a wave radiated or
scattered by the object, that is known as the Doppler effect. If the
object itself contains moving parts, each moving part will result in
a modulation of the base Doppler frequency shift, known as the
micro-Doppler effect. Given an acoustic wave transmitted by an
observer, the frequency of the received wave by a single point scat-
terer is

f = f0

(
1 +

2v

c

)
(1)

where f0 is the frequency of the transmitted acoustic wave, v is the
velocity of the scattered wave relative to the observer and c is the
speed of sound. The Doppler frequency shift ∆f = 2v

c
is propor-

tional to the velocity of the scattered wave relative to the observer.
A human body is an articulated object, comprising a number of

rigid bones connected by joints. When a continuous tone is incident
on a walking person/an animal, the reflected signal contains a spec-
trum of frequencies arising from the Doppler shifts of the carrier
tone by the velocities of various moving body parts.

As reported in [10], based on different physical walking mech-
anisms, the micro-Doppler gait signatures between a person and
an four-legged animal are different. We use this concept to extract
feature in order to distinguish between humans and four-legged an-
imals.

For ultrasound signal processing, given the data with two chan-
nels, 25 kHz and 40 kHz, first, we use a band-pass filter with stop-
band at 20 kHz and 30 kHz; 35 kHz and 45 kHz, and passband
at 22.5 kHz and 27.5 kHz; 37.5 kHz and 42.5 kHz, respectively.
Then, we use Hilbert transform demodulating the captured Doppler
signals to emphasize the contribution of various velocities. Then,
following [11], we use cepstral coefficients for representing the pat-
terns in the spectrogram, which is also a common technique in audio
processing. We use 62ms with 75% overlap Hamming window and



use the first 40 coefficients of the cepstral vectors and delta-ceptral
coefficients, for modeling the differential spectrum. Note that the
frames are relatively wide because of the slow varying nature of the
signal. The resulting 80-dimensional vector is the feature to repre-
sent ultrasonic signals.

4. Methods
4.1. Gaussian Mixture Models Classifier

Given the above features, we use Gaussian Mixture Models
(GMMs) for classification. The motivation for using Gaussian mix-
ture densities is that a linear combination of Gaussian basis func-
tions is capable of representing a large class of sample distribu-
tions. GMM has the ability to form smooth approximations to
arbitrarily-shaped densities. GMM is often used in speaker veri-
fication/identification [18].

A Gaussian mixture density is a weighted sum ofM component
densities, as shown in the following equation,

p(~x|λ) =

M∑
i=1

pibi(~x) (2)

where ~x is a D-dimension random vector, bi(~x), i = 1, . . . ,M ,
are the component densities and pi, i = 1, . . . ,M , are the mixture
weights. Each component density is a D-variate Gaussian function
of the form

bi(~x) =
1

(2π)D/2|
∑

i |1/2
exp{−1

2
(~x− ~µi)

′Σ−1
i (~x− ~µi)} (3)

with mean vector ~µi and covariance matrix Σi. The mixture
weights satisfy the constraint that

∑M
i=1 pi = 1. The complete

Gaussian mixture density is parameterized by the mean vectors,
covariance matrices (using diagonal covariance matrix here) and
mixture weights from all component densities. These parameters
are collectively represented by the notation λ = {pi, ~µi,Σi}, i =
1, . . . ,M . For classification, each class is represented by a GMM
and is referred to with its model λ.

Given training data from each class, the goal of model training
is to estimate the parameters of the GMM. Maximum likelihood
model parameters are estimated using the iterative Expectation-
Maximization (EM) algorithm. Generally, ten iterations are suf-
ficient for parameters convergence.

The objective is to find the class model which has the maximum
a posteriori probability for a given observation sequence X .

N̂ = argmax
1≤k≤N

p(λk|X) = argmax
1≤k≤N

p(X|λk)p(λk)

p(X)
(4)

where the second equation is due to Bayes’ rule. Assuming equal
likelihood for all classes (i.e., p(λk) = 1/N ) and p(X) is the same
for all class models, the classification rule simplifies to

N̂ = argmax
1≤k≤N

p(X|λk) = argmax
1≤k≤N

T∑
t=1

log p(~xt|λk) (5)

where the second equation uses logarithms and the indepen-
dence between observations. T is the number of observations.

4.2. Decision Fusion

The features mentioned above, which come from different modali-
ties, are concatenated. Further, we can expand the feature vector ~x
formed from different modalities. For example,

p(~x|λ) = p(~xa,s,u|λ) =
∏

m∈M

p(~xm|λ)wm (6)

where M = {a, s, u}, a, s, u represents acoustic, seismic,
and ultrasound modalities, respectively. wm denotes the modal-
ity weights, that are nonnegative, and models the reliability for the
modality M . In this paper, we constrain the weights to sum up to
one. For simplicity reason, we choose weights by grid-search of
global weights on validation sets [19], as shown in Section 5. Note
that (6) corresponds to a linear combination in the log-likelihood
domain; however, it does not represent a probability distribution in
general, and will be referred to as a score.

5. Experiments
In this section, we describe three experiments in order to compare
our proposed methods with previous approach in classifying hu-
mans only and humans with four-legged animals. Totally, there are
69 recordings in the dataset. We divide the recordings into four
groups and choose two for training and two for testing at a time, to-
tally six-fold cross-validations. We choose the best mixture number
according to an additional validation set. The experimental results
are represented by mean ± standard error.

5.1. Seismic features

As describe in Section 3.1, we compare our gait pattern features
based on enhanced autocorrelation with the temporal gait pattern
[5]. The experimental results are shown in Table 1.

Feature Accuracy (%)
Temporal gait pattern [5] 71.883±4.607

Enhanced autocorrelation pattern 81.707±2.564

Table 1: Experimental Results of Seismic features

5.2. Acoustic features

As describe in Section 3.2, we want to examine the effect of (1)
spectral subtraction, (2) using seismic peaks with different δ’s, and
(3) our proposed multi-stage feature selection framework. The ex-
perimental results are shown in Table 2.

5.3. Decision fusion with seismic, acoustic, and ultrasonic fea-
tures

Using the feature extraction methods mentioned above, we then
concatenate features for decision fusion. Note that, for ultrasonic
data, within 186ms, there are eight moving windows resulting
in 640-dimension features. We use principal component analysis
(PCA) keeping 99% energy and reduce features to 7 dimensions.
We compare the features our (1) enhanced autocorrelation pattern,
PLP features with spectral subtraction, δ = 0.3 seismic peaks, and



Feature Accuracy (%)
PLP features without (1) (2) (3) 73.768±5.462

PLP features with (1) 76.105±4.098
PLP features with (1) (2), δ = 0.1 74,975±5.079

PLP features with (1) (2) (3), δ = 0.1 75.737±2.936
PLP features with (1) (2), δ = 0.3 77.555±4.268

PLP features with (1) (2) (3), δ = 0.3 79.015±3.799
PLP features with (1) (2), δ = 0.5 75.392±3.376

PLP features with (1) (2) (3), δ = 0.5 77.688±3.149

Table 2: Experimental Results of Acoustic features, where (1) rep-
resents spectral subtraction, (2) represents the usage of seismic
peaks with different δ, and (3) represents the usage of our proposed
multi-stage feature selection framework

multi-stage feature selection framework, and (2) temporal gait pat-
tern [5], PLP features without spectral subtraction, using the whole
segments, and without multi-stage feature selection, (3) ultrasonic
feature. The experimental results are shown in Table 3.

Feature Accuracy (%)
(1) our proposed method with ultrasonic feature 86.092±5.667

(2) previous method with ultrasonic feature 81.903±3.144
(3) ultrasonic features 79.338±5.574

Table 3: Experimental Results of Decision Fusion

6. Discussion
From the experimental results of Table 1, our proposed method us-
ing enhanced autocorrelation pattern outperforms previous methods
[5], because previous method did not consider the case of multiple
objects. For Table 2, we can observe that using spectral subtrac-
tion enhances the performance under noisy environment. We can
also observe using seismic peaks with δ = 0.2 achieves the best
result. Possible explanation is that there is a little asynchrony be-
tween acoustic sounds and seismic peaks. Hence, the δ = 0.1 can-
not exactly capture the footstep sounds. Also, we can observe us-
ing multi-stage feature selection framework improves the accuracy
under different δ’s. In Table 3, we show that using our proposed
method in seismic and acoustic features along with ultrasonic fea-
tures greatly improves the robustness of the system.

7. Conclusion
In this paper, we use a challenging realistic multi-sensor multi-
modality dataset for personnel detection. Based on phenomenol-
ogy of the differences (micro-Doppler motion, enhanced autocor-
relation pattern, footstep sound) between humans and four-legged
animals, we propose a new seismic feature extraction method based
on enhanced autocorrelation, and a multi-stage acoustic feature se-
lection framework. From experimental results, we show that the
combination of multi-modality sensors improves the robustness of
the system over previous approach. It is possible to further extend
the current fusion system for sensor network fusion. It is inexpen-
sive to deploy unattended ground sensors such as acoustic, seismic,
ultrasonic sensors in target areas.
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