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Abstract—Sparse Coding (SC), which models the data vec-
tors as sparse linear combinations over basis vectors, has been
widely applied in machine learning, signal processing and neu-
roscience. In this paper, we propose adual random projection
method to provide an efficient solution to Nonnegative Sparse
Coding (NSC) using small memory. Experiments on real world
data demonstrate the effectiveness of the proposed method.

I. I NTRODUCTION

Recent years have witnessed a surge of interests inNon-
negative Matrix Factorization (NMF) [9], [10], [19], [26]
andNonnegative Sparse Coding (NSC) [5], [6], [7], [17].

NMF is an effective factorization method for decomposing
multivariate data into nonnegative components. It is believed
that NMF is capable of producing interpretable representa-
tions of the data owing to the additive combination of the
components [3], [9]. One beneficial “side effect” of NMF is
that it often producessparse representations [7], encoding
much of the data with only a fewactive components. This
property further enhances the interpretability. In fact, it has
been shown that sparse learned models are well adapted to
natural signals [16], [22], [21]. Recently,Nonnegative Sparse
Coding (NSC) has been proposed to extend the original NMF
to explicitly control the sparseness.

A. Nonnegative Sparse Coding

We first focus on the NSC problem with the sparseness
penalty only on the coefficients [6][5][17]. Later we will
show that our framework can be easily adapted to NSC with
penalties on both coefficients and basis vectors [7].

Consider a data matrixX = [x1,x2, · · · ,xn] ∈ R
d×n,

wherexi ∈ R
d is the i-th data vector. NSC aims to learn

a basis matrixF = [f1, f2, · · · , fr] ∈ R
d×r, such that

fj ∈ R
d is thej-th basis vector, together with a combination

coefficient matrixG = [g1,g2, · · · ,gn] ∈ R
r×n by solving

the following optimization problem:

minF,G

n∑

i

‖xi − Fgi‖
2
+ λ |gi|1

s.t. F > 0, G > 0 (1)

Here, λ is a constant to trade off the reconstruction loss
for the sparsity ofG. ‖z‖ =

√∑
i z

2
i is the ℓ2 norm and

|z|1 =
∑

i |zi| is the ℓ1 norm.F > 0 meansFij > 0 ∀ i, j.

Without loss of generality, we assume‖fj‖ = 1, j = 1 to
r. This is to preventF from being arbitrarily large (which
would result in arbitrarily smallG) [5].

Note that the optimization problem (1) is in general
difficult because it is non-convex overF and G

jointly. A common strategy is to apply alternating
optimization [10][5][17].

1) : In Problem (1), ifF is fixed, then the optimization
problem overG can be decomposed inton independent
ℓ1 constrained optimization problems. That is, fori =
(1, 2, · · · , n),

mingi
‖xi − Fgi‖

2 + λ |gi|1
s.t. gi > 0, (2)

which can be solved by the nonnegative LARS-LASSO
algorithms [23], [4], [17].

2) : Fixing G, the optimization problem (1) becomes

minF

n∑

i

‖xi − Fgi‖
2
= ‖X− FG‖2F

s.t. F > 0, (3)

which can be solved by the following normalization invariant
multiplicative update rule [5]:

F←− F⊙
XGT + Fdiag

(
1T

(
FGGT ⊙ F

))

FGGT + Fdiag
(
1T

(
XGT ⊙ F

)) (4)

where the multiplication (⊙) and division are element-wise
operations,1 is an all-one column vector.

B. The Storage and Computational Bottleneck of NSC

Current solutions of NSC require that the data matrix
X ∈ R

d×n reside in the memory. This seriously limits the
applicability of NSC to real world problems when both the
number of samples (n) and dimensions (d) are very large.
For example, 10 million images, each of size1000× 1000,
would not fit in the memory (using pixel representations).

A somewhat secondary issue is that when the dataX

is large, the matrix-vector multiplications in the algorithms
could be prohibitive. For example,XGT in Eq. (4) would
be expensive when bothn andd are large.



C. CNSC: Compressed Nonnegative Sparse Coding

This paper proposesCompressed Nonnegative Sparse
Coding (CNSC) to overcome the storage and computational
problems of the current NSC solutions, based on adual
random projection method.

Random projection [24], [1], [11], [14], [12] is an effective
randomized algorithm for solving many large scale computa-
tional problems. The basic idea is that, if one multiplies the
data matrixX ∈ R

d×n by a random matrixR ∈ R
n×k

whose entries are sampled from i.i.d. standard normals
N(0, 1), the resultant matrixB = X ×R fairly accurately
preserves all pairwisel2 distances and inner products ofX.1

For NSC, we have to conduct projections in both direc-
tions, that is,X×Rn andRd ×X, using two independent
random projection matrices,Rn andRd.

The prior work [25] developed an efficient random pro-
jection algorithm for NMF. This paper is a natural extension.
We would like to point out that, although we focus on
nonnegative sparse coding, our method will be applicable
to sparse coding without the nonnegativity constraint.

II. COMPRESSEDNONNEGATIVE SPARSECODING

As introduced in section I,Nonnegative Sparse Coding
(NSC) proceeds by solvingG and F alternatingly. The
proposedCompressed Nonnegative Sparse Coding (CNSC)
adopts a similar approach.

A. Solving G with F Fixed

In this case, we need to solve a “compressed” version of
the optimization problem (2):

mingi
‖Rdxi −RdFgi‖

2
+ λ |gi|1

s.t. gi > 0 (5)

whereRd ∈ R
kd×d is a random matrix whose entries are

sampled from i.i.d. standard normalsN(0.1). Problem (5) is
still a standard nonnegative least square regression problem
with ℓ1 penalty. We used theNLARS code [17]2. At each
step, we only need to solve a much smaller problem because
Rdxi ∈ R

kd×1 instead ofRd×1. Our experiments will show
that using aboutkd = 500 (while the original problem may
haved in millions or more) can provide a solution which is
sufficiently close to the original solution.

The computational complexity of the original problem
(2) can reachO(d2n). For high dimensional data sets, this
would be computationally prohibitive, even assuming that
one can store the original data matrixX in the memory.

1Random projection is particularly effective for preserving the l2 dis-
tances, with a strong guarantee known as theJohnson-Lindenstrauss (JL)
Lemma [8]. The guarantee is weaker in terms of preserving theinner
products; see [11], [13] for the detailed analysis of the estimation variances.

2http://www2.imm.dtu.dk/pubdb/views/publicationdetails.php?id=5523.

B. Solving F with G Fixed

Instead of solving the original problem (3), we solve the
compressed version:

minF ‖XRn − FGRn‖
2
F

s.t. F > 0 (6)

whereR ∈ R
n×kn is another random matrix whose entries

are sampled from i.i.d.N(0, 1).
However, after the compression, we cannot directly use

the update formula Eq. (4), becauseFRn and GRn are
no longer nonnegative. While we can apply strategies like
active set [20] or projected gradient [15], we find that these
methods are slow when the problem sizer is relatively large
(e.g.,r = 25). Here we adopt the following rule for updating
F:

F←− F⊙

√
Γ++FΘ−+ Fdiag[1T((Γ−+FΘ+)⊙ F)]

Γ−+ FΘ++ Fdiag[1T((Γ++ FΘ−)⊙ F)]
(7)

where

Γ = XRnR
T
nG

T (8)

Θ = GRnR
T
nG

T (9)

and A+ = (|A| + A)/2, with | · | being the element-
wise absolute value, is the positive part of matrixA; and
A− = (|A| −A)/2 is the negative part ofA.

In other words, Eq. (7) is a simple variation of Eq. (4) by
separating the positive and negative parts. Eq. (7) is derived
using the same strategy as inSemi-NMF [2].

Thus, we can updateG andF alternatingly until a local
equilibrium is reached. The overall CNSC algorithm is
summarized in Algorithm 1.

Algorithm 1 COMPRESSEDNSC

Require: Data Matrix X ∈ R
d×n, Projection Matrix Rd ∈

R
kd×d, Projection MatrixRn ∈ R

n×kn , Positive integerr,
Number of iterationsT

1: Construct the compressed data matrixX̃ = RdX and X̄ =
XRn.

2: Randomly initializeF(0)
∈ R

d×r to be a nonnegative matrix
3: for t = 1 : T do
4: CompressF by F̃ = RdF

5: for i = 1 : n do
6: Solve thei-th column ofG, Problem (5), by the NLARS

Algorithm
7: end for
8: CompressG by Ḡ = GRn

9: ConstructΓ andΘ as in Eq. (8) and Eq. (9), and updateF
using Eq. (7).

10: end for
11: OutputG andF



Table I
THE BASIC INFORMATION OF THE DATA SETS

Dimensionality (d) Size (n)
Yale 1024 165

YaleB 1024 2,124
COIL 16384 7,200
PIE 1024 11,554

SecStr 315 1,273,151

III. E XPERIMENTS

This section presents a set of experiments to demonstrate
the effectiveness of the proposed CNSC method. Table I
summarizes the information about the data sets3.

Original k
d
=50

k
d
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d
=1000

Figure 1. Yale: The learned face dictionary. Different figures correspond
to different compressed dimensions with the same initialization ofF.

A. Yale Face Data Set

The Yale Face data set contains 165 gray scale of 15
individuals. There are 11 images per subject, one per differ-
ent facial expression or configuration. The faces have been
cropped from the original images and resized to32 × 32.
We compare our CNSC algorithm with the sparse coding
algorithm in [17]. For both algorithms, the dictionaryF is
randomly initialized, and the number of iterations is set to
200. The objective function loss at stept is computed as

J(F(t),G(t)) = ‖X− F(t)G(t)‖2F + λ‖G(t)‖1 (10)

3http://www.zjucadcg.cn/dengcai/Data/FaceData.html

We setr = 25 and let theNLARS code chooseλ (for the
smallest function loss). For this data set, asn = 165 is very
small, we only compressF when solvingG in Problem
(5). We construct a normal random matrixRd ∈ R

kd×d

with kd = 50, 100, 200, · · · , 1000, and run algorithm 1 with
Rn = In×n. For eachkd value, we conduct 100 independent
runs with the same initialization and report the statistical
performance.

Fig.1 illustrates the learned face dictionaryF with a
specific initialization for the original algorithm in [17] and
our CNSC algorithm withkd = 50, 500, 1000. From the
figure we can see that with increasingkd, the learned
dictionary would become more like the dictionary learned
from the original uncompressed problem, and the learned
F with kd = 500 and kd = 1000 are quite similar, which
indicates thatkd = 500 is enough for this data set. Moreover,
we also compute the effective density ofG (which is the
number of nonzero elements inG divided by r × n), for
comparing CNSC with NSC. The results are shown in Fig. 2,
which illustrates that the sparsity ofG are well preserved
for CNSC. Moreover, the larger the compressed dimension,
the better the preservation would be.
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(b) Initialization 2

Figure 2. Yale: Effective density ofG using CNSC and 2 different random
initializations ofF. The y-axis corresponds to the (normalized)ℓ0 norm
of G after 200 iterations divided by its size, and the x-axis represents
different projected dimensionskd (50 to 1000). The solid lines are averaged
100 independent runs with the standard deviation shown as error bars. The
dashed line is the effective density ofG resulting from original NSC.

Fig. 3 plots the variation of the objective function loss
with respect to the number of iterations for the CNSC
method with 2 different random initializations ofF. The
solid lines correspond to different projected dimensionalities,
which are averaged over 100 independent runs. The dashed
lines correspond to the original NSC without random pro-
jections. The initializations ofF are set to be the same for
NSC with or without random projections. As the projected
dimensionality increases, the Frobenius loss curves of CNSC
become closer to the original NSC curves.

Fig. 4 shows the relative loss (averaged over 100 indepen-
dent runs with standard deviation) vs. projected dimensional-
ity plots after 200 iterations, for two different initializations
of F. Here relative loss afterT iterations at a specific
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Figure 3. Yale: Objective function loss variation over 200 iterations using
CNSC with 2 different random initializations ofF. The dashed line is for
the original NSC. The solid lines are the averaged (over 100 independent
runs) plots of CNSC (kd = 50 to 1000 from top to bottom).

projected dimension is computed as

RL(T ) = J(F̃(T ), G̃(T ))/J(F(T ),G(T )) (11)

where F̃(T ) and G̃(T ) are the matrices learned by CNSC
after T = 200 iterations, whileF(T ) andG(T ) are learned
from original NSC. Clearly, the closerr(T ) to 1, the
better the approximation will be. Fig.4 shows that larger
projected dimensions will lead to better and more stable
approximations. Whenkd = 200, the relative error would
become less than5% (i.e., 1.05 in the y-axis in Fig. 4).
We also compare the computational time of CNSC in each
round of updatingF andG, with the updating time of the
original NSC, across different projected dimensions. The
results are shown in Fig. 5(a), which clearly demonstrates
the computational efficiency of our compression strategy.
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Figure 4. Yale: Relative loss using CNSC using 2 different random
initializations ofF. The y-axis corresponds to the final relative loss after
200 iterations, and the x-axis represents different projected dimensionskd
(50 to 1000). The solid lines are averaged 100 independent runs with the
standard deviation shown as error bars.

B. Experiments on YaleB Face Data Set

The YaleB data set we used is a sub data set from the
extended Yale face database4. It has 38 individuals and
around 64 near frontal images under different illuminations
per individual. In total there are 2414 face images, each of
size32× 32 (i.e., the dimensionality = 1024).

4http://vision.ucsd.edu/∼ leekc/ExtYaleDatabase/ExtYaleB.html
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(c) PIE
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(d) COIL

Figure 5. Computational time comparison of CNSC and original NSC.
The x-axis corresponds to the projected dimensionality, y-axis represents the
averaged computational time (over 50 independent runs) foreach updating
iteration in seconds. The figure shows that the larger the original data
matrix, the more significant the speedup of CNSC is.
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Figure 6. YaleB: Objective function loss and Relative loss using CNSC
and one random initialization ofF. (a) shows the objective function loss vs.
number of iterations plot, The dashed line is the plot of original NSC. The
solid lines are the averaged (over 100 independent runs) plots of CNSC with
random projections (kd = kn = 50 to 1000 from top to bottom). (b) shows
the final relative loss after 200 iterations vs. compressed dimensionality. The
solid lines are averaged 100 independent runs with the standard deviation
shown as error bars.

In our experiments, we also set the number of the basis
face vectorsr = 25. For CNSC, we implemented algorithm
1 with kd = kn = 50, 100, 200, · · · , 1000 for simplicity,
i.e., the compressed dimensionalities for Problem (5) and
Problem (6) are set to be the same when solvingG andF.

Fig. 6 (a) shows the variations of the objective function
loss with respect to the number of iterations for original
NSC (in dashed line) and CNSC (in solid lines, which are
averaged over 100 independent runs). From the figure we
can clearly see that with the increase of the compressed di-
mensionality (kn andkd), the resultant curve would become
closer to the curve derived from original NSC. Fig. 6(b)



suggests that whenkd = kn becomes larger than 400, the
final relative loss would be within 1.1. We also record the
effective density of the finalG after 200 iterations as shown
in Fig. 8(a), from which we can observe that the sparsity
of G is well preserved. Also we can see that the larger
the compressed dimensionality, the better the preservation.
The computational time comparison is provided in Fig. 5(b),
which also shows the computational advantage of CNSC
over NSC.
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Figure 7. PIE: Objective function loss and relative loss using CNSC and
one random initialization ofF. The meanings of the axes and curves are
the same as in Fig. 6.

C. Experiments on PIE Data Set

The data set we used is a subset from the PIE face
database5, which contains the near frontal face images of
68 people, with a total of 11554 images. Each image is
resized to32× 32. In our experiments, we also setr = 25
and kd = kn = 50 to 1000, and we report the objective
function loss, final relative loss and final sparsity ofG in
Fig. 7(a), Fig. 7(b) and Fig. 8(b). From these figures we
can observe similar pattern on the approximation of CNSC
to NSC as what we see for the Yale and YaleB data sets.
The computational time comparison of CNSC and NSC is
shown in Fig. 5(c), where there is a large gap between the
red curve and blue line, which suggests a significant speedup
when applying the compression strategy on this data set.
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Figure 8. Effective density of G on YaleB and PIE face data using CNSC
and one random initializations ofF. The meanings of the axes are the same
as in Fig. 2. The solid lines are averaged 100 independent runs with the
standard deviation shown as error bars. The dashed line is the effective
density ofG resulting from original NSC.

5www.ri.cmu.edu/researchproject detail.html?projectid=418&menu id=261

D. Experiments on COIL Data Set

COIL-100 [18] is an object recognition data set, contain-
ing pictures of 100 different objects. Each object has 72
pictures taken from different angles. All pictures are of size
128× 128, with a total of 16384 pixels. In our experiments,
we also setr = 25 andkd = kn = 50 to 1000, and we report
the objective function loss and final relative loss in Fig. 9(a)
and Fig. 9(b). These figures exhibit similar trends as those
on the Yale and YaleB data Sets. The computational time
comparison of CNSC and NSC is shown in Fig. 5(d). The
speedup is very significant owing to the large compression
ratio on this data set.
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Figure 9. COIL : Objective function loss and Relative loss using CNSC
and one random initialization ofF. The meanings of the axes and curves
are the same as in Fig. 6.

E. Experiments on Secstr Data Set

Secstr is a bioinformatics data set for predicting the
secondary structure of a given amino acid in a protein
based on a sequence window centered around that amino
acid.6. As the data scale is very large (over 1 million) and
the data dimensionality is very small (315), we adopt a
one-side compression, i.e., we only compress on the data
scale side but leave the data dimension side unchanged. In
our experiments, we setr = 100 and kn = 50 to 1000,
and we report the objective function loss and the effective
density variation in Fig. 10(a) and Fig.10(b), respectively.
The results on this data set again verify the effectivness of
the proposed method.
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Figure 10. SecStr: Objective function loss and effective density using
CNSC and one random initialization ofF.

6http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html



IV. CONCLUSION

In this paper, we proposeCompressed Nonnegative Sparse
Coding (CNSC), adual random projection strategy to signif-
icantly overcome the storage and computational bottlenecks
of Nonnegative Sparse Coding (NSC), a method that has
been widely applied in machine learning, signal processing
and neuroscience. With CNSC, we only need to store
compressed versions of the original data matrix, whose
size in these days may well exceed the memory capacity.
Experimental results on real world data sets demonstrate the
effectiveness of the proposed CNSC algorithm.
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