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Abstract—Sparse Coding (SC), which models the data vec-
tors as sparse linear combinations over basis vectors, hagén
widely applied in machine learning, signal processing and eu-
roscience. In this paper, we propose aual random projection
method to provide an efficient solution to Nonnegative Spaes
Coding (NSC) using small memory. Experiments on real world
data demonstrate the effectiveness of the proposed method.

I. INTRODUCTION
Recent years have witnessed a surge of interesioim
negative Matrix Factorization (NMF) [9], [10], [19], [26]
and Nonnegative Sparse Coding (NSC) [5], [6], [7], [17].

NMF is an effective factorization method for decomposing(1,2, - - -

multivariate data into nonnegative components. It is belie

that NMF is capable of producing interpretable representa-
tions of the data owing to the additive combination of the
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Without loss of generality, we assunijé;|| =1, j =1 to
r. This is to prevent from being arbitrarily large (which
would result in arbitrarily smal(z) [5].

Note that the optimization problem (1) is in general
difficult because it is non-convex oveF and G
jointly. A common strategy is to apply alternating
optimization [10][5][17].

1) : In Problem (1), ifF is fixed, then the optimization
problem overG can be decomposed inte independent
{1 constrained optimization problems. That is, for=
SOB

ming, [|x; — ngH2 + Algily

components [3], [9]. One beneficial “side effect” of NMF is \,hich can be solved by the nonnegative LARS-LASSO
that it often producesparse representations [7], encoding algorithms [23], [4], [17].

much of the data with only a fewctive components. This
property further enhances the interpretability. In fachas

been shown that sparse learned models are well adapted to

natural signals [16], [22], [21]. RecentMpnnegative Sparse

Coding (NSC) has been proposed to extend the original NMF

to explicitly control the sparseness.

A. Nonnegative Sparse Coding

We first focus on the NSC problem with the sparseness
penalty only on the coefficients [6][5][17]. Later we will
show that our framework can be easily adapted to NSC with

penalties on both coefficients and basis vectors [7].
Consider a data matriX = [x;,xa, - ,X,| € RX",

wherex,; € R¢ is the i-th data vector. NSC aims to learn

a basis matrixF = [f;,fp,---,f.] € RY", such that

f; € R?is thej-th basis vector, together with a combination

coefficient matrixG = [g1, g2, - ,8n] € R"*" by solving
the following optimization problem:

n
ming, g Z ||Xz' - ng‘”2 +A |gi|1
i

st. F>0,G>0 (1)

2) : Fixing G, the optimization problem (1) becomes
ming Y [jx; — Fgil|* = |[X - FG[%

st. F>0, 3)

which can be solved by the following normalization invatian
multiplicative update rule [5]:

XG' + Fdiag(1" (FGGT O F))
FGG' + Fdiag(1" (XG' @ F))

where the multiplication®) and division are element-wise
operations,1 is an all-one column vector.

F+—Fo

(4)

B. The Storage and Computational Bottleneck of NSC

Current solutions of NSC require that the data matrix
X € R¥*™ reside in the memory. This seriously limits the
applicability of NSC to real world problems when both the
number of samplesn{ and dimensionsd) are very large.
For example, 10 million images, each of siz@0 x 1000,
would not fit in the memory (using pixel representations).

A somewhat secondary issue is that when the d&ta

Here, A is a constant to trade off the reconstruction lossis large, the matrix-vector multiplications in the algbrits

for the sparsity ofG. ||z| = \/>_, z? is the ¢, norm and
|z[1 =, |zl is the/, norm.F > 0 meansF;; > 0V i, j.

could be prohibitive. For exampl& G in Eq. (4) would
be expensive when both andd are large.



C. CNSC: Compressed Nonnegative Sparse Coding B. Solving F with G Fixed

This paper propose€ompressed Nonnegative Sparse Instead of solving the original problem (3), we solve the
Coding (CNSC) to overcome the storage and computationalcompressed version:
problems of the current NSC solutions, based odual
random projection method. ming | XR, — FGRn||2F
Random projection [24], [1], [11], [14], [12] is an effective st. F>0 (6)
randomized algorithm for solving many large scale computa-
tional problems. The basic idea is that, if one multiplies th whereR € R™**~ is another random matrix whose entries
data matrixX € R*" by a random matrixR € R"**  are sampled from i.i.dN (0, 1).
whose entries are sampled from i.i.d. standard normals However, after the compression, we cannot directly use
N(0,1), the resultant matrbB = X x R fairly accurately  the update formula Eq. (4), becauB®, and GR,, are
preserves all pairwisk distances and inner products ' o longer nonnegative. While we can apply strategies like
For NSC, we have to conduct projections in both direc-active set [20] or projected gradient [15], we find that these
tions, that is X x R,, andRy x X, using two independent methods are slow when the problem sizis relatively large
random projection matrice®,, and R. (e.g.,r = 25). Here we adopt the following rule for updating
The prior work [25] developed an efficient random pro- F:
jection algorithm for NMF. This paper is a natural extension
We would like to point out that, although we focus on
nonnegative sparse coding, our method will be applicablep , g \/F++ FO_+ Fdiag1'(F-+ FO.) O F)] %
to sparse coding without the nonnegativity constraint. I' +FO,;+Fdiag[1(T++FO_) O F)]

Il. COMPRESSEDNONNEGATIVE SPARSECODING where
As introduced in section INonnegative Sparse Coding r= XR,R]G' (8)
(NSC) proceeds by solvingG and F alternatingly. The ®= GR,R/GT 9)
proposedCompressed Nonnegative Sparse Coding (CNSC)
adopts a similar approach. and A, = (|A] + A)/2, with | - | being the element-
wise absolute value, is the positive part of matAx and
A. Solving G with F Fixed A_ = (JA| — A)/2 is the negative part oA.

In this case, we need to solve a “compressed” version of In oth_er words, Eq (Misa simple variation of Eq. “) t_)y
the optimization problem (2): se_paratmg the positive and neg_atlve parts. Eq. (7) is eeériv
using the same strategy as $ami-NMF [2].
ming, [|Rax; — RngiHQ + Mgl Thus, we can updaté andF alternatingly until a local
st >0 ) equilibrium is reached. The overall CNSC algorithm is
summarized in Algorithm 1.

whereR,; € R*¢*d js g random matrix whose entries are

sampled from i.i.d. standard normad¥&0.1). Problem (5) is  Algorithm 1 COMPRESSEDNSC

still a standard nonnegative least square regression@mobl Require: Data Matrix X € R**™, ProLection Matrix R; €
with ¢; penalty. We used th&lLARS code [17f. At each RF*? Projection MatrixR,, € R™*"*», Positive integerr,
step, we only need to solve a much smaller problem because Number of iterations’ . _
R,x; € RF*1 instead ofR%*'. Our experiments will show 1. Construct the compressed data mafkix= R;X and X =

. . . XR,.
that using "?‘k?OU‘fd = 500 (while the erglnal pr(_)blem May 2. Randomly initializeF(® € R?*" to be a nonnegative matrix
haved in millions or more) can provide a solution whichis 3. for t =1:7do
sufficiently close to the original solution. 4:  CompressF by F = R,F
The computational complexity of the original problem 5 for i=1:ndo

(2) can reachO(d?n). For high dimensional data sets, this Solve thei-th column of G, Problem (5), by the NLARS

. L . Algorithm
would be computat|(.)n.ally prohibitive, even assuming that ;. ond for
one can store the original data mat&in the memory. 8: CompressG by G = GR,,
9:  Constructl’ and® as in Eq. (8) and Eq. (9), and upddfe
1Random projection is particularly effective for presegithe l5 dis- using Eq. (7).
tances, with a strong guarantee known as Jbtenson-Lindenstrauss (JL) 10: end for

Lemma [8]. The guarantee is weaker in terms of preservingirier 11: OutputG andF
products; see [11], [13] for the detailed analysis of théestion variances.
2http://www2.imm.dtu.dk/pubdb/views/publicatiodetails.php?id=5523.




Table |

THE BASIC INFORMATION OF THE DATA SETS

Dimensionality @) Size @)
Yale 1024 165
YaleB 1024 2,124
COIL 16384 7,200
PIE 1024 11,554
SecStr 315 1,273,151

IIl. EXPERIMENTS

We setr = 25 and let theNLARS code choose\ (for the
smallest function loss). For this data setyas 165 is very
small, we only compres& when solvingG in Problem
(5). We construct a normal random matik,; € R¥axd
with k4 = 50,100, 200, - - - , 1000, and run algorithm 1 with
R, = 1,«.. For each, value, we conduct 100 independent
runs with the same initialization and report the statistica
performance.

Fig.1 illustrates the learned face dictionaFy with a
specific initialization for the original algorithm in [17]nd

This section presents a set of experiments to demonstra@ir CNSC algorithm withk; = 50,500, 1000. From the
the effectiveness of the proposed CNSC method. Table figure we can see that with increasirig, the learned

summarizes the information about the datasets

k=500 k 1000

Figure 1. Yale: The learned face dictionary. Different figures correspond
to different compressed dimensions with the same iniaéitm of F.

A. Yale Face Data Set

dictionary would become more like the dictionary learned
from the original uncompressed problem, and the learned
F with k; = 500 and k; = 1000 are quite similar, which
indicates thak; = 500 is enough for this data set. Moreover,
we also compute the effective density Gf (which is the
number of nonzero elements @ divided by r x n), for
comparing CNSC with NSC. The results are shown in Fig. 2,
which illustrates that the sparsity @& are well preserved
for CNSC. Moreover, the larger the compressed dimension,
the better the preservation would be.
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effective density
effective density

o 200 400 600 800 1000 o 200 400 600 800 1000
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(a) Initialization 1 (b) Initialization 2

Figure 2. Yale: Effective density oiG using CNSC and 2 different random
initializations of F. The y-axis corresponds to the (normalized) norm

of G after 200 iterations divided by its size, and the x-axis espnts
different projected dimensiorig; (50 to 1000). The solid lines are averaged
100 independent runs with the standard deviation shownras lears. The
dashed line is the effective density 6f resulting from original NSC.

Fig. 3 plots the variation of the objective function loss
with respect to the number of iterations for the CNSC
method with 2 different random initializations d&. The

The Yale Face data set contains 165 gray scale of 15olid lines correspond to different projected dimensitties|,
individuals. There are 11 images per subject, one per differwhich are averaged over 100 independent runs. The dashed
ent facial expression or configuration. The faces have beelines correspond to the original NSC without random pro-

cropped from the original images and resized3fox 32.

jections. The initializations oF are set to be the same for

We compare our CNSC algorithm with the sparse codingNSC with or without random projections. As the projected

algorithm in [17]. For both algorithms, the dictionaFy is

dimensionality increases, the Frobenius loss curves of NS

randomly initialized, and the number of iterations is set tobecome closer to the original NSC curves.

200. The objective function loss at stefis computed as
JED,GY) = X - FOGUE + NGV, (20)

Shttp://www.zjucadcg.cn/dengcai/Data/FaceData.html

Fig. 4 shows the relative loss (averaged over 100 indepen-
dent runs with standard deviation) vs. projected dimeradion
ity plots after 200 iterations, for two different initiaitions
of F. Here relative loss aftefl’ iterations at a specific
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Figure 3. Yale: Objective function loss variation over 200 iterationsngsi ®
CNSC with 2 different random initializations @&. The dashed line is for 330 3
the original NSC. The solid lines are the averaged (over hdependent < iCNSC > —h-CNSC
runs) plots of CNSCK,; = 50 to 1000 from top to bottom). Ezs NSC Jy E1s0 —
% 20 % 100
projected dimension is computed as §1s ek ——k g o
— J(FO gD () @ 10 ek
RL(T) - J(F 7G )/J(F ’G ) (11) 0 200 pr(ﬁggted fir?'loe%sioneoo 1000 0 200 pro‘j‘gged di?\'[l)gnsmneoo 1000
where F(T) and G(T) are the matrices learned by CNSC (c) PIE (d) colL

after ' = 200 iterations, whileF(") and G(™) are learned Figure 5. Computational time comparison of CNSC and oright&C.
from original NSC. Clearly, the closer(T) to 1, the The x-axis corresponds to the projected dimensionaligxig-represents the
better the approximation will be Fig 4 shows that Iarger{;\vera}ged'computatlonal time (over 50 independent runs)doh'up_datmg

- . ' . : : iteration in seconds. The figure shows that the larger thginaii data
projected dimensions will lead to better and more stabl@natrix, the more significant the speedup of CNSC is.
approximations. Whert,; = 200, the relative error would

become less thah% (i.e., 1.05 in the y-axis in Fig. 4).

We also compare the computational time of CNSC in eact 7 A7
round of updatingf’ and G, with the updating time of the  &s 158
original NSC, across different projected dimensions. The §s ﬁl}xg
. . . o - .
results are shown in Fig. 5(a), which clearly demonstrate: 54 213
. . . . © "
the computational efficiency of our compression strategy. 2. R
.i 50 1.15
Q
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o k=l
o 11 o 11 Figure 6. YaleB: Objective function loss and Relative loss using CNSC
7 L8 7 L8 and one random initialization d. (a) shows the objective function loss vs.
e igi e igi number of iterations plot, The dashed line is the plot ofindyNSC. The
Loz Loz solid lines are the averaged (over 100 independent runt) plcCNSC with
o o random projectionsk(; = k, = 50 to 1000 from top to bottom). (b) shows
0 200 400 600 800 1000 0 200 400 600 800 1000 the final relative loss after 200 iterations vs. compresseiasionality. The
d lity (k d lity (k e ; X .
mensionalty (k) mensionalty (k) solid lines are averaged 100 independent runs with the atdrdeviation
(a) Initialization 1 (b) Initialization 2 shown as error bars.

Figure 4. Yale: Relative loss using CNSC using 2 different random

initializations of F. The y-axis corresponds to the final relative loss after | gur experiments, we also set the number of the basis
200 iterations, and the x-axis represents different ptegedimensiong:,

(50 to 1000). The solid lines are averaged 100 independerst with the face vectors: = 25. For CNSC, we |mplemented algor'thm

standard deviation shown as error bars. 1 with k; = k, = 50,100,200,---,1000 for simplicity,
i.e., the compressed dimensionalities for Problem (5) and
B. Experiments on YaleB Face Data Set Problem (6) are set to be the same when solh@ndF.

The YaleB data set we used is a sub data set from the Fig. 6 (a) shows the variations of the objective function
extended Yale face databAsdt has 38 individuals and loss with respect to the number of iterations for original
around 64 near frontal images under different illuminagion NSC (in dashed line) and CNSC (in solid lines, which are

per individual. In total there are 2414 face images, each ofv€raged over 100 independent runs). From the figure we
size 32 x 32 (i.e., the dimensionality = 1024). can clearly see that with the increase of the compressed di-

mensionality §,, andk,), the resultant curve would become
“http://vision.ucsd.edu/leekc/ExtYaleDatabase/ExtYaleB.html closer to the curve derived from original NSC. Fig. 6(b)



suggests that wheh; = k,, becomes larger than 400, the D. Experiments on COIL Data Set

ag g p

final relative loss would be within 1.1. We also record the -~ -100 [18] is an object recognition data set, contain-
effective density of the finalz after 200 iterations as shown ing pictures of 100 different objects. Each object has 72
in Fig. 8(a), from which we can observe that the sparsityyicyres taken from different angles. All pictures are aksi

of G is well preserved. Also we can see that the larger og . 198, with a total of 16384 pixels. In our experiments,
the compressed dimensionality, the better the presenatio,ye ais0 set- — 25 andk, = k, = 50 to 1000, and we report

The computational time comparison is provided in Fig. 5(b).the opjective function loss and final relative loss in Figa)9(

which also shows the computational advantage of CNSGnq Fig. 9(h). These figures exhibit similar trends as those
over NSC. on the Yale and YaleB data Sets. The computational time
" comparison of CNSC and NSC is shown in Fig. 5(d). The
speedup is very significant owing to the large compression
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Figure 7. PIE: Objective function loss and relative loss using CNSC and
one random initialization oF'. The meanings of the axes and curves are

[y
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o

the same as in Fig. 6. number of iterations dimensionality (k=k,)
(a) Function Loss (b) Relative Loss
C. Experiments on PIE Data Set Figure 9. COIL : Objective function loss and Relative loss using CNSC

The data set we used is a subset from the PIE facénd one random initialization df. The meanings of the axes and curves
. . . are the same as in Fig. 6.
databasg which contains the near frontal face images of
68 people, with a total of 11554 images. Each image 3 Experiments on Secstr Data Set

resized to32 x 32. In our experiments, we also set= 25 ) o . o
and k; = k, = 50 to 1000, and we report the objective ~ S€cstr is a bioinformatics data set for predicting the

function loss, final relative loss and final sparsity@fin ~ Seécondary structure of a given amino acid in a protein
Fig. 7(a), Fig. 7(b) and Fig. 8(b). From these figures webased on a sequence window centered around that amino
can observe similar pattern on the approximation of CNSCaCid®. As the data scale is very large (over 1 million) and
to NSC as what we see for the Yale and YaleB data setdh€ data dimensionality is very small (315), we adopt a
The computational time comparison of CNSC and NSC isone-side compression, i.e., we only compress on the data
shown in Fig. 5(c), where there is a large gap between th&cale side but leave the data dimension side unchanged. In
red curve and blue line, which suggests a significant speed @ €xperiments, we set = 100 and k,, = 50 to 1000,
when applying the compression strategy on this data set. and we report the objective function loss and the effective
density variation in Fig. 10(a) and Fig.10(b), respectivel
The results on this data set again verify the effectivness of

068 the proposed method.
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Figure 8. Effective density of G on YaleB and PIE face datagiENSC o Bo a0 w0 6w O Gimensionalityk )
and one random initializations @&. The meanings of the axes are the same number of iterations "
as in Fig. 2. The solid lines are averaged 100 independerst with the (a) Function Loss (b) Relative Loss
standard deviation shown as error bars. The dashed lineei®factive  Figure 10. SecStr Objective function loss and effective density using
density of G resulting from original NSC. CNSC and one random initialization @.

Swww.ri.cmu.edu/researchroject detail. htmi?projectid=418&menu id=261 Bhttp://www.kyb.tuebingen.mpg.de/ssl-book/benchmétksl



IV. CONCLUSION

In this paper, we proposeompressed Nonnegative Sparse
Coding (CNSC), adual random projection strategy to signif-

(13]

icantly overcome the storage and computational bottlemeck{14]

of Nonnegative Sparse Coding (NSC), a method that has

been widely applied in machine learning, signal processing
and neuroscience. With CNSC, we only need to store
compressed versions of the original data matrix, whosegis)
size in these days may well exceed the memory capacity.

Experimental results on real world data sets demonstrate th[

effectiveness of the proposed CNSC algorithm.
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